
Some examples and/or figures were borrowed (with permission)
from slides prepared by Prof. H. Roumani

Java By Abstraction: Chapter 9Java By Abstraction: Chapter 9

InheritanceInheritance

2CSE1020 W09 (Steven C.)

What is Inheritance?What is Inheritance?

•• A thing sometimes can be described as a specialized A thing sometimes can be described as a specialized
type of another thingtype of another thing
•• E.g., a car is a particular type of vehicleE.g., a car is a particular type of vehicle
•• E.g., a dog is a particular type of animalE.g., a dog is a particular type of animal
•• E.g., a laptop is a particular type of computerE.g., a laptop is a particular type of computer
•• E.g., a cell phone is a particular type of telephoneE.g., a cell phone is a particular type of telephone

•• Similarly, a class sometimes can be described as an Similarly, a class sometimes can be described as an
extension or abstraction of another classextension or abstraction of another class

•• The extended class (child) inherits all the features of the The extended class (child) inherits all the features of the
original class (parent) and can implements original class (parent) and can implements
new/different features for its particular purposenew/different features for its particular purpose

3CSE1020 W09 (Steven C.)

Definition and TerminologyDefinition and Terminology

•• Child (class) = SubclassChild (class) = Subclass
•• Parent (class) = Parent (class) = SuperclassSuperclass
•• When When CC inherits from inherits from PP, every feature of , every feature of PP is in is in CC
•• ““CC inherits from inherits from PP”” = = ““CC extends extends PP””
•• Inheritance = Inheritance = ““isis--aa”” relationship = specializationrelationship = specialization
•• Inheritance hierarchy: (graphical) organization of Inheritance hierarchy: (graphical) organization of

classes related by inheritanceclasses related by inheritance

4CSE1020 W09 (Steven C.)

UML RepresentationUML Representation

C

P

C

P

G

L

A

R

B

K N M

(c) (b) (a)

G
en

er
al

Sp
ec

if
ic

5CSE1020 W09 (Steven C.)

No Multiple InheritanceNo Multiple Inheritance

A B

M

6CSE1020 W09 (Steven C.)

Example Shape HierarchyExample Shape Hierarchy

Shape

Ellipse

Circle

Quadrilateral

Rectangle

Square

Trapezoid

7CSE1020 W09 (Steven C.)

ExampleExample

•• Situation: The University wants a program to Situation: The University wants a program to
manage information about past, present, and manage information about past, present, and
future studentsfuture students

•• Task: Give a UML class diagram illustrating the Task: Give a UML class diagram illustrating the
inheritance hierarchyinheritance hierarchy
•• Identify the specific types of studentsIdentify the specific types of students
•• Identify how they relate using Identify how they relate using ““isis--aa”” relationshipsrelationships

8CSE1020 W09 (Steven C.)

Student Inheritance HierarchyStudent Inheritance Hierarchy

Student

Applicant AlumnusRegistrant

UnderGraduate Graduate

9CSE1020 W09 (Steven C.)

Overriding or Shadowing Overriding or Shadowing
Parent MethodsParent Methods

•• Child class sometimes requires a method with Child class sometimes requires a method with
specialized implementation to take advantage of specialized implementation to take advantage of
features not available in the parent classfeatures not available in the parent class

•• Overriding:Overriding:
•• Child class keeps parent methodChild class keeps parent method’’s signature s signature and and

return typereturn type

•• Shadowing:Shadowing:
•• Child class keeps parent methodChild class keeps parent method’’s name only s name only

(number or types of parameter are different)(number or types of parameter are different)
•• Like overloading, but spans parent and child classesLike overloading, but spans parent and child classes

10CSE1020 W09 (Steven C.)

Inheritance Example: Inheritance Example: CreditCardCreditCard

•• CreditCardCreditCard class:class:
•• Charge purchasesCharge purchases
•• Pay balancePay balance

•• RewardCardRewardCard class:class:
•• (similar features of (similar features of CreditCardCreditCard class)class)
•• Earn reward pointsEarn reward points

11CSE1020 W09 (Steven C.)

Inheritance Example: Inheritance Example: CreditCardCreditCard

•• Some features are common:Some features are common:
•• Credit limitCredit limit
•• Card balanceCard balance
•• Issue dateIssue date
•• Expiry dateExpiry date
•• Card numberCard number
•• HolderHolder’’s names name

•• Some features are unique to Some features are unique to RewardCardsRewardCards
•• Points balancePoints balance

12CSE1020 W09 (Steven C.)

Inheritance Example: Inheritance Example: CreditCardCreditCard

•• Examine the API of Examine the API of CreditCardCreditCard and and
RewardCardRewardCard

•• Identify inherited featuresIdentify inherited features
•• Identify overridden featuresIdentify overridden features

•• Other inheritance hierarchies are detailed on Other inheritance hierarchies are detailed on
pages 357 pages 357 -- 359359

13CSE1020 W09 (Steven C.)

The Substitutability PrincipleThe Substitutability Principle

•• ““When a parent is expected, a child is acceptedWhen a parent is expected, a child is accepted””

•• This allows the same code to process both This allows the same code to process both
parent classes and their (grand) childrenparent classes and their (grand) children

•• For example, a program intended to handle For example, a program intended to handle
CreditCardCreditCard objects will be able to handle objects will be able to handle
RewardCardRewardCard objects without modificationobjects without modification

14CSE1020 W09 (Steven C.)

Substitutability ExampleSubstitutability Example

•• The following is correct:The following is correct:
•• CreditCardCreditCard cc1 = new CreditCard(9, cc1 = new CreditCard(9, ““AdamAdam””););
•• CreditCardCreditCard cc2 = new RewardCard(9, cc2 = new RewardCard(9, ““AdamAdam””););
•• Subsequently, any method that can be called on a Subsequently, any method that can be called on a

CreditCardCreditCard can also be called on a can also be called on a RewardCardRewardCard

•• The following is NOT correct (why?):The following is NOT correct (why?):
•• RewardCardRewardCard rcrc = new CreditCard(9, = new CreditCard(9, ““AdamAdam””););

15CSE1020 W09 (Steven C.)

Example Shape HierarchyExample Shape Hierarchy

Shape

Ellipse

Circle

Quadrilateral

Rectangle

Square

Trapezoid

16CSE1020 W09 (Steven C.)

Example Shape HierarchyExample Shape Hierarchy

•• Ellipse: a rounded shapeEllipse: a rounded shape
•• Circle: an ellipse whose height and width are equalCircle: an ellipse whose height and width are equal

•• Thus, a circle is an ellipse, but an ellipse is not Thus, a circle is an ellipse, but an ellipse is not
necessarily a circlenecessarily a circle

•• Quadrilateral: a fourQuadrilateral: a four--sided shapesided shape
•• Rectangle: a quadrilateral with four sides meeting at 90Rectangle: a quadrilateral with four sides meeting at 90ºº

•• Square: a rectangle with four sides of equal lengthSquare: a rectangle with four sides of equal length
•• Thus, a square is a rectangle, but a rectangle is not Thus, a square is a rectangle, but a rectangle is not

necessarily a squarenecessarily a square

17CSE1020 W09 (Steven C.)

instanceofinstanceof OperatorOperator

•• Used to test if a reference points to an instance of the Used to test if a reference points to an instance of the
parent or child classparent or child class

•• CreditCardCreditCard cc1 = new CreditCard(9, cc1 = new CreditCard(9, ““AdamAdam””););
•• CreditCardCreditCard cc2 = new RewardCard(9, cc2 = new RewardCard(9, ““AdamAdam””););

•• cc1 cc1 instanceofinstanceof CreditCardCreditCard truetrue
•• cc2 cc2 instanceofinstanceof RewardCardRewardCard truetrue
•• cc2 cc2 instanceofinstanceof CreditCardCreditCard true (by substitutability)true (by substitutability)
•• cc1 cc1 instanceofinstanceof RewardCardRewardCard falsefalse

18CSE1020 W09 (Steven C.)

Early and Late BindingEarly and Late Binding

•• Binding: validation of a method callBinding: validation of a method call
•• Early binding:Early binding:

•• Occurs at compileOccurs at compile--timetime
•• Binding failure results in a compileBinding failure results in a compile--time errortime error

(i.e., cannot find method)(i.e., cannot find method)

•• Late binding:Late binding:
•• Applicable only when (explicit) inheritance is usedApplicable only when (explicit) inheritance is used
•• Occurs at runOccurs at run--timetime

19CSE1020 W09 (Steven C.)

Binding Example OneBinding Example One

•• CreditCardCreditCard cc2 = new RewardCard(9, cc2 = new RewardCard(9, ““AdamAdam””););
cc2. cc2. getBalancegetBalance();();

•• Early binding:Early binding:
•• Verifies Verifies ““getBalancegetBalance()()”” method in method in CreditCardCreditCard classclass

•• Late binding:Late binding:
•• Determines cc2 points to a Determines cc2 points to a RewardCardRewardCard objectobject
•• Cannot find Cannot find ““getBalancegetBalance()()”” method in method in RewardCardRewardCard

because because ““getBalancegetBalance()()”” was not overridden in was not overridden in
RewardCardRewardCard

•• Calls Calls ““getBalancegetBalance()()”” method in method in CreditCardCreditCard class insteadclass instead

20CSE1020 W09 (Steven C.)

Binding Example TwoBinding Example Two

•• CreditCardCreditCard cc2 = new RewardCard(9, cc2 = new RewardCard(9, ““AdamAdam””););
cc2.charge(500.00);cc2.charge(500.00);

•• Early binding:Early binding:
•• Verifies Verifies ““charge(doublecharge(double amount)amount)”” is a method in the is a method in the

CreditCardCreditCard classclass
•• Late binding:Late binding:

•• Determines cc2 points to a Determines cc2 points to a RewardCardRewardCard objectobject
•• Calls Calls ““charge(doublecharge(double amount)amount)”” method in method in

RewardCardRewardCard classclass

21CSE1020 W09 (Steven C.)

PolymorphismPolymorphism

•• The ability of a method to take on various formsThe ability of a method to take on various forms

•• Occurs when early binding targets a method in a Occurs when early binding targets a method in a
parent class and late binding targets the method parent class and late binding targets the method
with the same signature in a (grand) child classwith the same signature in a (grand) child class
•• E.g.: the E.g.: the ““charge(doublecharge(double amount)amount)”” method from the method from the

previous exampleprevious example

22CSE1020 W09 (Steven C.)

The Need to CastThe Need to Cast

•• Wrong:Wrong:
•• CreditCardCreditCard cc2 = new RewardCard(9, cc2 = new RewardCard(9, ““AdamAdam””););

balance = cc2.getPointBalance();balance = cc2.getPointBalance();
•• Early binding will fail because Early binding will fail because CreditCardCreditCard does not does not

have a have a ““getPointBalancegetPointBalance()()”” methodmethod
•• Correct:Correct:

•• CreditCardCreditCard cc2 = new RewardCard(9, cc2 = new RewardCard(9, ““AdamAdam””););
if (cc2 if (cc2 instanceofinstanceof RewardCardRewardCard))
{ balance = ((RewardCard)cc2).getPointBalance();{ balance = ((RewardCard)cc2).getPointBalance();
}}

23CSE1020 W09 (Steven C.)

Abstract Classes and InterfacesAbstract Classes and Interfaces

•• Interfaces:Interfaces:
•• Define only method signaturesDefine only method signatures
•• Methods have no implemented bodyMethods have no implemented body
•• Allow implementer to define class requirements to Allow implementer to define class requirements to

other implementersother implementers
•• Abstract classes:Abstract classes:

•• Only some (not all) methods are implementedOnly some (not all) methods are implemented
•• Allow implementers implement some methods and Allow implementers implement some methods and

define requirements for othersdefine requirements for others

24CSE1020 W09 (Steven C.)

Abstract Classes and InterfacesAbstract Classes and Interfaces
(Client View)(Client View)

• Classes: public class ClassName
• Abstract: public abstract class ClassName
• Interface: public interface InterfaceName
• Interface names appear in italics in the API
• Both can be used as types for declarations
• Neither can be instantiated

• Look for a class that extends it or a (static) method that
returns a pre-made instance of it

• E.g., Try to create an instance of Calendar

25CSE1020 W09 (Steven C.)

Obligatory InheritanceObligatory Inheritance

•• The Object class is the root of all inheritance The Object class is the root of all inheritance
hierarchieshierarchies

•• The Object class defines methods applicable to The Object class defines methods applicable to
and required by all Java classes.and required by all Java classes.
•• equals(Objectequals(Object other)other)
•• toStringtoString()()
•• ……

•• To ensure all classes have these methods, all To ensure all classes have these methods, all
classes implicitly extend the Object classclasses implicitly extend the Object class

