CSE 3402 3.0 Intro. to Concepts of Al Dept. of Computer Saefd&Engineering
Winter 2009 York University

Assignment 1
Total marks: 120.

Out: March 30
Due: April 13 at 14:30

Note: Your report for this assignment should be the resuitonfr own individual work. Take care
to avoid plagiarism (“copying”). You may discuss the prabgewith other students, but do not take
written notes during these discussions, and do not sharewritten solutions.

In this assignment you are going to implement a solver toNhguzzle using three different search
algorithms, A*, A* with cycle-checking, and DA*. We are providing you with the generic imple-
mentations of these algorithms in Prolog. Your task will bédrmulate the/NV-puzzle as a search
problem and to run experiments with these algorithms.

First, a bit of background. Th&-puzzle is the simple (one-person) game we discussed binefly
class where tiles numbered 1 througyhare moved on a square grid &f + 1 cells (i.e. the grid is
VN +1 x /N +1). Any tile adjacent to the blank position can be moved in® lbkank position.
By moving tiles in sequence we attempt to reach the goal cardigpn. For example, in the figure
below, we see three game configurations: the configuratipegib be reached from configuration
(a) by sliding tile 5 up; configuration (c) can be reached fraonfiguration (b) by sliding tile 8 to
the left. Configuration (c) is the goal configuration. Theemive of the game is to reach the goal
configuration from some starting configuration in as few nsa®possible. The goal is, independent
of the size of the grid, always defined as the ordering of Etenumerating from left to right and
top to bottom, with the blank at the lower right corner.

Note that not all starting configurations can reach the goal.

1 2 3 1 2 3 1 2 3
4 6 4 5 6 4 5 6
7 5 8 7 8 7 8

(@) (b) (c)

Figure 1: Three configurations of the 8-puzzle.

We provide you with the following three search algorithmpiemented in SWI-Prolog:

1

1. A* search with path checkingiét ar . pl).
2. A* search with cycle checkingét ar CC. pl).
3. IDA* search with path checking dast ar . pl).

All of above files use some common code fraat ar conmon. pl . Also, some simple exam-
ples of search spaces that show how these search routinepplied &i npl eSpace. pl , and
wat er j ugs. pl) are available.

The first 5 questions require you to write SWI-Prolog codartStom the filealhandi n. pl ,
which already contains some of the code you need and fill imilssing parts. In your answers, do
not use features of Prolog that have side effects suasa®rt andr et ract.

Question 1. (8 marks) State Representation

Decide how you want to represent the configuration d¥-guzzle. Then write down the repre-
sentation for the puzzle configurations shown in Figure 2ll thé corresponding predicates in
alhandin.pl,init(+Nane, -State) whereNane is the letter in the figure (i.ea, b, c,
ord) andSt at e is your representation of the configuration.

1 2 3 4
1 2 3 8 2 6 2 6 5 6 7 8
4 8 5 4 1 5 4 1 5 9 10 15
7 6 7 3 8 7 3 13 12 11 14

(@ (b) (c) (d)

Figure 2: Four problems you will solve. Please use these saimeea, b, c, andd.

Question 2. (5 marks) Goal Predicate

Implement the predicaigoal (+St at e) that holds if and only ifSt at e is a goal state.

Note that we require you to implement this predicate, as aglhe ones for questions 3, 4, and
5, so that it works for any size of puzzle. This may at first seene difficult than it is. Some form of
counting will do!

Question 3. (15 marks) Successors Predicate

Implement the predicateuccessor s(+St at e, - Nei ghbor s) thatholdsifand only iNei ghbor s
is a list of elementg§ Cost, NewSt at e) whereNewSt at e is a state reachable froBt at e by
moving a tile down, left, right, or up (into the blank) a@dst is the cost of doing so. Assume that
the cost of every move is constant and equadl to this problem.

Question 4. (2 marks) Equality Predicate

Implement the predicatequal i t y(+St at el, +St ate2) which holds if and only ifSt at el
andSt at e2 denote the same state.

Question 5. (30 marks) Heuristic Predicates

In alhandi n. pl the null heuristichf n_nul | / 2 is already given. In addition, implement the
following two heuristics:

e hf n_m spl aced(+St ate, -V) whereV is the number of misplaced tiles (excluding the
blank) inSt at e, that is, the number of tiles which are not at the positionnetieey should be
according to the goal configuration.

e hf n_.manhat t an(+St at e, -V) whereVis the sum of all the Manhattan distances between
the current and the goal position of every tile (except tlk). That s, instead of just counting
the number of misplacements, we also take the 'distanceldf enisplaced tile to its destination
into account. This is more informative and should guide aarsh better. The Manhattan
distance between two positions is simply the sum of the albsdlifferences in the x and in the
y direction.

Finally, run the test cases you just implemented using thews heuristics. You can do so by calling
the predicatego/ 2, goCC/ 2, gol DA/ 2. For instancego(a, hf n_m spl aced) will try

to solve the first problem using* search together with the heuristic made up from the number of
misplaced tiles.

The next 6 questions don’t require any programming. Ediffilleealanswer s. t xt to answer
the questions.

Consider a forth heuristic defined in termsmfersions For a puzzle configuration we say that a pair
of tilesa andb areinvertedif a < b but the position ob is beforea in the left-to-right, top-to-bottom
ordering described through the goal state. For instandieiconfiguration in Figure 2 (a) the pairs
(5,8), (7,8), (6,8), and(6, 7) are inverted. We define a new heuridifa_inversionsas the number of
inversions in a configuration. So for the said configuratioRigure 2 (a) hfanversions = 4.

Question 6. (5 marks) Heuristics |

Which of the four heuristics are admissible?

Question 7. (15 marks) Heuristics Il

Suppose for sliding a tile to the left we would change the émsh 1 to 0.5 and leave all the other
moves the same cost. Does this affect the admissibilityehturistics? Which of them are admissi-
ble now? For any which is not, why not?

Question 8. (15 marks) Heuristics IlI

Now suppose we would change the cost for sliding a tile toefted 2 and leave all the other moves
the same cost. Does this now affect the admissibility of the heuristics? Again, which of them are
admissible? For any which is not, why not?

Question 9. (5 marks) Performance

In the former modification (sliding to the left costs 0.5)ngau say for sure which heuristic will be
the fastest (expand the least number of states) in findingtan@tessary optimal) solution? Explain.

Question 10. (20 marks) Heuristics IV

One can obtain another heuristic for thepuzzle by relaxing the problem as follows: let’'s say that
a tile can move from square A to square B if B is blank. The egatition to this problem defines
Gaschnig’s heuristicExplain why Gaschnig’s heuristic is at least as accuratef asm spl aced.
Show some cases where it is more accurate than bothfthemi spl aced andhf n_manhat t an
heuristics. Can you suggest a way to calculate Gaschnigisdtie efficiently?

To hand in your report for this assignment, submit it elecictally and deliver a printout in
the 3402 drop box in CSEB by the deadline. To submit electatlyj use the following Prism lab
command:

submit 3402 al alhandi n. pl alanswers.txt

Your Prolog code should work correctly on Prism.

