CSE 3402: Intro to Artificial Intelligence
Reasoning about action

- Readings: Chapter 10.3

Why Planning

- Intelligent agents must operate in the world. They are not simply passive reasoners (Knowledge Representation, reasoning under uncertainty) or problem solvers (Search), they must also act on the world.
- We want intelligent agents to act in “intelligent ways”. Taking purposeful actions, predicting the expected effect of such actions, composing actions together to achieve complex goals.
Why Planning

• E.g. if we have a robot we want robot to decide what to do; how to act to achieve our goals

A Planning Problem

• How to *change* the world to suit our needs
• Critical issue: we need to reason about *what the world will be like* after doing a few actions, not *just* what it is like now

GOAL: Craig has coffee
CURRENTLY: robot in mailroom, has no coffee, coffee not made, Craig in office, etc.
TO DO: goto lounge, make coffee,...
Planning

- Reasoning about what the world will be like after doing a few actions is similar to what we have already examined.
- However, now we want to reason about dynamic environments.
 - in(robby,Room1), lightOn(Room1) are true: will they be true after robby performs the action turnOffLights?
 - in(robby,Room1) is true: what does robby need to do to make in(robby,Room3) true?
- Reasoning about the effects of actions, and computing what actions can achieve certain effects is at the heart of decision making.

Planning under Uncertainty

- Our knowledge of the world probabilistic.
- Sensing is subject to noise (especially in robots).
- Actions and effectors are also subject to error (uncertainty in their effects).
Planning

- But for now we will confine our attention to the deterministic case.
- We will examine:
 - Determining the effects of actions.
 - Finding sequences of actions that can achieve a desired set of effects.
 - This will in some ways be a lot like search, but we will see that representation also plays an important role.

Situation Calculus

- First we look at how to model dynamic worlds within first-order logic.
- The situation calculus is an important formalism developed for this purpose.
- Situation Calculus is a first-order language.
- Include in the domain of individuals a special set of objects called situations. Of these s_0 is a special distinguished constant which denotes the “initial” situation.
Situation Calculus

• Situations are used to index “states” of the world. When dealing with dynamic environments, the world has different properties at different points in time.

 e.g., in(robby,room1, s_0), ¬in(robby,room3,s_0)

 ¬in(robby,room3,s_1), in(robby,room1,s_1).

 • Different things are true in situation s_1 than in the initial situation s_0.
 • Contrast this with the previous kinds of knowledge we examined.

Fluents

• The basic idea is that properties that change from situation to situation (called fluents) take an extra situation argument.
 • clear(b) ⇒ clear(b,s)

 • “clear(b)” is no longer statically true, it is true contingent on what situation we are talking about
Blocks World Example.

Actions in the Situation Calculus

- Actions are also part of language
 - A set of “primitive” action objects in the (semantic) domain of individuals.
 - In the syntax they are represented as functions mapping objects to primitive action objects.

- pickup(X) function mapping blocks to actions
 - pickup(c) = “the primitive action object corresponding to ‘picking up block c’

- stack(X,Y)
 - stack(a,b) = “the primitive action object corresponding to ‘stacking a on top of b’
Actions modify situations.

- There is a “generic” action application function \text{do(A,S)}. do maps a primitive action and a situation to a new situation.
 - The new situation is the situation that results from applying A to S.

- \text{do(pickup(c), s_0)} = the new situation that is the result of applying action “pickup(c)” to the initial situation s_0.

What do Actions do?

- Actions affect the situation by changing what is true.
 - on(c,a,s_0); clear(a,do(pickup(c),s_0))

- We want to represent the effects of actions, this is done in the situation calculus with two components.
Specifying the effects of actions

• **Action preconditions.** Certain things must hold for actions to have a predictable effect.
 - pickup(c) this action is only applicable to situations S where “clear(c,S) \land \text{handempty}(S)” are true.

• **Action effects.** Actions make certain things true and certain things false.
 - holding(c, do(pickup(c), S))
 - \(\forall X. \neg \text{handempty}(\text{do}(\text{pickup}(X),S)) \)

Specifying the effects of actions

• **Action effects** are conditional on their precondition being true.

\[
\forall S, X.
\begin{align*}
\text{ontable}(X,S) \land \text{clear}(X,S) \land \text{handempty}(S) \\
\rightarrow & \text{holding}(X, \text{do}(\text{pickup}(X),S)) \\
& \land \neg \text{handempty}(\text{do}(\text{pickup}(X),S)) \\
& \land \neg \text{ontable}(X,\text{do}(\text{pickup}(X),S)) \\
& \land \neg \text{clear}(X,\text{do}(\text{pickup}(X),S)).
\end{align*}
\]
Reasoning with the Situation Calculus.

1. clear(c,s₀)
2. on(c,a,s₀)
3. clear(b,s₀)
4. ontable(a,s₀)
5. ontable(b,s₀)
6. handempty(s₀)

Query:
exists Z. holding(b,Z)
7. (¬holding(b,Z), ans(Z))

does there exists a situation in which we are holding b? And if so what is the name of that situation.

Resolution

- Convert “pickup” action axiom into clause form:

\[
\forall S,Y. \neg\text{ontable}(Y,S) \land \neg\text{clear}(Y,S) \land \text{handempty}(S) \\
\rightarrow \quad \text{holding}(Y, \text{do}(\text{pickup}(Y),S)) \\
\land \neg\text{handempty}(\text{do}(\text{pickup}(Y),S)) \\
\land \neg\text{ontable}(Y, \text{do}(\text{pickup}(Y),S)) \\
\land \neg\text{clear}(Y, \text{do}(\text{pickup}(Y),S)).
\]

8. (¬ontable(Y,S), ¬clear(Y,S), ¬handempty(S), holding(Y, do(pickup(Y),S)))
9. (¬ontable(Y,S), ¬clear(Y,S), ¬handempty(S), ¬handempty(do(pickup(X),S))))
10. (¬ontable(Y,S), ¬clear(Y,S), ¬handempty(S), ¬ontable(Y, do(pickup(Y,S))))
11. (¬ontable(Y,S), ¬clear(Y,S), ¬handempty(S), ¬clear(Y, do(pickup(Y,S))))
Resolution

12. R[8d, 7]{Y=b,Z=do(pickup(b),S)}
 (¬ontable(b,S), ¬clear(b,S), ¬handempty(S),
 ans(do(pickup(b),S)))

13. R[12a,5] {S=s₀}
 (¬clear(b,s₀), ¬handempty(s₀),
 ans(do(pickup(b),s₀)))

14. R[13a,3] {}
 (¬handempty(s₀), ans(do(pickup(b),s₀)))

15. R[14a,6] {}
 ans(do(pickup(b),s₀))

The answer?

• ans(do(pickup(b),s₀))

• This says that a situation in which you are holding b
 is called “do(pickup(b),s₀)”

• This name is informative: it tells you what actions to
 execute to achieve “holding(b)”.
Two types of reasoning.

- In general we can answer questions of the form:
 \[\text{on}(b, c, \text{do}(\text{stack}(b, c), \text{do}(\text{pickup}(b), s_0))) \]
 \[\exists S. \text{on}(b, c, S) \land \text{on}(c, a, S) \]

- The first involves predicting the effects of a sequence of actions, the second involves computing a sequence of actions that can achieve a goal condition.

The Frame Problem

- Unfortunately, logical reasoning won’t immediately yield the answer to these kinds of questions.

- e.g., query: \(\text{on}(c, a, \text{do}(\text{pickup}(b), s_0)) \)?
 - is \(c \) still on \(a \) after we pickup \(b \)?
 - Intuitively it should be
 - Can logical reasoning reach this conclusion?
The Frame Problem

1. clear(c,s_0)
2. on(c,a,s_0)
3. clear(b,s_0)
4. ontable(a,s_0)
5. ontable(b,s_0)
6. handempty(s_0)
8. \(-\text{ontable}(Y,S), \neg\text{clear}(Y,S), \neg\text{handempty}(S),
 \text{holding}(Y,\text{do}(\text{pickup}(Y),S))\)
9. \(-\text{ontable}(Y,S), \neg\text{clear}(Y,S), \neg\text{handempty}(S),
 \neg\text{handempty}(\text{do}(\text{pickup}(X),S)))\)
10. \(-\text{ontable}(Y,S), \neg\text{clear}(Y,S), \neg\text{handempty}(S),
 \neg\text{onable}(Y,\text{do}(\text{pickup}(Y,S)))\)
11. \(-\text{ontable}(Y,S), \neg\text{clear}(Y,S), \neg\text{handempty}(S),
 \neg\text{clear}(Y,\text{do}(\text{pickup}(Y,S)))\)
12. \neg\text{on}(c,a,\text{do}(\text{pickup}(b),s_0)) \{\text{QUERY}\}

Nothing can resolve with 12!

Logical Consequence

- Remember that resolution only computes logical consequences.
- We stated the effects of pickup(b), but did not state that it doesn’t affect on(c,a).
- Hence there are models in which on(c,a) no longer holds after pickup(b) (as well as models where it does hold).

- The problem is that representing the non-effects of actions very tedious and in general is not possible.
 - Think of all of the things that pickup(b) does not affect!
The Frame Problem

- Finding an effective way of specifying the non-effects of actions, without having to explicitly write them all down is the frame problem.

- Very good solutions have been proposed, and the situation calculus has been a very powerful way of dealing with dynamic worlds:
 - logic based high level robotic programming languages

Computation Problems

- Although the situation calculus is a very powerful representation. It is not always efficient enough to use to compute sequences of actions.

- The problem of computing a sequence of actions to achieve a goal is “planning”

- Next we will study some less rich representations which support more efficient planning.