
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

SQL: Queries, Constraints,
Triggers

Chapter 5

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Example Instances

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day

22 101 10/10/96

58 103 11/12/96

R1

S1

S2

 We will use these
instances of the
Sailors and
Reserves relations
in our examples.

 If the key for the
Reserves relation
contained only the
attributes sid and
bid, how would the
semantics differ?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Basic SQL Query

 relation-list A list of relation names (possibly with a
range-variable after each name).

 target-list A list of attributes of relations in relation-list
 qualification Comparisons (Attr op const or Attr1 op

Attr2, where op is one of)
combined using AND, OR and NOT.

 DISTINCT is an optional keyword indicating that the
answer should not contain duplicates. Default is that
duplicates are not eliminated!

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification

< > = ! " #, , , , ,

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Conceptual Evaluation Strategy

 Semantics of an SQL query defined in terms of the
following conceptual evaluation strategy:
 Compute the cross-product of relation-list.
 Discard resulting tuples if they fail qualifications.
 Delete attributes that are not in target-list.
 If DISTINCT is specified, eliminate duplicate rows.

 This strategy is probably the least efficient way to
compute a query! An optimizer will find more
efficient strategies to compute the same answers.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Example of Conceptual Evaluation
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

A Note on Range Variables

 Really needed only if the same relation
appears twice in the FROM clause. The
previous query can also be written as:

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND bid=103

SELECT sname
FROM Sailors, Reserves
WHERE Sailors.sid=Reserves.sid
 AND bid=103

It is good style,
however, to use
range variables
always!OR

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

Find sailors who’ve reserved at least one boat

 Would adding DISTINCT to this query make a
difference?

 What is the effect of replacing S.sid by S.sname in
the SELECT clause? Would adding DISTINCT to
this variant of the query make a difference?

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Expressions and Strings

 Illustrates use of arithmetic expressions and string
pattern matching: Find triples (of ages of sailors and
two fields defined by expressions) for sailors whose names
begin and end with B and contain at least three characters.

 AS and = are two ways to name fields in result.
 LIKE is used for string matching. `_’ stands for any

one character and `%’ stands for 0 or more arbitrary
characters.

SELECT S.age, age1=S.age-5, 2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%B’

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Find sid’s of sailors who’ve reserved a red or a
green boat

 UNION: Can be used to
compute the union of any
two union-compatible sets of
tuples (which are
themselves the result of
SQL queries).

 If we replace OR by AND in
the first version, what do
we get?

 Also available: EXCEPT
(What do we get if we
replace UNION by EXCEPT?)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
 AND (B.color=‘red’ OR B.color=‘green’)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
 AND B.color=‘red’
UNION
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
 AND B.color=‘green’

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Find sid’s of sailors who’ve reserved a red and a
green boat

 INTERSECT: Can be used to
compute the intersection
of any two union-
compatible sets of tuples.

 Included in the SQL/92
standard, but some
systems don’t support it.

 Contrast symmetry of the
UNION and INTERSECT
queries with how much
the other versions differ.

SELECT S.sid
FROM Sailors S, Boats B1, Reserves R1,
 Boats B2, Reserves R2
WHERE S.sid=R1.sid AND R1.bid=B1.bid
 AND S.sid=R2.sid AND R2.bid=B2.bid
 AND (B1.color=‘red’ AND B2.color=‘green’)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
 AND B.color=‘red’
INTERSECT
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
 AND B.color=‘green’

Key field!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Nested Queries

 A very powerful feature of SQL: a WHERE clause can
itself contain an SQL query! (Actually, so can FROM
and HAVING clauses.)

 To find sailors who’ve not reserved #103, use NOT IN.
 To understand semantics of nested queries, think of a

nested loops evaluation: For each Sailors tuple, check the
qualification by computing the subquery.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid
 FROM Reserves R
 WHERE R.bid=103)

Find names of sailors who’ve reserved boat #103:

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Nested Queries with Correlation

 EXISTS is another set comparison operator, like IN.
 If UNIQUE is used, and * is replaced by R.bid, finds

sailors with at most one reservation for boat #103.
(UNIQUE checks for duplicate tuples; * denotes all
attributes. Why do we have to replace * by R.bid?)

 Illustrates why, in general, subquery must be re-
computed for each Sailors tuple.

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *
 FROM Reserves R
 WHERE R.bid=103 AND S.sid=R.sid)

Find names of sailors who’ve reserved boat #103:

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

More on Set-Comparison Operators

 We’ve already seen IN, EXISTS and UNIQUE. Can also
use NOT IN, NOT EXISTS and NOT UNIQUE.

 Also available: op ANY, op ALL, op IN

 Find sailors whose rating is greater than that of some
sailor called Horatio:

> < = ! " #, , , , ,

SELECT *
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating
 FROM Sailors S2
 WHERE S2.sname=‘Horatio’)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Rewriting INTERSECT Queries Using IN

 Similarly, EXCEPT queries re-written using NOT IN.
 To find names (not sid’s) of Sailors who’ve reserved

both red and green boats, just replace S.sid by S.sname
in SELECT clause. (What about INTERSECT query?)

Find sid’s of sailors who’ve reserved both a red and a green boat:

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’
 AND S.sid IN (SELECT S2.sid
 FROM Sailors S2, Boats B2, Reserves R2
 WHERE S2.sid=R2.sid AND R2.bid=B2.bid
 AND B2.color=‘green’)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Division in SQL

 Let’s do it the hard
way, without EXCEPT:

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS
 ((SELECT B.bid
 FROM Boats B)
 EXCEPT
 (SELECT R.bid
 FROM Reserves R
 WHERE R.sid=S.sid))

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid
 FROM Boats B
 WHERE NOT EXISTS (SELECT R.bid
 FROM Reserves R
 WHERE R.bid=B.bid
 AND R.sid=S.sid))

Sailors S such that ...

there is no boat B without ...

a Reserves tuple showing S reserved B

Find sailors who’ve reserved all boats.

(1)

(2)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

Aggregate Operators

 Significant extension of
relational algebra.

COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT COUNT (*)
FROM Sailors S

SELECT AVG (DISTINCT S.age)
FROM Sailors S
WHERE S.rating=10

SELECT S.sname
FROM Sailors S
WHERE S.rating= (SELECT MAX(S2.rating)
 FROM Sailors S2)

single column

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

Find name and age of the oldest sailor(s)

 The first query is illegal!
(We’ll look into the
reason a bit later, when
we discuss GROUP BY.)

 The third query is
equivalent to the second
query, and is allowed in
the SQL/92 standard,
but is not supported in
some systems.

SELECT S.sname, MAX (S.age)
FROM Sailors S

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age =
 (SELECT MAX (S2.age)
 FROM Sailors S2)

SELECT S.sname, S.age
FROM Sailors S
WHERE (SELECT MAX (S2.age)
 FROM Sailors S2)
 = S.age

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

Motivation for Grouping

 So far, we’ve applied aggregate operators to all
(qualifying) tuples. Sometimes, we want to apply
them to each of several groups of tuples.

 Consider: Find the age of the youngest sailor for each
rating level.
 In general, we don’t know how many rating levels

exist, and what the rating values for these levels are!
 Suppose we know that rating values go from 1 to 10;

we can write 10 queries that look like this (!):

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

For i = 1, 2, ... , 10:

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

Queries With GROUP BY and HAVING

 The target-list contains (i) attribute names (ii) terms
with aggregate operations (e.g., MIN (S.age)).
 The attribute list (i) must be a subset of grouping-list.

Intuitively, each answer tuple corresponds to a group, and
these attributes must have a single value per group. (A
group is a set of tuples that have the same value for all
attributes in grouping-list.)

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

Conceptual Evaluation

 The cross-product of relation-list is computed, tuples
that fail qualification are discarded, `unnecessary’ fields
are deleted, and the remaining tuples are partitioned
into groups by the value of attributes in grouping-list.

 The group-qualification is then applied to eliminate
some groups. Expressions in group-qualification must
have a single value per group!
 In effect, an attribute in group-qualification that is not an

argument of an aggregate op also appears in grouping-list.
(SQL does not exploit primary key semantics here!)

 One answer tuple is generated per qualifying group.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Find age of the youngest sailor with age 18,
for each rating with at least 2 such sailors

SELECT S.rating, MIN (S.age)
AS minage

FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

sid sname rating age

22 dustin 7 45.0

29 brutus 1 33.0

31 lubber 8 55.5

32 andy 8 25.5

58 rusty 10 35.0

64 horatio 7 35.0

71 zorba 10 16.0

74 horatio 9 35.0

85 art 3 25.5

95 bob 3 63.5

96 frodo 3 25.5

Answer relation:

!

Sailors instance:

rating minage

3 25.5

7 35.0

8 25.5

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22

Find age of the youngest sailor with age 18,
for each rating with at least 2 such sailors.

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5

!

rating minage

3 25.5

7 35.0

8 25.5

rating age

1 33.0

3 25.5

3 63.5

3 25.5

7 45.0

7 35.0

8 55.5

8 25.5

9 35.0

10 35.0

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23

Find age of the youngest sailor with age 18, for each rating
with at least 2 such sailors and with every sailor under 60.

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5

!

rating age

1 33.0

3 25.5

3 63.5

3 25.5

7 45.0

7 35.0

8 55.5

8 25.5

9 35.0

10 35.0

rating minage

7 35.0

8 25.5

HAVING COUNT (*) > 1 AND EVERY (S.age <=60)

What is the result of
changing EVERY to
ANY?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 24

Find age of the youngest sailor with age 18, for
each rating with at least 2 sailors between 18 and 60.

SELECT S.rating, MIN (S.age)
AS minage

FROM Sailors S
WHERE S.age >= 18 AND S.age <= 60
GROUP BY S.rating
HAVING COUNT (*) > 1

sid sname rating age

22 dustin 7 45.0

29 brutus 1 33.0

31 lubber 8 55.5

32 andy 8 25.5

58 rusty 10 35.0

64 horatio 7 35.0

71 zorba 10 16.0

74 horatio 9 35.0

85 art 3 25.5

95 bob 3 63.5

96 frodo 3 25.5

Answer relation:

!

Sailors instance:

rating minage

3 25.5

7 35.0

8 25.5

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

For each red boat, find the number of
reservations for this boat

 Grouping over a join of three relations.
 What do we get if we remove B.color=‘red’

from the WHERE clause and add a HAVING
clause with this condition?

 What if we drop Sailors and the condition
involving S.sid?

SELECT B.bid, COUNT (*) AS scount
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’
GROUP BY B.bid

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

Find age of the youngest sailor with age > 18,
for each rating with at least 2 sailors (of any age)

 Shows HAVING clause can also contain a subquery.
 Compare this with the query where we considered

only ratings with 2 sailors over 18!
 What if HAVING clause is replaced by:

 HAVING COUNT(*) >1

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age > 18
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)
 FROM Sailors S2
 WHERE S.rating=S2.rating)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 27

Find those ratings for which the average age is
the minimum over all ratings

 Aggregate operations cannot be nested! WRONG:

SELECT S.rating
FROM Sailors S
WHERE S.age = (SELECT MIN (AVG (S2.age)) FROM Sailors S2)

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG (S.age) AS avgage
 FROM Sailors S
 GROUP BY S.rating) AS Temp
WHERE Temp.avgage = (SELECT MIN (Temp.avgage)
 FROM Temp)

 Correct solution (in SQL/92):

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 28

Null Values

 Field values in a tuple are sometimes unknown (e.g., a
rating has not been assigned) or inapplicable (e.g., no
spouse’s name).
 SQL provides a special value null for such situations.

 The presence of null complicates many issues. E.g.:
 Special operators needed to check if value is/is not null.
 Is rating>8 true or false when rating is equal to null? What

about AND, OR and NOT connectives?
 We need a 3-valued logic (true, false and unknown).
 Meaning of constructs must be defined carefully. (e.g.,

WHERE clause eliminates rows that don’t evaluate to true.)
 New operators (in particular, outer joins) possible/needed.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 29

Integrity Constraints (Review)

 An IC describes conditions that every legal instance
of a relation must satisfy.
 Inserts/deletes/updates that violate IC’s are disallowed.
 Can be used to ensure application semantics (e.g., sid is a

key), or prevent inconsistencies (e.g., sname has to be a
string, age must be < 200)

 Types of IC’s: Domain constraints, primary key
constraints, foreign key constraints, general
constraints.
 Domain constraints: Field values must be of right type.

Always enforced.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 30

General Constraints

 Useful when
more general
ICs than keys
are involved.

 Can use queries
to express
constraint.

 Constraints can
be named.

CREATE TABLE Sailors
(sid INTEGER,
sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK (rating >= 1

AND rating <= 10)
 CREATE TABLE Reserves

(sname CHAR(10),
bid INTEGER,
day DATE,
PRIMARY KEY (bid,day),
CONSTRAINT noInterlakeRes
CHECK (`Interlake’ <>

(SELECT B.bname
FROM Boats B
WHERE B.bid=bid)))

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 31

Constraints Over Multiple Relations
CREATE TABLE Sailors

(sid INTEGER,
sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK
((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM Boats B) < 100)

 Awkward and
wrong!

 If Sailors is
empty, the
number of Boats
tuples can be
anything!

 ASSERTION is the
right solution;
not associated
with either table.

CREATE ASSERTION smallClub
CHECK
((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM Boats B) < 100)

Number of boats
plus number of
sailors is < 100

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 32

Triggers

 Trigger: procedure that starts automatically if
specified changes occur to the DBMS

 Three parts:
 Event (activates the trigger)
 Condition (tests whether the triggers should run)
 Action (what happens if the trigger runs)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 33

Triggers: Example (SQL:1999)

CREATE TRIGGER youngSailorUpdate
AFTER INSERT ON SAILORS

REFERENCING NEW TABLE NewSailors
FOR EACH STATEMENT

INSERT
INTO YoungSailors(sid, name, age, rating)
SELECT sid, name, age, rating
FROM NewSailors N
WHERE N.age <= 18

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 34

Summary

 SQL was an important factor in the early acceptance
of the relational model; more natural than earlier,
procedural query languages.

 Relationally complete; in fact, significantly more
expressive power than relational algebra.

 Even queries that can be expressed in RA can often
be expressed more naturally in SQL.

 Many alternative ways to write a query; optimizer
should look for most efficient evaluation plan.
 In practice, users need to be aware of how queries are

optimized and evaluated for best results.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 35

Summary (Contd.)

 NULL for unknown field values brings many
complications

 SQL allows specification of rich integrity
constraints

 Triggers respond to changes in the database

