
Some examples and/or figures were borrowed (with permission) 
from slides prepared by Prof. H. Roumani

Java By Abstraction: Chapter 8Java By Abstraction: Chapter 8

AggregationAggregation



2CSE1020 W09 (Steven C.)

AggregationAggregation

•• Represents a Represents a ““hashas--aa”” relationship between two classesrelationship between two classes
•• A class A class CC is an aggregate if it has an attribute of type is an aggregate if it has an attribute of type TT

and and TT is NOT a primitive type OR a Stringis NOT a primitive type OR a String
•• Attribute Attribute TT is called the is called the ““aggregated partaggregated part””, , ““partpart””, , 

““aggregated componentaggregated component””, or , or ““componentcomponent””
•• UML diagram (e.g., Investment UML diagram (e.g., Investment has ahas a Stock):Stock):

 Investment Portfolio * 

Stock Investment 1 



3CSE1020 W09 (Steven C.)

CompositionComposition

•• Aggregate and aggregate part are created Aggregate and aggregate part are created 
together (and reclaimed by the GC together)together (and reclaimed by the GC together)

•• Client holds no reference to aggregate partClient holds no reference to aggregate part
•• UML diagram (e.g., UML diagram (e.g., CreditCardCreditCard has two Dates):has two Dates):

 
Date CreditCard 2

Calendar 

Date 
1 



4CSE1020 W09 (Steven C.)

AggregationAggregation--Composition DistinctionComposition Distinction

•• Camera and film (text p. 293)Camera and film (text p. 293)
•• Computer and monitorComputer and monitor

•• Desktop:Desktop:
•• Aggregation: computer and monitor can be Aggregation: computer and monitor can be 

purchased/replaced separatelypurchased/replaced separately

•• Laptop:Laptop:
•• Composition: computer and monitor form a cohesive Composition: computer and monitor form a cohesive 

unit; cannot be separated and still considered a laptopunit; cannot be separated and still considered a laptop



5CSE1020 W09 (Steven C.)

ConstructorsConstructors

•• For aggregates:For aggregates:
•• Client instantiates attribute object (that will serve as aggregaClient instantiates attribute object (that will serve as aggregate te 

part) and retains reference to itpart) and retains reference to it
•• Client instantiates aggregate by passing aggregate part as a Client instantiates aggregate by passing aggregate part as a 

parameter to constructorparameter to constructor
•• For compositions:For compositions:

•• Instantiating composition class also instantiates the attribute Instantiating composition class also instantiates the attribute 
object (the object (the ““partpart””))

•• If client passes attribute object as constructor parameter, If client passes attribute object as constructor parameter, 
object state is copied to a new object; this way, the client stiobject state is copied to a new object; this way, the client still ll 
does not hold any reference to the does not hold any reference to the ““partpart””



6CSE1020 W09 (Steven C.)

AccessorsAccessors

•• Format: Format: getgetNameOfAttributeNameOfAttribute()()
•• For aggregates:For aggregates:

•• Returns reference to the aggregate partReturns reference to the aggregate part

•• For compositions:For compositions:
•• Remember composition rule (from slide 3):Remember composition rule (from slide 3):

““Client holds no reference to aggregate partClient holds no reference to aggregate part””
•• Creates a copy/clone of the aggregate part and Creates a copy/clone of the aggregate part and 

returns a reference to the copy/clonereturns a reference to the copy/clone



7CSE1020 W09 (Steven C.)

Copy or Reference?Copy or Reference?

•• Call Call accessoraccessor twice, save returned referencestwice, save returned references
•• Compare the referencesCompare the references’’ memory addresses memory addresses 

using the == relational operatorusing the == relational operator
•• If true If true aggregation returned referencesaggregation returned references
•• If false If false composition returned copiescomposition returned copies



8CSE1020 W09 (Steven C.)

MutatorsMutators

•• Format: Format: setsetNameOfAttributeNameOfAttribute((newInstancenewInstance))
•• Changes where the attributeChanges where the attribute’’s reference pointss reference points

•• Changes to the attributeChanges to the attribute’’s state handled by s state handled by mutatorsmutators
in the attributein the attribute’’s classs class

•• For aggregates:For aggregates:
•• Reference to the aggregate part is changed to point Reference to the aggregate part is changed to point 

to the passed instance (i.e., the method parameter)to the passed instance (i.e., the method parameter)
•• For compositions:For compositions:

•• None (Aggregate partNone (Aggregate part’’s reference cannot change!)s reference cannot change!)



9CSE1020 W09 (Steven C.)

Aggregate CloningAggregate Cloning

•• Aggregate attributes could also be aggregatesAggregate attributes could also be aggregates
•• When making a copy of an aggregate, how When making a copy of an aggregate, how 

should the attributes be copied?should the attributes be copied?
•• Aliasing: copy references onlyAliasing: copy references only
•• Shallow copy: create copies of attribute objectsShallow copy: create copies of attribute objects
•• Deep copy: create copies of attribute objects, and Deep copy: create copies of attribute objects, and 

create copies of the copiescreate copies of the copies’’ attribute objectsattribute objects



10CSE1020 W09 (Steven C.)

AliasingAliasing

Aggregate Object

Part ObjectPart Object



11CSE1020 W09 (Steven C.)

Shallow CopyShallow Copy

Aggregate Object Aggregate Object

Part Object Part Object



12CSE1020 W09 (Steven C.)

Deep CopyDeep Copy

Aggregate Object Aggregate Object

Part Object Part Object Part ObjectPart Object



Some examples and/or figures were borrowed (with permission) 
from slides prepared by Prof. H. Roumani

CollectionsCollections



14CSE1020 W09 (Steven C.)

What is a CollectionWhat is a Collection

•• Aggregate class with variable multiplicityAggregate class with variable multiplicity

•• Each instance of the aggregate class is called an element in theEach instance of the aggregate class is called an element in the
collectioncollection
•• Wallet is a collection of Bill elementsWallet is a collection of Bill elements
•• Portfolio is a collection of Investment elementsPortfolio is a collection of Investment elements

•• Chapter 8: collections in Chapter 8: collections in type.libtype.lib
•• Chapter 10: JavaChapter 10: Java’’s collection frameworks collection framework

Investment Portfolio * 

Bill Wallet * 



15CSE1020 W09 (Steven C.)

CreationCreation

•• Constructor creates an empty collectionConstructor creates an empty collection
•• Collection capacity can be static (i.e., fixed) or dynamic Collection capacity can be static (i.e., fixed) or dynamic 

(i.e., able to change)(i.e., able to change)
•• Fixed capacityFixed capacity

•• Easy for Java (and implementer) to manage memoryEasy for Java (and implementer) to manage memory
•• Collection can become full during runCollection can become full during run--timetime

•• Dynamic capacityDynamic capacity
•• Collection capacity can grow (or shrink) during runCollection capacity can grow (or shrink) during run--time to time to 

efficiently accommodate various number of elementsefficiently accommodate various number of elements



16CSE1020 W09 (Steven C.)

Adding ElementsAdding Elements

•• Method typically called Method typically called add(add(elementelement))
•• Two possible problems can occur:Two possible problems can occur:

•• Collection is full (only with fixed capacity collections)Collection is full (only with fixed capacity collections)
•• Element already present (some collections require all Element already present (some collections require all 

elements to be unique)elements to be unique)
•• Return type:Return type:

•• booleanboolean: if addition can fail (due to full capacity or : if addition can fail (due to full capacity or 
duplicate element)duplicate element)

•• void: if no possible problemsvoid: if no possible problems



17CSE1020 W09 (Steven C.)

Indexed TraversalIndexed Traversal

•• Possible if elements are indexed (0..sizePossible if elements are indexed (0..size--1)1)
•• Use method size() to determine max indexUse method size() to determine max index
•• Use method Use method get(get(indexindex), ), getElement(getElement(indexindex), etc. to ), etc. to 

access element at given indexaccess element at given index
•• Access elements Access elements ““randomlyrandomly””



18CSE1020 W09 (Steven C.)

Chained TraversalChained Traversal

•• Elements accessible only in some preElements accessible only in some pre--defined defined 
orderorder

•• Use method Use method getFirstgetFirst() to get the () to get the ““firstfirst”” elementelement
•• Use method Use method getNextgetNext() to access subsequent () to access subsequent 

elements in the collectionelements in the collection
•• End of collection End of collection getNextgetNext() returns null() returns null
•• Can call Can call getFirstgetFirst() to return to the first element() to return to the first element



19CSE1020 W09 (Steven C.)

SearchingSearching

•• Common task: search for Common task: search for element(selement(s) in a ) in a 
collection matching a target valuecollection matching a target value

•• Time to search for an element can vary based on:Time to search for an element can vary based on:
•• Number of elements (determined by user)Number of elements (determined by user)
•• Search technique (determined by programmer)Search technique (determined by programmer)

•• How to choose a search algorithm?How to choose a search algorithm?
•• How does the search time grow with respect to How does the search time grow with respect to 

increases in number of elements?increases in number of elements?



20CSE1020 W09 (Steven C.)

Runtime ComplexityRuntime Complexity

•• In the worstIn the worst--case condition, how does the case condition, how does the 
runtime of an algorithm grow with respect to runtime of an algorithm grow with respect to 
the size of input (N)?the size of input (N)?

•• Expressed in BigExpressed in Big--O notationO notation
•• O(1): the runtime varies by a constant factorO(1): the runtime varies by a constant factor
•• O(N): the runtime grows proportionally with NO(N): the runtime grows proportionally with N
•• O(2O(2NN): the runtime grows exponentially with N): the runtime grows exponentially with N
•• ……



21CSE1020 W09 (Steven C.)

Runtime ComplexityRuntime Complexity

Input Size

R
un

tim
e

O(1) O(logN) O(N) O(NlogN)
O(N^2) O(2^N) O(N!)



22CSE1020 W09 (Steven C.)

Runtime ComplexityRuntime Complexity

Input Size

R
un

tim
e

O(logN) O(N) O(NlogN) O(N^2)



23CSE1020 W09 (Steven C.)

Search ComplexitySearch Complexity

•• Task: search for all matching elementsTask: search for all matching elements
•• Elements in no orderElements in no order

•• Requires linear search (i.e., check each element)Requires linear search (i.e., check each element)
•• Best case: O(N)Best case: O(N)

•• Elements in sorted orderElements in sorted order
•• Can use binary searchCan use binary search

•• Pick the middle elementPick the middle element
•• Target element bigger or smaller than middle element?Target element bigger or smaller than middle element?
•• If bigger look at If bigger look at ““toptop”” half; if smaller look at half; if smaller look at ““bottombottom”” halfhalf

•• Best case: Best case: O(logNO(logN))
•• Element values are indexedElement values are indexed

•• Access any element directlyAccess any element directly
•• Best case: O(1)Best case: O(1)


