
Java By Abstraction: Chapter 8

Aggregation

Some examples and/or figures were borrowed (with permission) from slides prepared by Prof. H. Roumani

Aggregation

- Represents a "has-a" relationship between two classes
- A class *C* is an aggregate if it has an attribute of type *T* and *T* is NOT a primitive type OR a String
- Attribute *T* is called the "aggregated part", "part", "aggregated component", or "component"
- UML diagram (e.g., Investment has a Stock):

Composition

- Aggregate and aggregate part are created together (and reclaimed by the GC together)
- Client holds no reference to aggregate part
- UML diagram (e.g., CreditCard has two Dates):

Aggregation-Composition Distinction

- Camera and film (text p. 293)
- Computer and monitor
 - Desktop:
 - Aggregation: computer and monitor can be purchased/replaced separately
 - Laptop:
 - Composition: computer and monitor form a cohesive unit; cannot be separated and still considered a laptop

Constructors

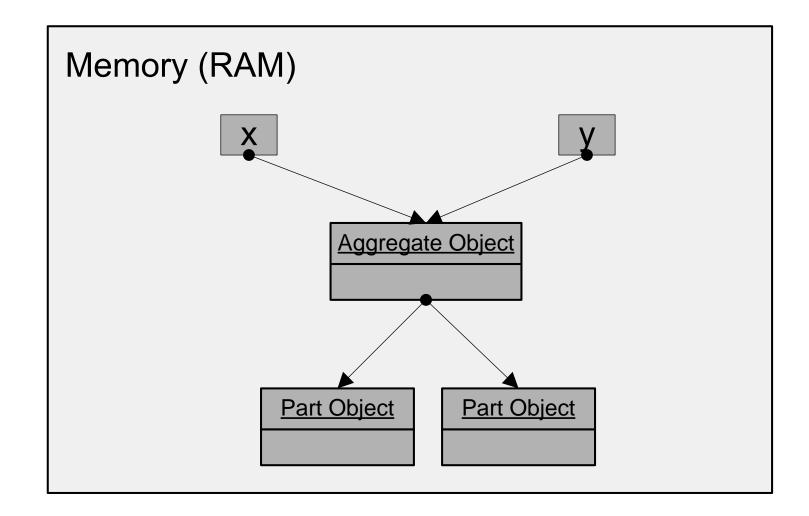
- For aggregates:
 - Client instantiates attribute object (that will serve as aggregate part) and retains reference to it
 - Client instantiates aggregate by passing aggregate part as a parameter to constructor
- For compositions:
 - Instantiating composition class also instantiates the attribute object (the "part")
 - If client passes attribute object as constructor parameter, object state is copied to a new object; this way, the client still does not hold any reference to the "part"

Accessors

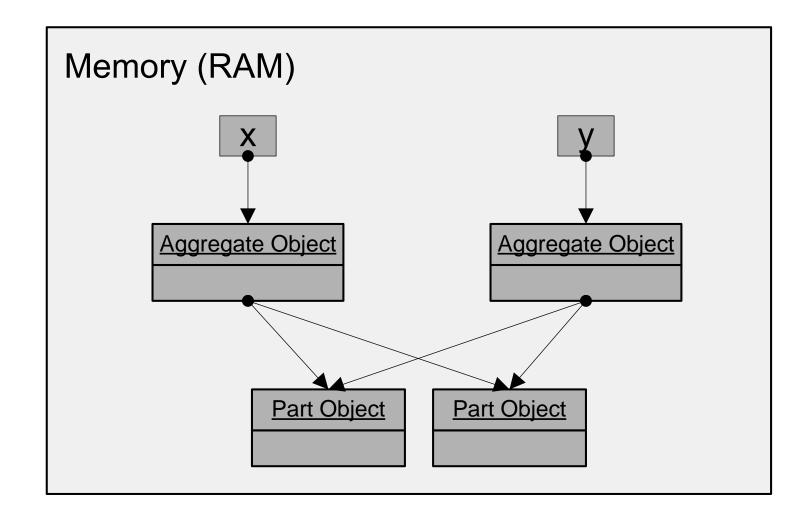
- Format: getNameOfAttribute()
- For aggregates:
 - Returns reference to the aggregate part
- For compositions:
 - Remember composition rule (from slide 3): "Client holds no reference to aggregate part"
 - Creates a copy/clone of the aggregate part and returns a reference to the copy/clone

Copy or Reference?

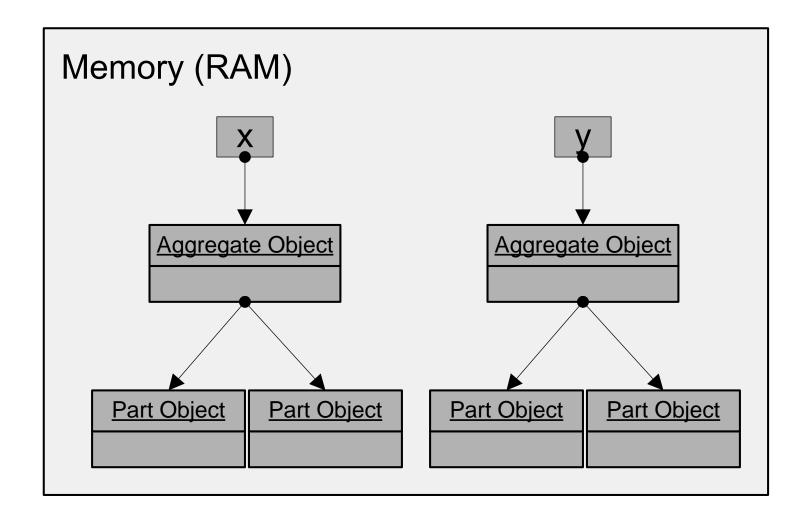
- Call accessor twice, save returned references
- Compare the references' memory addresses using the == relational operator
- If true \rightarrow aggregation returned references
- If false \rightarrow composition returned copies


Mutators

- Format: set*NameOfAttribute(newInstance)*
- Changes where the attribute's reference points
 - Changes to the attribute's state handled by mutators in the attribute's class
- For aggregates:
 - Reference to the aggregate part is changed to point to the passed instance (i.e., the method parameter)
- For compositions:
 - None (Aggregate part's reference cannot change!)

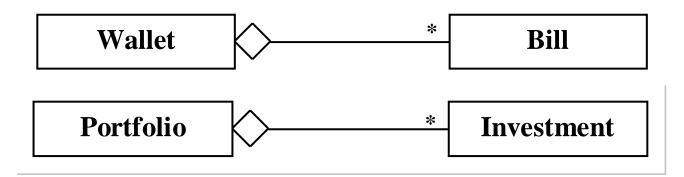

Aggregate Cloning

- Aggregate attributes could also be aggregates
- When making a copy of an aggregate, how should the attributes be copied?
 - Aliasing: copy references only
 - Shallow copy: create copies of attribute objects
 - Deep copy: create copies of attribute objects, and create copies of the copies' attribute objects


Aliasing

Shallow Copy

Deep Copy



Collections

Some examples and/or figures were borrowed (with permission) from slides prepared by Prof. H. Roumani

What is a Collection

• Aggregate class with variable multiplicity

- Each instance of the aggregate class is called an element in the collection
 - Wallet is a collection of Bill elements
 - Portfolio is a collection of Investment elements
- Chapter 8: collections in type.lib
- Chapter 10: Java's collection framework

Creation

- Constructor creates an empty collection
- Collection capacity can be static (i.e., fixed) or dynamic (i.e., able to change)
- Fixed capacity
 - Easy for Java (and implementer) to manage memory
 - Collection can become full during run-time
- Dynamic capacity
 - Collection capacity can grow (or shrink) during run-time to efficiently accommodate various number of elements

Adding Elements

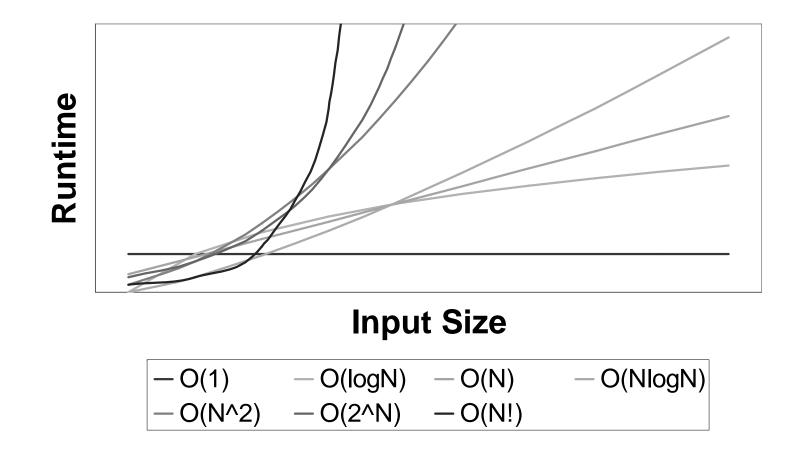
- Method typically called add(*element*)
- Two possible problems can occur:
 - Collection is full (only with fixed capacity collections)
 - Element already present (some collections require all elements to be unique)
- Return type:
 - boolean: if addition can fail (due to full capacity or duplicate element)
 - void: if no possible problems

Indexed Traversal

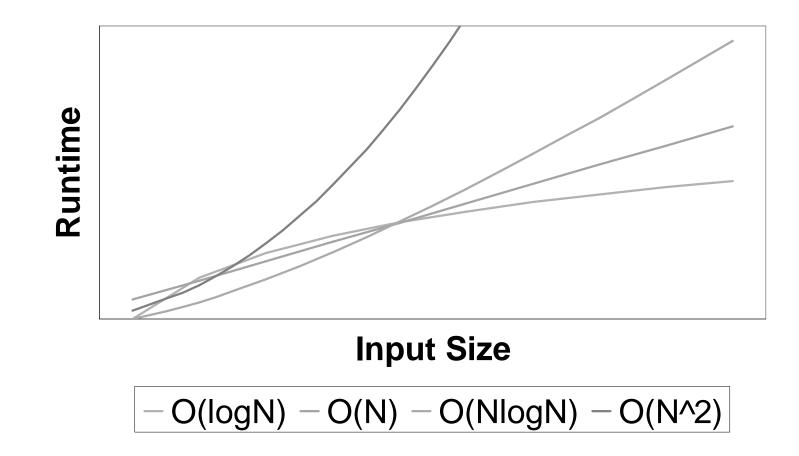
- Possible if elements are indexed (0..size-1)
- Use method size() to determine max index
- Use method get(*index*), getElement(*index*), etc. to access element at given index
- Access elements "randomly"

Chained Traversal

- Elements accessible only in some pre-defined order
- Use method getFirst() to get the "first" element
- Use method getNext() to access subsequent elements in the collection
- End of collection \rightarrow getNext() returns null
- Can call getFirst() to return to the first element


Searching

- Common task: search for element(s) in a collection matching a target value
- Time to search for an element can vary based on:
 - Number of elements (determined by user)
 - Search technique (determined by programmer)
- How to choose a search algorithm?
- How does the search time grow with respect to increases in number of elements?


Runtime Complexity

- In the worst-case condition, how does the runtime of an algorithm grow with respect to the size of input (N)?
- Expressed in Big-O notation
 - O(1): the runtime varies by a constant factor
 - $\mathrm{O}(N)$: the runtime grows proportionally with N
 - $O(2^N)$: the runtime grows exponentially with N
 - •

Runtime Complexity

Runtime Complexity

Search Complexity

- Task: search for all matching elements
- Elements in no order
 - Requires linear search (i.e., check each element)
 - Best case: O(N)
- Elements in sorted order
 - Can use binary search
 - Pick the middle element
 - Target element bigger or smaller than middle element?
 - If bigger look at "top" half; if smaller look at "bottom" half
 - Best case: O(logN)
- Element values are indexed
 - Access any element directly
 - Best case: O(1)