Database Application Development

Chapter 6

Database Management Systems 3ed

Overview

Concepts covered in this lecture:
% SQL in application code

<+ Embedded SQL

+ Cursors

% Dynamic SQL

« JDBC

<+ SQLJ

< Stored procedures

Database Management Systems 3ed

SQL in Application Code

« SQL commands can be called from within a host
language (e.g., C++ or Java) program.

= SQL statements can refer to host variables (including special
variables used to return status).

» Must include a statement to connect to the right database.

% Three main integration approaches:
* Embedded SQL: write SQL in the host language (e.g., SQLJ)
» CLI: Create special API to call SQL commands (e.g., JDBC)
* SQL/PL: SQL extended with programming constructs

Database Management Systems 3ed

SQL in Application Code (cont.)

Impedance mismatch:

+ SQL relations are (multi-) sets of records, with no a
priori bound on the number of records. No such data
structure exist traditionally in procedural
programming languages. Nowadays:

* C++ with the STL
» Java with utils (vector, etc.)

% SQL supports a mechanism called a cursor to handle
this.

= This is like an iterator in Java.

Database Management Systems 3ed

Embedded SQL
% Approach: Embed SQL in the host language.

= A preprocessor converts the SQL statements into
special API calls.

* Then a regular compiler is used to compile the
code.

< Language constructs:
= Connecting to a database:

EXEC SQL CONNETCT
= Declaring variables:

EXEC SQL BEGIN (END)DECLARE SECTION

= Statements:
EXEC SQL Statem ent;

Database Management Systems 3ed

Embedded SQL: Variables

EXEC SQL BEGIN DECLARE SECTION
char c_sname[20];

long c_sid;

short c_rating;

float c_age;

EXEC SQL END DECLARE SECTION

+ Two special “error” variables:
* sacrcooe (long, is negative if an error has occurred)
* saistate (char[6], predefined codes for common errors)

Database Management Systems 3ed

Cursors

% Can declare a cursor on a relation or query
statement (which generates a relation).

+ Can open a cursor, and repeatedly fetch a tuple then
move the cursor, until all tuples have been retrieved.

= Can use a special clause, called ORDER BY, in queries that
are accessed through a cursor, to control the order in
which tuples are returned.
¢ Fields in ORDER BY clause must also appear in SELECT clause.
= The ORDER BY clause, which orders answer tuples, is only
allowed in the context of a cursor.

+ Can also modify/delete tuple pointed to by a cursor.

Database Management Systems 3ed 7

Cursor that gets names of sailors who ve
reserved a red boat, in alphabetical order

EXEC SQL DECLARE sinfo CURSOR FOR
SELECT S .sname
FROM S ailors S, Boats B, Reserves R
W HERE S .sid=R .sid AND R .bid=B .bid AND B .color="‘red’

ORDER BY S .sname

< Note that it is illegal to replace S.sname by, say,
S.sid in the ORDER BY clause!

+ Can we add S.sid to the seLECT clause and
replace S.sname by S.sid in the ORDER BY clause?

Database Management Systems 3ed 8

Embedding SQL in C: An Example

char SQLSTATEI6I;
EXEC SQL BEGIN DECLARE SECTION
char c_sname[20]; shortc_minrating; floatc_age;
EXEC SQL END DECLARE SECTION
c_minrating = random ();
EXEC SQL DECLARE sinfo CURSOR FOR
SELECT S.sname, S .age FROM S ailors S
W HERE S .rating > :c_m inrating
ORDER BY S.sname;
do {
EXEC SQL FETCH sinfo INTO :c_sname, ic_age:;
printf(“% s is % d years old\n”, c_sname, c_age);
} while (SQLSTATE != ‘02000");

EXEC SQL CLOSE sinfo;

Database Management Systems 3ed 9

Dynamic SQL

% SQL query strings are now always known at compile
time (e.g., spreadsheet, graphical DBMS frontend):
Allow construction of SQL statements on-the-fly

< Example:

char c_sqlstring][]=

“DELETE FROM S ailors WHERE raiting>5"7;
EXEC SQL PREPARE readytogo FROM :c_sqlstring;

EXEC SQL EXECUTE readytogo;

Database Management Systems 3ed 10

Database APIs: Alternative to embedding

Rather than modify compiler, add library with database
calls (API)

Special standardized interface: procedures/objects

K/
0.0

K/
0’0

Pass SQL strings from language, presents result sets
in a language-friendly way

Sun’s [DBC: Java API

Supposedly DBMS-neutral

= a “driver” traps the calls and translates them into DBMS-
specific code

0’0

0’0

= database can be across a network

Database Management Systems 3ed 11

JDBC: Architecture

<+ Four architectural components:

= Application (initiates and terminates connections,
submits SQL statements)

* Driver manager (load JDBC driver)

= Driver (connects to data source, transmits requests
and returns/translates results and error codes)

= Data source (processes SQL statements)

Database Management Systems 3ed 12

JDBC Architecture (cont.)

Four types of drivers:
Bridge:

» Translates SQL commands into non-native API.
Example: JDBC-ODBC bridge. Code for ODBC and JDBC
driver needs to be available on each client.

Direct translation to native API, non-Java driver:

» Translates SQL commands to native API of data source.
Need OS-specific binary on each client.

Network bridge:

= Send commands over the network to a middleware server
that talks to the data source. Needs only small JDBC driver

at each client.
Direction translation to native API via Java driver:

* Converts JDBC calls directly to network protocol used by
DBMS. Needs DBMS-specific Java driver at each client.

Database Management Systems 3ed 13

JDBC Classes and Interfaces

Steps to submit a database query:
+ Load the JDBC driver

< Connect to the data source

<+ Execute SQL statements

Database Management Systems 3ed 14

JDBC Driver Management

% All drivers are managed by the
DriverManager class
+ Loading a JDBC driver:

» In the Java code:

Class.forName(“oracle/jdbc.driver.O racledriver”);

» When starting the Java application:

-Djdbc.drivers=oracle/jdbc.driver

Database Management Systems 3ed 15

Connections in J[DBC

We interact with a data source through sessions. Each
connection identifies a logical session.

+ JDBC URL:
jdbc:<subprotocol>:<otherParameters>

Example:

S tring url=*“jdbc:oracle:www .bookstore.com :3083"7;
Connection con;

try {

con = DriverM anager.getConnection(url,usedl/d,password);

} catch SQLException excpt { ... }

Database Management Systems 3ed 16

Connection Class Interface

* public intgetTransactionlsolation()and

void setTransactionlsolation(int level)

Sets isolation level for the current connection.

% public boolean getReadOnIy()and

void setReadOnnly(boolean b)
Specifies whether transactions in this connection are read-

only
’:’public boolean getAutoCommit()and
void setAutoC ommit(boolean b)

If autocommit is set, then each SQL statement is
considered its own transaction. Otherwise, a transaction is
committed using com m it(), or aborted using ro 1 ack ().

* public boolean isClosed /()

Checks whether connection is still open.

D

Database Management Systems 3ed 17

Executing SQL Statements

+ Three different ways of executing SQL
statements:

" statem ont (both static and dynamic SQL
statements)

" preparedstatem ent (Semi-static SQL statements)
B CallableStatm en't (Stored procedureS)

®*PreparedStatement C].aSS:
Precompiled, parametrized SQL statements:

= Structure is fixed
= Values of parameters are determined at run-time

Database Management Systems 3ed 18

Executing SQL Statements (Contd.)

S tring sql=“INSERT INTO Sailors VALUES(?,?.,?2,?2)”
PreparedStatm ent pstm t=con.prepareStatement(sql);
pstm t.clearP aram eters();

pstm t.setlnt(1,sid);

pstm t.setS tring(2,sname);

pstm t.setlnt(3, rating);

pstm t.setFloat(4,age);

/' we know thatno rows are returned, thus we use

executeUpdate/()

int num Rows = pstm t.executeUpdate();

Database Management Systems 3ed 19

ResultSets

< PreparedStatement.executeU pdate Onlyreturnsthe
number of affected records

% PreparedStatement.executeQuery returnSdata,
encapsulated in ar ¢ suits et Object (a cursor)

R esultSetrs=pstmt.executeQuery(sql);
/l rs is now a cursor
W hile (rs.next()) {

/l process the data

Database Management Systems 3ed 20

ResultSets (cont.)

A ResultSet is a powerful iterator (cursor):
% previous(): MOves one row back

“®absolute(int num). MOVeS to the ToOw Wlth the
specified number

®relative (int num). IMNMOVES forward or
backward

< firs t() and 12 st()

Database Management Systems 3ed 21

Matching Java and SQL Data Types

SQL Type Java class ResultSet get method
BIT Boolean getBoolean()
CHAR String getString()
VARCHAR String getString()
DOUBLE Double getDouble()
FLOAT Double getDouble()
INTEGER Integer getInt()

REAL Double getFloat()
DATE java.sql.Date getDate()

TIME java.sql.Time getTime()
TIMESTAMP |java.sql.TimeStamp | getTimestamp()

Database Management Systems 3ed

JDBC: Exceptions and Warnings

% Most of java.sql can throw an SQLException
if an error occurs.

< SQLWarning is a subclass of EQLException;
not as severe (they are not thrown and their
existence has to be explicitly tested)

Database Management Systems 3ed 23

Warning and Exceptions (Contd.)

try {
stm t=con.createS tatem ent();
warning=con.getW arnings{();
w hile(warning !'= null) {
/I handle SQ LW arnings;
warning = warning.getNextW arning/():
}
con.clearW arnings{();
stm t.executeUpdate(queryString);

warning = con.getW arnings();

} /lend try
catch(SQLException SQ Le) {
/I handle the exception

}
Database Management Systems 3ed 24

Examining Database Metadata

DatabaseMetaData object gives information
about the database system and the catalog.

DatabaseMetaData md = con.getMetaData();
// print information about the driver:

System.out.printIn(
“Name:” + md.getDriverName() +
“version: ” + md.getDriverVersion());

Database Management Systems 3ed 25

Database Metadata (Contd.)

D atabaseMetaData md=con.getM etaD ata();
ResultSet trs=m d.getTables(null,null,null,null);
S tring tableName;
W hile (trs.next()) {
tableName = trs.getString(*“TABLE_NAME");
System .out.println(“Table: “ + tableName);
/lprint all attributes
R esultSetcrs = md.getColumn ns(null,null,tableName, null);
w hile (crs.next()) {

System .out.println(crs.getString(“COLUMN_NAME"” + “, “);

Database Management Systems 3ed 26

A (Semi-)Complete Example

Connection con = // connect
DriverM anager.getConnection(url, "login", "pass");
Statement stmt= con.createStatement(); // setup stm t
String query = "SELECT name, rating FROM S ailors";
ResultSetrs = stmt.executeQuery(query);
try { // handle exceptions
I/l loop through resulttuples
w hile (rs.next()) {
String s = rs.getString(“name?");
Intn = rs.getFloat(“rating");
System .out.printin(s + " "+ n);
}
}catch(SQLException ex) {
System .out.printin(ex.getM essage ()

+ ex.getSQLState () + ex.getErrorCode ());

Database Management Systems 3ed 27

SQLJ

Complements JDBC with a (semi-)static query model:
Compiler can perform syntax checks, strong type
checks, consistency of the query with the schema

= All arguments always bound to the same variable:
#sql ={
SELECT name, rating INTO :name, :rating
FROM Books WHERE sid = :sid
b
* Compare to JDBC:
sid=rs.getInt(1);
if (sid==1) {sname=rs.getString(2);}
else { sname2=rs.getString(2);}

+ SQLJ (part of the SQL standard) versus embedded
SQL (vendor-specific)

Database Management Systems 3ed 28

SQLJ Code

Int sid; String name; Intrating;

/' nam ed iterator

#sql iterator Sailors(Int sid, String name, Intrating);
S ailors sailors;

/l assum e thatthe application sets rating
#sailors = {

SELECT sid, sname INTO :sid, :nam e

FROM Sailors WHERE rating = :rating
I
/l retrieve results
w hile (sailors.next()) {
System .out.printin(sailors.sid + “ “ + sailors.sname));
}

sailors.close();

Database Management Systems 3ed 29

SQL] Iterators

Two types of iterators (“cursors”):

< Named iterator

* Need both variable type and name, and then allows retrieval
of columns by name.

* See example on previous slide.

< Positional iterator

* Need only variable type, and then uses FETCH .. INTO
construct:
#sql iterator Sailors(Int, String, Int);
S ailors sailors;
#sailors =
w hile (true) {
#sql {FETCH :sailors INTO :sid, :nam e} ;
if (sailors.endFetch()) { break; }

/Il process the sailor

Database Management Systems 3ed 30

Stored Procedures

< What is a stored procedure:
= Program executed through a single SQL statement
= Executed in the process space of the server

< Advantages:

= Can encapsulate application logic while staying
“close” to the data

= Reuse of application logic by different users

= Avoid tuple-at-a-time return of records through
Cursors

Database Management Systems 3ed

31

Stored Procedures: Examples

CREATE PROCEDURE ShowNumReservations
SELECT S.sid, S.sname, COUNT(*)
FROM S ailors S, Reserves R
W HERE S .sid = R .sid

GROUP BY S .sid, S.snam e

Stored procedures can have parameters:
< Three different modes: IN, OUT, INOUT

CREATE PROCEDURE IncreaseR ating(
IN sailor_sid INTEGER,IN increase INTEGER)

UPDATE S ailors

SET rating = rating + increase

W HERE sid = sailor_sid

Database Management Systems 3ed

32

Stored Procedures: Examples (cont.)

Stored procedure do not have to be written in SQL:

CREATE PROCEDURE TopSailors(

IN num INTEGER)
LANGUAGE JAVA

EXTERNAL NAME “file:///lc:/storedProcs/rank.jar”’

Database Management Systems 3ed 33

Calling Stored Procedures

EXEC SQL BEGIN DECLARE SECTION
Int sid;
Int rating;

EXEC SQL END DECLARE SECTION

/l now increase the rating of this sailor

EXEC CALL IncreaseR ating(:sid,:rating);

Database Management Systems 3ed 34

Calling Stored Procedures (cont.)

IDBC: SQLJ:

C allableStatementcstm t= #sql iterator
con.prepareC all(“{call Show Sailors (..);

ShowSailors}); S how Sailors showsailors;

ResultSetrs = #sql showsailors={CALL
cstm t.executeQuery(); ShowSailors};

w hile (rs.next()) { w hile (showsailors.next()) {

Database Management Systems 3ed

35

SQL/PSM (Persistent Stored Modules)

Most DBMSs allow users to write stored procedures in a
simple, general-purpose language (close to SQL) =
SQL/PSM standard is a representative

Declare a stored procedure:

CREATE PROCEDURE name(pl1,p2, .. ,pn)
local variable declarations
procedure code;

Declare a function:

CREATE FUNCTION name (p1, .. ,pn) RETURNS
sqlD ataType
local variable declarations
function code;

Database Management Systems 3ed

36

Main SQL/PSM Constructs

CREATE FUNCTION rate Sailor
(IN sailorld INTEGER)
RETURNS INTEGER

DECLARE rating INTEGER
DECLARE numRes INTEGER
SET numRes = (SELECT COUNT(*)

FROM Reserves R
WHERE R.sid = sailorld)

IF (numRes > 10) THEN rating =1;
ELSE rating = 0;

END IF;

RETURN rating;

Database Management Systems 3ed

37

Main SQL/PSM Constructs (cont.)

’0

S

Local variables (DECLARE)
RETURN values for FUNCTION
Assign variables with SET

) 7
0.0 0’0

K/
0.0

Branches and loops:

» JF (condition) THEN statements;
ELSEIF (condition) statements;
... ELSE statements; END IF;

= LOOP statements; END LOOP
Queries can be parts of expressions

K/
0‘0

K/
0’0

Can use cursors naturally without “EXEC SQL”

Database Management Systems 3ed

38

Summary

<+ Embedded SQL allows execution of
parametrized static queries within a host
language

% Dynamic SQL allows execution of completely ad-
hoc queries within a host language

% Cursor mechanism allows retrieval of one record
at a time and bridges impedance mismatch
between host language and SQL

% APIs such as JDBC introduce a layer of
abstraction between application and DBMS

Database Management Systems 3ed 39

Summary (cont.)

< SQLJ: Static model, queries checked a
compile-time.

< Stored procedures execute application logic
directly at the server

< SQL/PSM standard for writing stored
procedures

Database Management Systems 3ed 40

