
Some examples and/or figures were borrowed (with permission) 
from slides prepared by Prof. H. Roumani

Java By Abstraction: Chapter 7

Software Development



2CSE1020 W09 (Steven C.)

Development Process

• Design
• Implementation
• Testing
• Deployment



3CSE1020 W09 (Steven C.)

Design

• How the system will work
• Algorithm to generate the desired output
• Outline delegation of tasks
• Identify needed classes, methods, and attributes
• Determine how data will be exchanged amongst 

the various components



4CSE1020 W09 (Steven C.)

Implementation

• Involves coding…
• Existing classes can be used/extended to meet 

requirements
• New class created from scratch

• …and unit testing
• Functionality of classes are tested individually to 

ensure adherence to specifications
• (more details shortly)



5CSE1020 W09 (Steven C.)

(Integration) Testing

• Evaluate entire system as a whole
• Ensure components work well together
• Ensure components exchange data correctly

• Data formatting is especially important
• Involves meeting specifications, not just “for looks”



6CSE1020 W09 (Steven C.)

Deployment

• Deployment
• Package, deliver, and install system for customer

• Operation
• Ensure functionality at the customer’s location
• Train customer’s employees to operate system

• Maintenance
• Develop and deploy updates, patches, and fixes
• Perform upgrades



7CSE1020 W09 (Steven C.)

Waterfall Model

REQUIREMENTS 

DESIGN 

IMPLEMENTATION

TESTING 

DEPLOYMENT 



8CSE1020 W09 (Steven C.)

Shortcomings of the Waterfall Model

• Detection and handling of risks is delayed until 
the testing phase

• Risks include:
• Interoperability problems amongst components
• Requirement changes
• Incorrect assumptions



9CSE1020 W09 (Steven C.)

Iterative Methodology

DEPLOYSTART 

DESIGN 

REQUIREMENTS TESTING 

IMPLEMENTATION

EVALUATION 



10CSE1020 W09 (Steven C.)

Iterative Methodology Models

• Agile software development

• Extreme Programming (XP)

• (IBM) Rational Unified Process (RUP)

• SCRUM development



Some examples and/or figures were borrowed (with permission) 
from slides prepared by Prof. H. Roumani

Design Techniques



12CSE1020 W09 (Steven C.)

Unified Modelling Language (UML)

• Visual language used to describe characteristics 
and interactions of software components

• Formal language with rules but also flexible

• UML tools convert UML diagrams ↔ code



13CSE1020 W09 (Steven C.)

UML Diagrams

 

+ getNumerator(): long
+ setFraction(Fraction) 
+ toString(): String 

+ isQuoted: boolean
+ separator: char 

type::lib::Fraction

+ isQuoted: boolean
+ separator: char 



14CSE1020 W09 (Steven C.)

UML Relationships

B Dependency: A uses B 

Aggregation: A has a BB 

 

A 

 

A 

 

A 

Inheritance: A is a B B 



Some examples and/or figures were borrowed (with permission) 
from slides prepared by Prof. H. Roumani

Software Testing



16CSE1020 W09 (Steven C.)

Formal Proofs

• Written proofs using:
• Discrete mathematics

• Axioms
• Theorems

• Covered in MATH1019 and MATH1090



17CSE1020 W09 (Steven C.)

Test Vector

• Collection of test cases
• Test cases should include:

• Values within range
• Values outside range
• Boundary cases

• Each case should hold meaning and test a 
specific aspect of the component

• Cover as many execution paths as possible
• Employ regression testing



18CSE1020 W09 (Steven C.)

Test Harness

• Program to automate the testing of a component
• Takes unit test input
• Compares component output to oracle’s output
• Oracle:

• Separate mechanism, component, or algorithm
• Provides the “correct answer”

• Can you give an example of a test harness?



19CSE1020 W09 (Steven C.)

Test Harness

HARNESS

file 

random 

loop 

input 

SUITE 

algorithm

verifica-
tion

approxi-
mation

file 

ORACLE 

UNIT 



20CSE1020 W09 (Steven C.)

Debugging

• Determine and fix source of error
• Techniques:

• Examine code (tedious, error-prone)
• Print statements to output intermediate steps/values
• Examine error messages for source details
• Use debuggers


