Heuristic Search.

- In uninformed search, we don’t try to evaluate which of the nodes on the frontier are most promising. We never “look-ahead” to the goal.
 - E.g., in uniform cost search we always expand the cheapest path. We don’t consider the cost of getting to the goal.
- Often we have some other knowledge about the merit of nodes, e.g., going the wrong direction in Romania.
Heuristic Search.

- Merit of a frontier node: different notions of merit.
 - If we are concerned about the cost of the solution, we might want a notion of merit of how costly it is to get to the goal from that search node.
 - If we are concerned about minimizing computation in search we might want a notion of ease in finding the goal from that search node.
 - We will focus on the “cost of solution” notion of merit.

Heuristic Search.

- The idea is to develop a domain specific heuristic function $h(n)$.
- $h(n)$ guesses the cost of getting to the goal from node n.
- There are different ways of guessing this cost in different domains. I.e., heuristics are domain specific.
Heuristic Search.

- Convention: If $h(n_1) < h(n_2)$ this means that we guess that it is cheaper to get to the goal from n_1 than from n_2.

- We require that
 - $h(n) = 0$ for every node n that satisfies the goal.
 - Zero cost of getting to a goal node from a goal node.

Using only $h(n)$

Greedy best-first search.

- We use $h(n)$ to rank the nodes on open.
 - Always expand node with lowest h-value.
 - We are greedily trying to achieve a low cost solution.

- However, this method ignores the cost of getting to n, so it can be lead astray exploring nodes that cost a lot to get to but seem to be close to the goal:
 - \rightarrow cost = 10
 - \rightarrow cost = 100

- $h(n_1) = 200$
- $h(n_3) = 50$
- $h(n_2)$
A* search

- Take into account the cost of getting to the node as well as our estimate of the cost of getting to the goal from n.
- Define
 - \(f(n) = g(n) + h(n) \)
 - \(g(n) \) is the cost of the path to node n
 - \(h(n) \) is the heuristic estimate of the cost of getting to a goal node from n.

- Now we always expand the node with lowest f-value on the frontier.

- The f-value is an estimate of the cost of getting to the goal via this node (path).

Conditions on h(n)

- We want to analyze the behavior of the resultant search.
- Completeness, time and space, optimality?
- To obtain such results we must put some further conditions on the heuristic function \(h(n) \) and the search space.
Conditions on h(n): Admissible

- \(c(n_1 \rightarrow n_2) \geq \epsilon > 0 \). The cost of any transition is greater than zero and can’t be arbitrarily small.
- Let \(h^*(n) \) be the cost of an optimal path from \(n \) to a goal node (\(\infty \) if there is no path). Then an admissible heuristic satisfies the condition
 - \(h(n) \leq h^*(n) \)
 - i.e. \(h \) always underestimates of the true cost.
- Hence
 - \(h(g) = 0 \)
 - For any goal node “g”

Consistency/monotonicity.

- Is a stronger condition than \(h(n) \leq h^*(n) \).
- A monotone/consistent heuristic satisfies the triangle inequality (for all nodes \(n_1, n_2 \)):
 \[
 h(n_1) \leq c(n_1 \rightarrow n_2) + h(n_2)
 \]

- Note that there might be more than one transition (action) between \(n_1 \) and \(n_2 \), the inequality must hold for all of them.
- Note that monotonicity implies admissibility. Why?
Intuition behind admissibility

- $h(n) \leq h^*(n)$ means that the search won’t miss any promising paths.
 - If it really is cheap to get to a goal via n (i.e., both $g(n)$ and $h^*(n)$ are low), then $f(n) = g(n) + h(n)$ will also be low, and the search won’t ignore n in favor of more expensive options.
 - This can be formalized to show that admissibility implies optimality.

Intuition behind monotonicity

- $h(n_1) \leq c(n_1 \rightarrow n_2) + h(n_2)$
 - This says something similar, but in addition one won’t be “locally” mislead. See next example.
Example: admissible but nonmonotonic

- The following h is not consistent since $h(n_2) > c(n_2 \rightarrow n_4) + h(n_4)$. But it is admissible.

$$
(S) \rightarrow \{n_1 [200+50=250], n_2 [200+100=300]\} \\
\rightarrow \{n_2 [100+200=300], n_3 [400+50=450]\} \\
\rightarrow \{n_4 [200+50=250], n_3 [400+50=450]\} \\
\rightarrow \{\text{goal} [300+0=300], n_3 [400+50=450]\}
$$

We do find the optimal path as the heuristic is still admissible. But we are misled into ignoring n_2 until after we expand n_1.

Consequences of monotonicity

1. The f–values of nodes along a path must be non–decreasing.

- Let $<\text{Start} \rightarrow n_1 \rightarrow n_2 \ldots \rightarrow n_k>$ be a path. We claim that
 $$
f(n_i) \leq f(n_{i+1})$$

- Proof:
 $$
f(n_i) = c(\text{Start} \rightarrow \ldots \rightarrow n_i) + h(n_i) \\
 \leq c(\text{Start} \rightarrow \ldots \rightarrow n_i) + c(n_i \rightarrow n_{i+1}) + h(n_{i+1}) \\
 = c(\text{Start} \rightarrow \ldots \rightarrow n_i \rightarrow n_{i+1}) + h(n_{i+1}) \\
 = g(n_{i+1}) + h(n_{i+1}) \\
 = f(n_{i+1}).$$
Consequences of monotonicity

2. If \(n_2 \) is expanded after \(n_1 \), then \(f(n_1) \leq f(n_2) \)

Proof:

- If \(n_2 \) was on the frontier when \(n_1 \) was expanded,
 - \(f(n_1) \leq f(n_2) \)
 - otherwise we would have expanded \(n_2 \).

- If \(n_2 \) was added to the frontier after \(n_1 \)'s expansion, then let \(n \) be an ancestor of \(n_2 \) that was present when \(n_1 \) was being expanded (this could be \(n_1 \) itself). We have \(f(n_1) \leq f(n) \) since \(A^* \) chose \(n_1 \) while \(n \) was present in the frontier. Also, since \(n \) is along the path to \(n_2 \), by property (1) we have \(f(n) \leq f(n_2) \).
 - So, we have
 - \(f(n_1) \leq f(n_2) \).

Consequences of monotonicity

3. When \(n \) is expanded every path with lower \(f \)-value has already been expanded.

- Assume by contradiction that there exists a path
 - \(<\text{Start},n_0,n_1,n_{i-1},n_i,n_{i+1},\ldots,n_k>\) with \(f(n_k) < f(n) \) and \(n_i \) is its last expanded node.

- Then \(n_{i+1} \) must be on the frontier while \(n \) is expanded:
 a) by (1) \(f(n_{i+1}) \leq f(n_k) \) since they lie along the same path.
 b) since \(f(n_k) < f(n) \) so we have \(f(n_{i+1}) < f(n) \)
 c) by (2) \(f(n) \leq f(n_{i+1}) \) since \(n \) is expanded before \(n_{i+1} \).
 * Contradiction from b&c!
Consequences of monotonicity

4. With a monotone heuristic, the first time A* expands a state, it has found the minimum cost path to that state.

- Proof:
 * Let PATH1 = <Start, n0, n1, ..., nk, n> be the first path to n found. We have f(path1) = c(PATH1) + h(n).
 * Let PATH2 = <Start, m0,m1, ..., mj, n> be another path to n found later. we have f(path2) = c(PATH2) + h(n).

 * By property (3), f(path1) ≤ f(path2)
 * hence: c(PATH1) ≤ c(PATH2)

Consequences of monotonicity

- Complete.
 - Yes, consider a least cost path to a goal node
 - SolutionPath = <Start→ n1→ ...→ G> with cost c(SolutionPath)
 - Since each action has a cost ≥ ε > 0, there are only a finite number of nodes (paths) that have cost ≤ c(SolutionPath).
 - All of these paths must be explored before any path of cost > c(SolutionPath).
 - So eventually SolutionPath, or some equal cost path to a goal must be expanded.
- Time and Space complexity.
 - When h(n) = 0, for all n
 - h is monotone.
 - A* becomes uniform–cost search!
 - It can be shown that when h(n) > 0 for some n, the number of nodes expanded can be no larger than uniform–cost.
 - Hence the same bounds as uniform–cost apply. (These are worst case bounds).
Consequences of monotonicity

- Optimality
 - Yes, by (4) the first path to a goal node must be optimal.
- Cycle Checking
 - If we do cycle checking (e.g. using GraphSearch instead of TreeSearch) it is still optimal. Because by property (4) we need keep only the first path to a node, rejecting all subsequent paths.

Search generated by monotonicity

Gradually adds “f-contours” of nodes (cf. breadth-first adds layers)
Contour \(i \) has all nodes with \(f = f_i \), where \(f_i < f_{i+1} \)
Admissibility without monotonicity

- When “h” is admissible but not monotonic.
 - Time and Space complexity remain the same. Completeness holds.
 - Optimality still holds (without cycle checking), but need a different argument: don’t know that paths are explored in order of cost.

- Proof of optimality (without cycle checking):
 - Assume the goal path <S,…,G> found by A* has cost bigger than the optimal cost: i.e. \(C^* < f(G) \).
 - There must exists a node \(n \) in the optimal path that is still in the frontier.
 - We have: \(f(n) = g(n) + h(n) \leq g(n) + h^*(n) = C^* < f(G) \)
 - Therefore, \(f(n) \) must have been selected before \(G \) by A*. contradiction!

- No longer guaranteed we have found an optimal path to a node the first time we visit it.
- So, cycle checking might not preserve optimality.
 - To fix this: for previously visited nodes, must remember cost of previous path. If new path is cheaper must explore again.
- Contours of monotonic heuristics don’t hold.

Space problem with A* (like breath–first search):

IDA* is similar to Iterative Lengthening Search: It puts the newly expanded nodes in the front of frontier! Two new parameters:
 - curBound (any node with a bigger f value is discarded)
 - smallestNotExplored (the smallest f value for discarded nodes in a round) when frontier becomes empty, the search starts a new round with this bound.
Building Heuristics: Relaxed Problem

- One useful technique is to consider an easier problem, and let \(h(n) \) be the cost of reaching the goal in the easier problem.

- 8-Puzzle moves.
 - Can move a tile from square A to B if
 - A is adjacent (left, right, above, below) to B
 - and B is blank
 - Can relax some of these conditions
 1. can move from A to B if A is adjacent to B (ignore whether or not position is blank)
 2. can move from A to B if B is blank (ignore adjacency)
 3. can move from A to B (ignore both conditions).

#3 leads to the misplaced tiles heuristic.
- To solve the puzzle, we need to move each tile into its final position.
- Number of moves = number of misplaced tiles.
- Clearly \(h(n) = \text{number of misplaced tiles} \leq h^*(n) \) the cost of an optimal sequence of moves from \(n \).

#1 leads to the manhattan distance heuristic.
- To solve the puzzle we need to slide each tile into its final position.
- We can move vertically or horizontally.
- Number of moves = sum over all of the tiles of the number of vertical and horizontal slides we need to move that tile into place.
- Again \(h(n) = \text{sum of the manhattan distances} \leq h^*(n) \)
 - in a real solution we need to move each tile at least that far and we can only move one tile at a time.
Building Heuristics: Relaxed Problem

- The optimal cost to nodes in the relaxed problem is an admissible heuristic for the original problem!
 Proof: the optimal solution in the original problem is a (not necessarily optimal) solution for relaxed problem, therefore it must be at least as expensive as the optimal solution in the relaxed problem.
- Comparison of IDS and A* (average total nodes expanded):

<table>
<thead>
<tr>
<th>Depth</th>
<th>IDS</th>
<th>A*(Misplaced)</th>
<th>A*(Manhattan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>47,127</td>
<td>93</td>
<td>39</td>
</tr>
<tr>
<td>14</td>
<td>3,473,941</td>
<td>539</td>
<td>113</td>
</tr>
<tr>
<td>24</td>
<td>---</td>
<td>39,135</td>
<td>1,641</td>
</tr>
</tbody>
</table>

Let \(h_1 = \text{Misplaced}, \quad h_2 = \text{Manhattan} \)

- Does \(h_2 \) always expand less nodes than \(h_1 \)?
 - Yes! Note that \(h_2 \) dominates \(h_1 \), i.e. for all \(n: h_1(n) \leq h_2(n) \). From this you can prove \(h_2 \) is faster than \(h_1 \).
 - Therefore, among several admissible heuristic the one with highest value is the fastest.

Building Heuristics: Pattern databases.

- Admissible heuristics can also be derived from solution to subproblems: Each state is mapped into a partial specification, e.g. in 15-puzzle only position of specific tiles matters.

- Here are goals for two subproblems (called Corner and Fringe) of 15puzzle. If you want to know how they came up with these subproblems? Here is the paper.

- Note that the goal state here for 15-puzzle is different than what we have defined in Assignment 1.

 ![Fig. 2. The Fringe and Corner Target Patterns.](image)

- By searching backwards from these goal states, we can compute the distance of any configuration of these tiles to their goal locations. We are ignoring the identity of the other tiles.

- For any state \(n \), the number of moves required to get these tiles into place form a lower bound on the cost of getting to the goal from \(n \).
Building Heuristics: Pattern databases.

- These configurations are stored in a database, along with the number of moves required to move the tiles into place.
- The maximum number of moves taken over all of the databases can be used as a heuristic.
- On the 15-puzzle
 - The fringe data base yields about a 345 fold decrease in the search tree size.
 - The corner data base yields about 437 fold decrease.
- Sometimes disjoint patterns can be found, then the number of moves can be added rather than taking the max.

Local Search

- So far, we keep the paths to the goal.
- For some problems (like 8-queens) we don’t care about the path, we only care about the solution. Many real problem like Scheduling, IC design, and network optimizations are of this form.
- Local search algorithms operate using a single Current state and generally move to neighbors of that state.
- There is an objective function that tells the value of each state. The goal has the highest value (global maximum).
- Algorithms like Hill Climbing try to move to a neighbor with the highest value.
- Danger of being stuck in a local maximum. So some randomness can be added to “shake” out of local maxima.
Local Search

- Simulated Annealing: Instead of the best move, take a random move and if it improves the situation then always accept, otherwise accept with a probability <1. Progressively decrease the probability of accepting such moves.

- Local Beam Search is like a parallel version of Hill Climbing. Keeps K states and at each iteration chooses the K best neighbors (so information is shared between the parallel threads). Also stochastic version.

- Genetic Algorithms are similar to Stochastic Local Beam Search, but mainly use crossover operation to generate new nodes. This swaps feature values between 2 parent nodes to obtain children. This gives a hierarchical flavor to the search: chunks of solutions get combined. Choice of state representation becomes very important. Has had wide impact, but not clear if/when better than other approaches.