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CSE 3402: Intro to Artificial Intelligence

Planning

! Readings: Sections 11.1, 11.2,  and 11.4
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CWA

! “Classical Planning”. No incomplete or uncertain

knowledge.

! Use the “Closed World Assumption” in our

knowledge representation and reasoning.

" The Knowledge base used to represent a state  of the

world is a list of positive ground atomic facts.

" CWA is the assumption that

! if a ground atomic fact is not in our list of “known”

facts, its negation must be true.

! the constants mentioned in KB are all the domain

objects.
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CWA

! CWA makes our knowledge base much like a

database: if employed(John,CIBC) is not in the
database, we conclude that ¬employed(John,

CIBC) is true.

4CSE 3401 Winter 09 Fahiem Bacchus & Yves Lesperance

CWA Example

KB = {handempty

      clear(c), clear(b),

      on(c,a),

      ontable(a), ontable(b)}

1. clear(c) ! clear(b)?

2.  ¬on(b,c)?

3. on(a,c) " on(b,c)?

4.  #X.on(X,c)? (D = {a,b,c})

5.  $X.ontable(X)

      % X = a " X = b?

C

A B
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Querying a Closed World KB

! With the CWA, we can evaluate the truth or falsity of

arbitrarily complex first-order formulas.

! This process is very similar to query evaluation in

databases.

! Just as databases are useful, so are CW KB’s.
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Querying A CW KB

Query(F, KB)  /*return whether or not KB |= F */

if F is atomic
return(F & KB)
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Querying A CW KB

if F = F1 ! F2

return(Query(F1) && Query(F2))

if F = F1 " F2

return(Query(F1) || Query(F2))

if F = ¬F1

return(! Query(F1))

if F = F1 % F2

return(!Query(F1) || Query(F2))
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Querying A CW KB

if F = #X.F1

for each constant c & KB

if (Query(F1{X=c}))

return(true)

return(false).

if F = $X.F1

for each constant c & KB

if (!Query(F1{X=c}))

return(false)

return(true).
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Querying A CW KB

Guarded quantification (for efficiency).

if F = $X.F1

for each constant c & KB

if (!Query(F1{X=c}))
return(false)

return(true).

E.g., consider checking
$ X. apple(x) #  sweet(x)

we already know that the formula is true for all “non-apples”
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Querying A CW KB

Guarded quantification (for efficiency).

$ X:[p(X)] F1                        '                   $ X: p(X) #  F1

for each constant c s.t. p(c)

if (!Query(F1{X=c}))
return(false)

return(true).

# X:[p(X)]F1                          '                    # X: p(X) ! F1

 for each constant c s.t. p(c)

if (Query(F1{X=c}))
return(true)

return(false).
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STRIPS representation.

! STRIPS (Stanford Research Institute Problem

Solver.) is a way of representing actions.

! Actions are modeled as ways of modifying the

world.

" since the world is represented as a CW-KB, a

STRIPS action represents a way of updating the CW-

KB.

" Now actions yield new KB’s, describing the new

world—the world as it is once the action has been

executed.
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Sequences of Worlds

! In the situation calculus where in one logical

sentence we could refer to two different situations at

the same time.

" on(a,b,s0) ! ¬on(a,b,s1)

! In STRIPS, we would have two separate CW-KB’s.

One representing the initial state, and another one

representing the next state (much like search where

each state was represented in a separate data

structure).
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STRIPS Actions

! STRIPS represents actions using 3 lists.

1. A list of action preconditions.

2. A list of action add effects.

3. A list of action delete effects.

! These lists contain variables, so that we can

represent a whole class of actions with one

specification.

! Each ground instantiation of the variables yields a

specific action.
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STRIPS Actions: Example

pickup(X):

Pre:    {handempty, clear(X), ontable(X)}

Adds: {holding(X)}

Dels:  {handempty, clear(X), ontable(X)}

“pickup(X)” is called a STRIPS operator.

a particular instance e.g.

“pickup(a)” is called an action.
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Operation of a STRIPS action.

! For a particular STRIPS action (ground instance) to
be applicable to a state (a CW-KB)
" every fact in its precondition list must be true in KB.

!This amounts to testing membership since we have
only atomic facts in the precondition list.

! If the action is applicable, the new state is
generated by
" removing all facts in Dels from KB, then

" adding all facts in Adds to KB.
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Operation of a Strips Action: Example

KB = {handempty

      clear(c), clear(b),

      on(c,a),

      ontable(a), ontable(b)}

C
A B

C
A

B
pickup(b)

KB = { holding(b),

clear(c),

     on(c,a),

     ontable(a)}

pre = {handmpty,
      clear(b),
      ontable(b)}

add = {holding(b)} del = {handmpty,
      clear(b),
      ontable(b)}
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STRIPS Blocks World Operators.

! pickup(X)

Pre:  {clear(X), ontable(X), handempty}

Add: {holding(X)}

Del:  {clear(X), ontable(X), handempty}

! putdown(X)

Pre:  {holding(X)}

Add: {clear(X), ontable(X), handempty}

Del:  {holding(X)}
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STRIPS Blocks World Operators.

! unstack(X,Y)

Pre:  {clear(X), on(X,Y), handempty}

Add: {holding(X), clear(Y)}

Del:  {clear(X), on(X,Y), handempty}

! stack(X,Y)

Pre:  {holding(X),clear(Y)}

Add: {on(X,Y), handempty, clear(X)}

Del:  {holding(X),clear(Y)}
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STRIPS has no Conditional Effects

! putdown(X)
Pre:  {holding(X)}
Add: {clear(X), ontable(X), handempty}
Del:  {holding(X)}

! stack(X,Y)
Pre:  {holding(X),clear(Y)}
Add: {on(X,Y), handempty, clear(X)}
Del:  {holding(X),clear(Y)}

! The table has infinite space, so it is always clear. If we
“stack(X,Y)” if Y=Table we cannot delete clear(Table), but if
Y is an ordinary block “c” we must delete clear(c).
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Conditional Effects

! Since STRIPS has no conditional effects, we must

sometimes utilize extra actions: one for each type of

condition.

" We embed the condition in the precondition, and then

alter the effects accordingly.
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Other Example Domains

! 8 Puzzle as a planning problem

" A constant representing each position, P1,…,P9

P9P8P7

P6P5P4

P3P2P1

" A constant for each tile. B,T1, …, T8.
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8-Puzzle

! at(T,P) tile T is at position P.

346

87

521

! adjacent(P1,P2) P1 is next to P2 (i.e., we can
slide the blank from P1 to P2 in one move.
" adjacent(P5,P2), adjacent(P5,P8), …

at(T1,P1), at(T2,P2),
at(T5,P3), …
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8-Puzzle

slide(T,X,Y)

Pre: {at(T,X), at(B,Y), adjacent(X,Y)}

  Add: {at(B,X), at(T,Y)}

  Del:  {at(T,X), at(B,Y)}

346

87

521

at(T1,P1), at(T5,P3),
at(T8,P5), at(B,P6), …,

slide(T8,P5,P6) 346

 87

521

at(T1,P1), at(T5,P3),
at(B,P5), at(T8,P6), …,
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Elevator Control
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Elevator Control

! Schindler Lifts.

" Central panel to enter your elevator request.

" Your request is scheduled and an elevator is assigned to

you.

" You can’t travel with someone going to a secure floor,

emergency travel has priority, etc.

! Modeled as a planning problem and fielded in one

of Schindler’s high end elevators.
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Planning as a Search Problem

! Given a CW-KB representing the initial state, a set

of STRIPS or ADL (Action Description Language)

operators, and a goal condition we want to achieve

(specified either as a conjunction of facts, or as a

formula)

" The planning problem is determine a sequence of actions

that when applied to the initial CW-KB yield an updated

CW-KB which satisfies the goal.
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Planning As Search

! This can be treated as a search problem.

" The initial CW-KB is the initial state.

" The actions are operators mapping a state (a CW-KB) to

a new state (an updated CW-KB).

" The goal is satisfied by any state (CW-KB) that satisfies

the goal.
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Example.

C
A B

move(b,c)
C
A

B

move(c,b)
C

A B

move(c,table)
CA B

move(a,b)
B
A C
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Problems

! Search tree is generally quite large

" randomly reconfiguring 9 blocks takes thousands of CPU

seconds.

! The representation suggests some structure. Each

action only affects a small set of facts, actions

depend on each other via their preconditions.

! Planning algorithms are designed to take advantage

of the special nature of the representation.
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Planning

! We will look at 1 technique

! Relaxed Plan heuristics used with heuristic search.
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Reachability Analysis.

! The idea is to consider what happens if we ignore

the delete lists of actions.

! This is yields a “relaxed problem” that can produce

a useful heuristic estimate.
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Reachability Analysis

! In the relaxed problem actions add new facts, but

never delete facts.

! Then we can do reachability analysis, which is

much simpler than searching for a solution.
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Reachability

! We start with the initial state S0.

! We alternate between state and action layers.

! We find all actions whose preconditions are contained in S0.

These actions comprise the first action layer A0.

! The next state layer consists of all of S0 as well as the adds

of all of the actions in A0.

! In general

" Ai is the set of actions whose preconditions are contained in Si.

" Si+1 is Si union the add lists of all of the actions in Ai.
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Example

a

b

c d

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
clear(d),
handempty

unstack(a,b)
pickup(d)

a
b

c d

S0 A0

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
handempty,
clear(d),
holding(a),
clear(b),
holding(d)

a
d

this is not
a state!

S1
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Example

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
clear(d),
handempty,
holding(a),
clear(b),
holding(d)

S1

putdown(a),
putdown(d),
stack(a,b),
stack(a,a),
stack(d,b),
stack(d,a),
pickup(d),
…
unstack(b,c)
…

A1
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Reachabilty

! We continue until the goal G is contained in the

state layer, or until the state layer no longer

changes.

! Intuitively, the actions at level Ai are the actions that

could be executed at the i-th step of some plan, and

the facts in level Si are the facts that could be made

true after some i-1 step plan.

! Some of the actions/facts have this property. But

not all!
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Reachability

a

b c

on(a,b),
on(b,c),
ontable(c),
ontable(b),
clear(a),
clear(c),
handempty

unstack(a,b)
pickup(c)

S0 A0

on(a,b),
on(b,c),
ontable(c),
ontable(b),
clear(a),
clear(c),
handempty,
holding(a),
clear(b),
holding(c)

S1

stack(c,b)
…

A1

…
on(c,b),
…

but
stack(c,b)
cannot be
executed
after one

step

and on(c,b)
needs 4
actions
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Heuristics from Reachability Analysis

Grow the levels until the goal is contained in the final

state level S[K].

! If the state level stops changing and the goal is not

present. The goal is unachievable. (The goal is a set of

positive facts, and in STRIPS all preconditions are

positive facts).

! Now do the following
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Heuristics from Reachability Analysis

CountActions(G,SK):

/* Compute the number of actions contained in a relaxed
plan achieving the goal. */

! Split G into facts in SK-1 and elements in SK only. These
sets are the previously achieved and just achieved parts
of G.

! Find a minimal set of actions A whose add-effects cover
the just achieved part of G. (The set contains no
redundant actions, but it might not be the minimum sized
set.)

! Replace the just achieved part of G with the
preconditions of A, call this updated G, NewG.

! Now return CountAction(NewG,SK-1) + number of actions
needed to cover the just achieved part of G.
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Example

CountActs(G,S2)

GP ={f5, f1
} //already in S1

GN = {f6}    //New in S2

A = {a3}    //adds all in GN

//the new goal: GP  ( Pre(A)

G1 = {f5,f1,f2,f4}

Return

  1 + CountActs(G1,S1)

      legend:  [pre]act[add]

S0 = {f1, f2, f3}

A0 = {[f1]a1[f4],  [f2]a2[f5]}

S1 = {f1,f2,f3,f4,f5}

A1 = {[f2,f4,f5]a3[f6]}

S2 ={f1,f2,f3,f4,f5,f6}

G = {f6,f5, f1}

We split G into GP and GN:
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Example
Now, we are at level S1

S0 = {f1, f2, f3}

A0 = {[f1]a1[f4],  [f2]a2[f5]}

S1 = {f1,f2,f3,f4,f5}

A1 = {[f2,f4,f5]a3[f6]}

S2 ={f1,f2,f3,f4,f5,f6}

G1 = {f5,f1,f2
,f4}

We split G1 into GP and GN:

CountActs(G1,S1)

GP ={f1,f2}  //already in S0

GN = {f4,f5} //New in S1

A = {a1,a2} //adds all in GN

//the new goal: GP  ( Pre(A)

G2 = {f1,f2
}

Return

     2 + CountActs(G2,S0)

  = 2 + 0

So, in total CountActs(G,S2)=1+2=3
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Using the Heuristic

! To use CountActions as a heuristic, we build a
layered structure from a state S that reaches the
goal.

! Then we CountActions to see how many actions
are required in a relaxed plan.

! We use this count as our heuristic estimate of the
distance of S to the goal.

! This heuristic tends to work better as a best-first
search, i.e., when the cost of getting to the current
state is ignored.
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Admissibility

! An optimal length plan in the relaxed problem (actions have

no deletes) will be a lower bound on the optimal length of a

plan in the real problem.

! However, CountActions does NOT compute the length of

the optimal relaxed plan.

! The choice of which action set  to use to achieve GP (“just

achieved part of G”) is not necessarily optimal.

! In fact it is NP-Hard to compute the optimal length plan even

in the relaxed plan space.

! So CountActions will not be admissible.
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Empirically

! However, empirically refinements of CountActions

performs very well on a number of sample planning

domains.
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GraphPlan

! GraphPlan is an approach to planning that is built

on ideas similar to “reachability”. But the

approach is not heuristic: delete effects are not

ignored.

! The performance is not at good as heuristic

search, but GraphPlan can be generalized to

other types of planning, e.g., finding optimal

plans, planning with sensing, etc.
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Graphplan

! Operates in two phases.
" Phase I. Guess a “concurrent” plan length k, then

build a leveled graph with k alternating layers.

" Phase II. Search this leveled graph for a plan. If no
plan is found, return to phase I and build a bigger
leveled graph with k+1 alternating layers. The final
plan, if found, consists of a sequence of sets of
actions

{a1
1,a

2
1,…} #  {a1

2, a
2

2,…} #  {a1
3, a

2
3, …} # …

The plan is “concurrent” in the sense that at stage I,
all actions in the i-th set are executed in parallel.
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Graphplan

! The leveled graph alternates between levels

containing propositional nodes and levels

containing action nodes. (Similar to the

reachability graph).

! Three types of edges: precondition-edges, add-

edges, and delete-edges.
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GraphPlan Level Graph

onTable(A)

onTable(B)

clear(A)

clear(B)

handempty

Initial state

Only the
propositions
true in the
initial state.

All propositions
added by actions in
previous level

Possible actions

Only the actions
whose preconditions
are in the previous
level.

Also have no-ops
for capturing non-
changes.

holding(A)

holding(B)

onTable(A)

onTable(B)

clear(A)

clear(B)

handempty

pickup(A)

pickup(B)

no-op(onTable(A))

no-op(onTable(B))

no-op(Clear(A))

no-op(Clear(B))

no-op(handempty)

Precondition

Delete

Add
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GraphPlan Level Graph

onTable(A)

onTable(B)

clear(A)

clear(B)

handempty

Level S0 contains all facts true in the initial state.

Level A0 contains all actions whose preconditions are true in S0.
Included in the set of actions are no-ops. One no-op for every
ground atomic fact. The precondition of the no-op is its fact, its
add effect is its fact.

…

Level Si contains all facts that are added by actions at level Ai-1

Level Ai contains all actions whose preconditions are true in Si

holding(A)

holding(B)

onTable(A)

onTable(B)

clear(A)

clear(B)

handempty

pickup(A)

pickup(B)

no-op(onTable(A))

no-op(onTable(B))

no-op(Clear(A))

no-op(Clear(B))

no-op(handempty)
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GraphPlan Mutexes.

onTable(A)

onTable(B)

clear(A)

clear(B)

handempty

In addition to the facts/actions. GraphPlan also computes and adds
mutexes to the graph.

Mutexes are edges between two labels, indicating that these two
labels cannot be true at the same time.

Mutexes are added as we construct each layer, and in fact alter the
set of labels the eventually appear in a layer.

holding(A)

holding(B)

onTable(A)

onTable(B)

clear(A)

clear(B)

handempty

pickup(A)

pickup(B)

no-op(onTable(A))

no-op(onTable(B))

no-op(Clear(A))

no-op(Clear(B))

no-op(handempty)
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Mutexes

! A mutex between two actions a1 and a2 in the same

layer Ai, means that a1 and a2 cannot be executed

simultaneously (in parallel) at the ith step of a

concurrent plan.

! A mutex between two facts F1 and F2 in the same

state layer Si, means that F1 and F2 cannot be be

simultaneously true after i stages of parallel action

execution.
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Mutexes

! It is not possible to compute all mutexes.

" This is as hard as solving the planning problem, and we

want to perform mutex computation as a precursor to

solving a planning instance.

! However, we can quickly compute a subset of the

set of all mutexes. Although incomplete these

mutexes are still very useful.

" This is what GraphPlan does.
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Mutexes

onTable(A)

onTable(B)

clear(A)

clear(B)

handempty

pickup(A)

pickup(B)

no-op(onTable(A))

no-op(onTable(B))

no-op(Clear(A))

no-op(Clear(B))

no-op(handempty)

holding(A)

holding(B)

onTable(A)

onTable(B)

clear(A)

clear(B)

handempty

! Two actions are mutex if either action deletes a

precondition or add effect of another.

! Note no-ops participate in mutexes.

" Intuitively these actions have to be sequenced—they

can’t be executed in parallel

54CSE 3401 Winter 09 Fahiem Bacchus & Yves Lesperance

Mutexes

! Two propositions p and q are mutex if all actions
adding p are mutex of all actions adding q.

" Must look at all pairs of actions that add p and q.

" Intuitively, can’t achieve p and q together at this stage
because we can’t concurrently execute achieving actions
for them at the previous stage.

onTable(A)

onTable(B)

clear(A)

clear(B)

handempty

pickup(A)

pickup(B)

no-op(onTable(A))

no-op(onTable(B))

no-op(Clear(A))

no-op(Clear(B))

no-op(handempty)

holding(A)

holding(B)

onTable(A)

onTable(B)

clear(A)

clear(B)

handempty
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Mutexes

! Two actions are mutex if two of their preconditions

are mutex.

" Intuitively, we can’t execute these two actions

concurrently at this stage because their preconditions

can’t simultaneously hold at the previous stage.

putdown(A)

putdown(B)

no-op(onTable(A))

no-op(onTable(B))

no-op(Clear(A))

no-op(Clear(B))

no-op(handempty)

holding(A)

holding(B)

onTable(A)

onTable(B)

clear(A)

clear(B)

handempty
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How Mutexes affect the level graph.

1. Two actions are mutex if either action deletes a precondition or add
effect of another

2. Two propositions p and q are mutex if all actions adding p are
mutex of all actions adding q

3. Two actions are mutex if two of their preconditions are mutex

! We compute mutexes as we add levels.
" S0 is set of facts true in initial state. (Contains no mutexes).

" A0 is set of actions whose preconditions are true in S0.

! Mark as mutex any action pair where one deletes a
precondition or add effect of the other.

" S1 is set of facts added by actions at level A0.

! Mark as mutex any pair of facts p and q if all actions adding p
are mutex with all actions adding q.

" A1 is set of actions whose preconditions are not mutex at S1.

! Mark as mutex any action pair with preconditions that are
mutex in S1, or where one deleted a precondition or add effect
of the other.
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How Mutexes affect the level graph.

1. Two actions are mutex if either action deletes a precondition or add effect

of another

2. Two propositions p and q are mutex if all actions adding p are mutex of all

actions adding q

3. Two actions are mutex if two of their preconditions are mutex

!

"  …

" Si is set of facts added by actions in level Ai-1

! Mark as mutex all facts satisfying 2 (where we look at the action

mutexes of Ai-1 is set of facts true in initial state. (Contains no

mutexes).

" Ai is set of actions whose preconditions are true and non-mutex at Si.

! Mark as mutex any action pair satisfying 1 or 2.
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How Mutexes affect the level graph.

! Hence, mutexes will prune actions and facts from

levels of the graph.

! They also record useful information about

impossible combinations.
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Example

on(a,b),
on(b,c),
ontable(c),
ontable(b),
clear(a),
clear(c),
handempty

unstack(a,b
)

pickup(c)

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
clear(c),
handempty,
holding(a),
clear(b),
holding(c)

precondition
add effect
del effect

pickup deletes
handempty, one of

unstack(a,b)’s
preconditions.

NoOp-on(a,b)

unstack(a,b)
deletes the add
effect of NoOp-
on(a,b), so these

actions are
mutex as well
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Example

on(a,b),
on(b,c),
ontable(c),
ontable(b),
clear(a),
clear(c),
handempty

unstack(a,b
)

pickup(c)

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
clear(c),
handempty,
holding(a),
clear(b),
holding(c)

precondition
add effect
del effect

NoOp-on(a,b)
unstack(a,b) is
the only action

that adds
clear(b), and this

is mutex with
pickup(c), which

is the only way of
adding holding(c).
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Example

on(a,b),
on(b,c),
ontable(c),
ontable(b),
clear(a),
clear(c),
handempty

unstack(a,b
)

pickup(c)

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
clear(c),
handempty,
holding(a),
clear(b),
holding(c)

precondition
add effect
del effect

NoOp-on(a,b)

These two are
mutex for the
same reason.
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Example

on(a,b),
on(b,c),
ontable(c),
ontable(b),
clear(a),
clear(c),
handempty

unstack(a,b
)

pickup(c)

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
clear(c),
handempty,
holding(a),
clear(b),
holding(c)

precondition
add effect
del effect

NoOp-on(a,b)

unstack(a,b) is
also mutex with

the NoOp-
on(a,b).

So these two
facts are mutex

(NoOp is the only
way on(a,b) can

be created).
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Phase II. Searching the Graphplan

on(A,B)

on(B,C)

onTable(c)

onTable(B)

clear(A)

clear(B)

handempty

K

! Build the graph to level k, such that every member

of the goal is present at level k, and no two are

mutex. Why?
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Searching the Graphplan

on(A,B)

on(B,C)

onTable(c)

onTable(B)

clear(A)

clear(B)

handempty

stack(A,B)

stack(B,C)

no-op(on(B,C))

...

! Find a non-mutex collection of actions that add all

of the facts in the goal.

K
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Searching the Graphplan

on(A,B)

on(B,C)

onTable(c)

onTable(B)

clear(A)

clear(B)

handempty

K

stack(A,B)

stack(B,C)

no-op(on(B,C))

...

holding(A)

clear(B)

on(B,C)

K-1

! The preconditions of these actions at level K-1
become the new goal at level K-1.

! Recursively try to solve this new goal. If this fails,
backtrack and try a different set of actions for
solving the goal at level k.
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Phase II-Search

! Solve(G,K)
" forall sets of actions A={ai} such that

no pair (ai, aj) & A is mutex
the actions in A suffice to add all facts in G

! Let P = union of preconditions of actions in A

! If Solve(P,K-1)
Report PLAN FOUND

" At end of forall. Exhausted all possible action sets A
Report NOPLAN

This is a depth first search.
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Graph Plan Algorithm
! Phase I. build leveled graph.

! Phase II. Search leveled graph.
" Phase I: While last state level does not contain all goal facts with no

pair being mutex

! add new state/action level to graph

! if last state/Action level = previous state/action level (including
all MUTEXES) graph has leveled off) report NO PLAN.

" Phase II: Starting at last state level search backwards in graph for
plan. Try all ways of moving goal back to initial state.

! If successful report PLAN FOUND.

! Else goto Phase I.
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Dinner Date Example

! Initial State

{dirty, cleanHands, quiet}

! Goal

{dinner, present, clean}

! Actions

" Cook: Pre: {cleanHands}

Add: {dinner}

" Wrap: Pre: {quiet}

Add: {present}

" Tidy: Pre: {}

Add: {clean}

Del:  {cleanHands, dirty}

" Vac: Pre: {}

Add: {clean}

Del: {quite, dirty}
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Dinner example: rule1 action mutex

! Actions  (including all No-OP actions)
" Cook: Pre: {H} Add: {D}        Del: {}

" Wrap: Pre: {Q}     Add: {P}        Del: {}

" Tidy: Pre: {}       Add: {C}        Del:  {H,R}

" Vac: Pre: {}       Add: {C}        Del: {Q, R}

" NO(C): Pre: {C}     Add: {C}        Del: {}

" NO(D): Pre: {D}     Add: {D}        Del: {}

" NO(H): Pre: {H}     Add: {H}        Del: {}

" NO(P): Pre: {P}     Add: {P}         Del: {}

" NO(Q): Pre: {Q}     Add: {Q}        Del: {}

" NO(R): Pre: {R}     Add: {R}         Del: {}

! Look at those with non-empty Del, and find others that have these Del in their Pre or Add:

! So, Rule 1 action mutex are as follows  (these are fixed):

(Tidy,Cook), (Tidy, NO(H)), (Tidy, NO(R)), (Vac, Wrap), (Vac,NO(Q)), (Vac, NO(R))

! Rule 3 action mutex depend on state layer and you have to build the graph.

Legend: NO:No-Op, C:clean,D: Dinner, H: cleanHands, P:Present, Q:quiet, R: diRty
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Dinner Example:
Legend:

! Arrows: Blue: pre,  Green: add,  Red: Del,  Black: Mutex

! D: Dinner, C:clean, H: cleanHands, Q:quiet, P:Present, R: diRty

! Init={R,H,Q}    Goal={D,P,C}

R

H

Q

D

P

c

R

H

Q

Cook

Wrap

Tidy

Vac

NO(R)

NO(H)

NO(Q)

S0     A0        S1

Note:

! At layer S1 all goals are present and no pair

forms a mutex

! So, go to phase II and search the graph:

! i.e. Find a set of non-mutex actions that adds

all goals {D,P,C}:

   x{Cook, Wrap, Tidy}  mutex Tidy&Cook

   x{Cook, Wrap, Vac}  mutex Vac&Wrap

! No such set exists, nothing to backtrack, so

goto phase I and add one more action and

state layers
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Dinner Example:
! Arrows: Blue: pre,  Green: add,  Red: Del,  Black: Mutex

! D: Dinner, C:clean, H: cleanHands, Q:quiet, P:Present, R: diRty

! Init={R,H,Q}    Goal={D,P,C}

! Note: first draw rule1 action mutex at layer A1, then find rule3 action mutex (for this

only look at mutex fact at level S1). Finally, apply rule 2 for fact mutex at S2.

R

H

Q

D

P

c

R

H

Q

Cook

Wrap

Tidy

Vac

NO(R)

NO(H)

NO(Q)

Cook

Wrap

Tidy

Vac

NO(D)

NO(P)

NO(C)

NO(R)

NO(H)

NO(Q)

S0     A0        S1      A1         S2

D

P

c

R

H

Q

Note:At layer S2 all goals are

present and no pair forms

a mutex, so

! phase II: Find a set of non-

mutex actions that adds all

goals {D,P,C}:

x{Cook, Wrap, Tidy}

x{Cook, Wrap, Vac}

"{Cook, Wrap, NO(C)}

NewG={H,Q,C} @ S1

! Cannot find any non-

mutex action set in A0

! Backtrack to S2, try

another action set

"{Cook, NO(P), Vac}
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Dinner Example:
! Arrows: Blue: pre,  Green: add,  Red: Del,  Black: Mutex

! D: Dinner, C:clean, H: cleanHands, Q:quiet, P:Present, R: diRty

! Init={R,H,Q}    Goal={D,P,C}

! Note: first draw rule1 action mutex at layer A1, then find rule3 action mutex (for this

only look at mutex fact at level S1). Finally, apply rule 2 for fact mutex at S2.

R

H

Q

D

P

c

R

H

Q

Cook

Wrap

Tidy

Vac

NO(R)

NO(H)

NO(Q)

Cook

Wrap

Tidy

Vac

NO(D)

NO(P)

NO(C)

NO(R)

NO(H)

NO(Q)

S0     A0        S1      A1         S2

D

P

c

R

H

Q

"{Cook, NO(P), Vac}

NewG={H,P} @ S1

Find a nonmutex set of

act in A0 to get NewG:

!{NO(H),Wrap}

! NewG’={H,Q} @ S0 "

! Done!

! So, the actions are

! Wrap, {Cook, Vac}

! Wrap,Cook,Vac

! Wrap,Vac,Cook

! Note that we could still

backtrack to S2, try

remaining action sets!
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ADL Operators.

ADL operators add a number of features to STRIPS.

! Their preconditions can be arbitrary formulas, not just a conjunction of

facts.

! They can have conditional and universal effects.

! Open world assumption:

! States  can have negative literals

! The effect (P∧¬Q) means add P and ¬Q  but delete ¬ P and Q.

But they must still specify atomic changes to the knowledge base (add or

delete ground atomic facts).
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ADL Operators Examples.

move(X,Y,Z)

Pre:  on(X,Y) ! clear(Z)

Effs: ADD[on(X,Z)]

         DEL[on(X,Y)]
      Z ) table % DEL[clear(Z)]

      Y ) table % ADD[clear(Y)]
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ADL Operators, example

KB = {  clear(c), clear(b),

      on(c,a),

      on(a,table),

      on(b,table)}

C
A B

C
A B

move(c,a,b)

KB = { on(c,b)

     clear(c), clear(a)

     on(a,table),

     on(b,table)}

move(c,a,b)
Pre:  on(c,a) ! clear(b)
Effs: ADD[on(c,b)]
  DEL[on(c,a)]
b ) table % DEL[clear(b)]
a ) table % ADD[clear(a)]
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ADL Operators Examples.

clearTable()

Pre:

Effs: $X. on(X,table) % DEL[on(X,table)]
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ADL Operators.

! Arbitrary formulas as preconditions.
! in a CW-KB we can evaluate whether or not the

preconditions hold for an arbitrary precondition.

! They can have conditional and universal effects.
! Similarly we can evaluate the condition to see if the

effect should be applied, and find all bindings for which
it should be applied.

Specify atomic changes to the knowledge base.
" CW-KB can be updated just as before.


