
CSE 3402 3.0 Intro. to Concepts of AI Dept. of Computer Science & Engineering
Winter 2009 York University

Assignment 1
Total marks: 120.

Out: March 30
Due: April 13 at 14:30

Note: Your report for this assignment should be the result ofyour own individual work. Take care
to avoid plagiarism (“copying”). You may discuss the problems with other students, but do not take
written notes during these discussions, and do not share your written solutions.

In this assignment you are going to implement a solver to theN-puzzle using three different search
algorithms,A∗, A∗ with cycle-checking, andIDA∗. We are providing you with the generic imple-
mentations of these algorithms in Prolog. Your task will be to formulate theN-puzzle as a search
problem and to run experiments with these algorithms.

First, a bit of background. TheN-puzzle is the simple (one-person) game we discussed brieflyin
class where tiles numbered 1 throughN are moved on a square grid ofN + 1 cells (i.e. the grid is√

N + 1 ×
√

N + 1). Any tile adjacent to the blank position can be moved into the blank position.
By moving tiles in sequence we attempt to reach the goal configuration. For example, in the figure
below, we see three game configurations: the configuration (b) can be reached from configuration
(a) by sliding tile 5 up; configuration (c) can be reached fromconfiguration (b) by sliding tile 8 to
the left. Configuration (c) is the goal configuration. The objective of the game is to reach the goal
configuration from some starting configuration in as few moves as possible. The goal is, independent
of the size of the grid, always defined as the ordering of all tiles enumerating from left to right and
top to bottom, with the blank at the lower right corner.

Note that not all starting configurations can reach the goal.

1 2

4

7

6

3

85

(a)

1 2

4

7

5 6

3

8

(b)

1 2

4

7 8

5 6

3

(c)

Figure 1: Three configurations of the 8-puzzle.

We provide you with the following three search algorithms implemented in SWI-Prolog:

1



1. A∗ search with path checking (astar.pl).

2. A∗ search with cycle checking (astarCC.pl).

3. IDA∗ search with path checking (idastar.pl).

All of above files use some common code fromastarcommon.pl. Also, some simple exam-
ples of search spaces that show how these search routines areapplied (simpleSpace.pl, and
waterjugs.pl) are available.

The first 5 questions require you to write SWI-Prolog code. Start from the filea1handin.pl,
which already contains some of the code you need and fill in themissing parts. In your answers, do
not use features of Prolog that have side effects such asassert andretract.

Question 1. (8 marks) State Representation

Decide how you want to represent the configuration of aN-puzzle. Then write down the repre-
sentation for the puzzle configurations shown in Figure 2. Fill the corresponding predicates in
a1handin.pl, init(+Name, -State) whereName is the letter in the figure (i.e.a,b,c,
or d) andState is your representation of the configuration.

1 2

4

3

8 5

67

(a)

28 6

4 1 5

7 3

(b)

2

4

6

1 5

78 3

(c)

1 2

5

3

10 15

13 12 11 14

4

6 87

9

(d)

Figure 2: Four problems you will solve. Please use these names, i.e.a, b, c, andd.

Question 2. (5 marks) Goal Predicate

Implement the predicategoal(+State) that holds if and only ifState is a goal state.
Note that we require you to implement this predicate, as wellas the ones for questions 3, 4, and

5, so that it works for any size of puzzle. This may at first seemmore difficult than it is. Some form of
counting will do!

2



Question 3. (15 marks) Successors Predicate

Implement the predicatesuccessors(+State, -Neighbors) that holds if and only ifNeighbors
is a list of elements(Cost, NewState) whereNewState is a state reachable fromState by
moving a tile down, left, right, or up (into the blank) andCost is the cost of doing so. Assume that
the cost of every move is constant and equal to1 in this problem.

Question 4. (2 marks) Equality Predicate

Implement the predicateequality(+State1, +State2) which holds if and only ifState1
andState2 denote the same state.

Question 5. (30 marks) Heuristic Predicates

In a1handin.pl the null heuristichfn null/2 is already given. In addition, implement the
following two heuristics:

• hfn misplaced(+State, -V) whereV is the number of misplaced tiles (excluding the
blank) inState, that is, the number of tiles which are not at the position where they should be
according to the goal configuration.

• hfn manhattan(+State, -V)whereV is the sum of all the Manhattan distances between
the current and the goal position of every tile (except the blank). That is, instead of just counting
the number of misplacements, we also take the ’distance’ of each misplaced tile to its destination
into account. This is more informative and should guide our search better. The Manhattan
distance between two positions is simply the sum of the absolute differences in the x and in the
y direction.

Finally, run the test cases you just implemented using the various heuristics. You can do so by calling
the predicatesgo/2, goCC/2, goIDA/2. For instance,go(a, hfn misplaced) will try
to solve the first problem usingA∗ search together with the heuristic made up from the number of
misplaced tiles.

The next 6 questions don’t require any programming. Edit thefile a1answers.txt to answer
the questions.

Consider a forth heuristic defined in terms ofinversions: For a puzzle configuration we say that a pair
of tilesa andb areinvertedif a < b but the position ofb is beforea in the left-to-right, top-to-bottom
ordering described through the goal state. For instance, inthe configuration in Figure 2 (a) the pairs
(5, 8), (7, 8), (6, 8), and(6, 7) are inverted. We define a new heuristichfn inversionsas the number of
inversions in a configuration. So for the said configuration in Figure 2 (a) hfninversions = 4.

3



Question 6. (5 marks) Heuristics I

Which of the four heuristics are admissible?

Question 7. (15 marks) Heuristics II

Suppose for sliding a tile to the left we would change the costfrom 1 to 0.5 and leave all the other
moves the same cost. Does this affect the admissibility of the heuristics? Which of them are admissi-
ble now? For any which is not, why not?

Question 8. (15 marks) Heuristics III

Now suppose we would change the cost for sliding a tile to the left to 2 and leave all the other moves
the same cost. Does this now affect the admissibility of the four heuristics? Again, which of them are
admissible? For any which is not, why not?

Question 9. (5 marks) Performance

In the former modification (sliding to the left costs 0.5), can you say for sure which heuristic will be
the fastest (expand the least number of states) in finding a (not necessary optimal) solution? Explain.

Question 10. (20 marks) Heuristics IV

One can obtain another heuristic for theN-puzzle by relaxing the problem as follows: let’s say that
a tile can move from square A to square B if B is blank. The exactsolution to this problem defines
Gaschnig’s heuristic. Explain why Gaschnig’s heuristic is at least as accurate ashfn misplaced.
Show some cases where it is more accurate than both thehfn misplaced andhfn manhattan
heuristics. Can you suggest a way to calculate Gaschnig’s heuristic efficiently?

To hand in your report for this assignment, submit it electronically and deliver a printout in
the 3402 drop box in CSEB by the deadline. To submit electronically, use the following Prism lab
command:

submit 3402 a1 a1handin.pl a1answers.txt

Your Prolog code should work correctly on Prism.

4


