(CSE-3421: Database Systems—Godfrey

Winter 2009 CSE-3421: Database Systems—Godfrey P Winter 2009 p-
f L f L
The Database System Transaction Management
Architectural Overview
Certain sets of actions on the database we want to occur together.
Important Aspects
. . Such a set of actions we call a transaction.
o For permanence, data is on disk.
e To work on data, it must be in main memory. Properties:
(But main memory is volatile!) e Atomicity
e Main memory is thousands of times faster than disk memory. o Consistency
o Isolation
Primitive Operations e Durability
® Read a piece of data.
o Write a piece of data. Goes hand-in-hand with concurrency control. The RDBMS should
o Lo be able to handle 100,000’s transactions a minute.
Within the database system, a transaction is just a sequence of 00,000
reads and writes. Some of these will be in conflict.
n P
So a transaction may
® commit or
e abort (a.k.a. rollback)
L
Winter 2009 CSE-3421: Database Systems—Godirey p. : Winter 2009 CSE-3421: Database Systems—Godirey b
f f
Atomicity Consistency
All or Nothing
create table WorldBank (
e insert into sailors values P
acct# char(12) not null,
£a 5 op 7).
(53, "dopey’, 26, 7); name varchar(50) not null,
insert into sailors values balance decimal(15,2) not null,
53, dopey’, 26, 7), .
(83, "dopey’, 26, 7) primary key (acct#),
54, ’sleepy’, 29, 3),
(6 Py’ 29, 3) check (balance >= 0)
(55, 'doc’, 43, 10); ):
L

transfer (from, to, amount) {
update WorldBank
set balance = balance - :amount
where acct# = :from;
update WorldBank
set balance = balance + :amount
where acct# = :to;

commit;




Winter 2009 CSE-3421: Database Systems—Godfrey p. 5 Winter 2009 CSE-3421: Database Systems—Godfrey p. 6
f L f L
Isolation Durability
Ty: transfer(13, 21, 100.00); Once a X-act commits, its effects on the database are permanent.
Ty: transfer(13, 34, 100.00); (But not before then!)
T, T, e At what point can a X-act commit?
R(A) e Can other concurrent X-acts derail it?
R(A) o When will a X-act be aborted?
W(A)
W(A) Note: The APP / X-act can decide to abort (rollback) itself at any
R(B) time (up until a commit).
‘W(B) ’
n P
R(C)
W(Q)
How to ensure that X-acts do not “step on” one another?
HU\V d() we zl\'Ui(l inconsistencies thﬂt (’,U]lld arise (hl(‘, to concurrent
X-acts?
h r
Winter 2009 CSE-3421: Database Systems—Godfrey p. 7 Winter 2009 CSE-3421: Database Systems—Godfrey p. 8
f L f L
Durabilty and Crashes Serializability
What do we do if the DB crashes while some X-acts are still active? inflate (percent) {
o All uncommitted X-acts are effectivelt aborted on reboot. update WorldBank
- . . set balance = balance * (1. :perce
o By durability, all committed X-acts must be reflected in the DB. set balance = balance * (1.0 + :percent)
(But they may not have been written to disk yet at the time of commit;
the crash!) }
The RDBMS logs all actions so that it can undo the actions of all T;: transfer(34, 13, 100.00);
uncommitted transactions, and it can redo all committed T,: inflate(13, 0.06);
transactions that did not make it to disk.
1 r
We will accept any equivalent schedule such that the end effect is
equivalent to some serial schedule.
Such a schedule is called serializable.
That X-acts can abort greatly complicates things!
What could go wrong if we just picked any schedule?
h r




Winter 2009 CSE-3421: Database Systems—Godirey b9 Winter 2009 CSE-3421: Database Systems—Godirey b 10
f L f L
Anomalies Anomalies
“Dirty Reads” / WR Conflicts Unrepeatable Reads / RW Conflicts
T, T,
R(A)
W(A) R(A)
R(A) W(A)
W(A) commit
commit R(A)
R(B) W(A)
W(B) commit
abort L o
1 r
Winter 2009 CSE-3421: Database Systems—Godirey b1l Winter 2009 CSE-3421: Database Systems—Godirey b 12
f L f L
Anomalies Locks
Overwriting / WW Conflicts
How can we avoid such anomalies / conflicts? Locks!
w) T f lock:
W(B) 'ypes of locks:
commit e S(A): Shared lock on A.
W(B) Fine if X-act only needs to read A.
abort
e X(A): Exclusive lock on A.
1 r
Necessary if X-act needs to write A.
Granularity
What is A? What do we lock?
o table
® page
e row (tuple)
e cell (attribute in a tuple)
e index
Smaller granularity allows more concurrency, but is harder to
manage.
1 r




Winter 2009 (CSE-3421: Database Systems—Godfrey

p. 13 Winter 2009 CSE-3421: Database Systems—Godfrey p. 14
f L f L
Cascading Aborts Purchase X-act
T T, Ts purchase (acct, merchant, state, amount) {
X(A) '
R(A) select percent into :percent
W(A) from TaxRate
X(A)
where state = :state
X(A)
R(A) update WorldBank
W(A
i((A)) set balance = balance - (:amount * (1.0 + :percent))
X(A) where acct# = :acct;
R(A) .
W(A) update WorldBank
X(Aj set balance = balance + :amount
abort where acct# = :merchant;
1 r
update WorldBank
set balance = balance + (:amount * :percent)
where acct# = (
select acct#
from TaxRate
where state = :state
)
commit;
}
i
Winter 2009 CSE-3421: Database Systems—Godfrey p. 15 Winter 2009 CSE-3421: Database Systems—Godfrey p. 16
f L L
Deadlocks Two-phase Locking
A deadlock occurs when two (or more!) X-acts are mutually waiting o Each X-act must obtain a shared lock on cach object before
on locks to be released that the others hold. reading, and an exclusive lock on each obhect before writing.
o Can deadlocks be avoided? o All locks are released at the completion of the X-act (strict
e [s it worth avoiding them? 2PL).
o How do we resolve deadlocks (if they are “allowed” to occur)? o If any X-act holds an exclusive lock on A, no other X-act can
have a shared or exclusive lock on A.
For that matter, can we avoid cascading aborts?
1 r Strict 2PL

It does not prevent deadlocks.

e allows only serializable schedules, and

e makes cascading aborts unnecessary.




deadlock control —are handled by the RDBMS transparently!

Winter 2009 CSE-3421: Database Systems—Godirey b 17 Winter 2009 CSE-3421: Database Systems—Godirey b 18
L f L
Transaction Modes (p. 539) Aborting
o Serializable e If T; is aborted, all its actions must be undone.
® Repeatable Read If T; read an object after T; wrote it, T'; must be aborted too.
® Read Committed e Cascading aborts can be avoided by only releasing a X-act’s
* Read Uncommitted locks at completion (commit / abort) time.
So if T; writes an object, T; can only read this object after T;
Serializable is just as advertised. is done.
Repeatable Read avoids all the anomalies we discussed, except o To undo actions, the RDBMS must maintain a log which records
phantoms! every write.
Read Committed releases a shared lock after reading. So The log mechanism is also used in crash recovery. All X-acts
unrepeatable read anomalies are possible. active at the time of the crash are aborted when the database
) . . system reboots.
Read Uncommitted obtains no locks! (Must be of type read only.)
h r
i
Winter 2009 CSE-3421: Database Systems—Godfrey p. 19 Winter 2009 CSE-3421: Database Systems—Godfrey p. 20
L f L
The Log Crash Recovery (ARIES)
Actions recorded in the log: The three phases of the ARIES recovery algorithm:
o T; writes an object. e Analysis: Scan the log forward and find all X-acts that were
— the old value active (committed, aborted, and continuing) since the last
— the new value checkpoint.
The log record must go to disk before the changed page. e Redo: Redoes all writes (updates to dirty pages) in the buffer
o T, commit or T; abort. pool (as needed) to ensure all logged updates are carried out and
(eventually) written to disk.
Log records are chained together by a X-act ID, so it is easy to undo , X . .
e Undo: Undoes the writes of all X-acts active at the crash,
a specific X-act. X
working backwards through the log.
The log is often duplexed and archived on stable storage for crash
recovery. . )
Care must be taken to handle the case of a crash during the
recovery itself!
All concurrency control (CC) activities—logging, locking, and 1 F




