
Some examples and/or figures were borrowed (with permission)
from slides prepared by Prof. H. Roumani

Java By Abstraction: Chapter 6

Strings

2CSE1020 W09 (Steven C.)

What are Strings?

• Sequence of characters

• Non-primitive (i.e., object) data type

• Read-only objects (recreated but not modified)
• Any “changes” are actually new objects initialized

with the new value

3CSE1020 W09 (Steven C.)

The Masquerade

• Remember, Strings are objects
• Strings can be initialized like objects:

String name = new String(“My name is Steven”);
• But Strings can also be initialized like primitives:

String name = “My name is Steven”;
• The compiler replace the “short form” with the

proper (i.e., object) initialization statement

4CSE1020 W09 (Steven C.)

Concatenation

• Strings can be joined using “+” operator
String s = “CSE” + “1020”;

• Again, this is just a short form

• Compiler replaces with proper form
String s = new String(“CSE1020”);

5CSE1020 W09 (Steven C.)

Character Indexing

• Indicate position within a String
• Numbered from 0 to length-1

String: CSE 1020

Index: 01234567

6CSE1020 W09 (Steven C.)

Accessors

• Section 6.2.2
• Noteworthy methods:

• length(): returns the number of characters in String
• charAt(index): returns the char at the passed index
• substring(start, end): returns a new String containing

only the characters at the index from start (inclusive)
to end (exclusive)

7CSE1020 W09 (Steven C.)

Transformers

• Section 6.2.3
• Noteworthy methods:

• trim(): returns a new String with the same characters,
but without leading and trailing whitespace

String text = “ extra space “;
output.print(text.trim()); // outputs “extra space”

8CSE1020 W09 (Steven C.)

Comparators

• Section 6.2.4
• Noteworthy methods:

• equals(otherString): returns true iff the two Strings are
identical (see also equalsIgnoreCase(otherString))

• indexOf(otherString): returns the index of the first
occurrence of otherString in the String object;
returns -1 if not found

• compareTo(otherString): (see next slide)

9CSE1020 W09 (Steven C.)

s1.compareTo(s2) (in general)

• Assume s1 and s2 are both in lowercase
(or both uppercase)

• Assume lexicographic (i.e., dictionary) ordering

• If s1 and s2 are identical, return value == 0
• If s1 comes before s2, return value < 0
• If s1 comes after s2, return value > 0

10CSE1020 W09 (Steven C.)

s1.compareTo(s2) (more specifically)

• Case 1: s1 and s2 are identical
• Return: 0

• Case 2: one String starts with the other
(e.g., s1 = “Planet”, s2 = “Pl”)
• Return: s1.length() – s2.length()

• Case 3: there is a miss-match between s1 and s2 at some
index, k (e.g., s1 = “Planet”, s2 = “Pluto”)
• Return: s1.charAt(k) – s2.charAt(k) // subtract Unicode values

11CSE1020 W09 (Steven C.)

Strings ↔ Numbers

• Numbers Strings:
• “” + number

• Strings Numbers:
• “Wrapper” classes contain methods for handling

primitive types (e.g., Integer, Double)
• int num = Integer.parseInt(“514”);
• double num = Double.parseDouble(“3.141592”);

12CSE1020 W09 (Steven C.)

Application: Character Frequency

• How many times does a character appear in a
String?

• Use charAt() method to access characters

• Use a for loop to iterate over the string length

• Increment a count if the character is found

13CSE1020 W09 (Steven C.)

Exercise: CharCounter

• Task:
• Frequency of user-defined character is outputted

• Code:
• (Presented in lecture)
• See section 6.3.1

14CSE1020 W09 (Steven C.)

Application: Fixed-Size Codes

• Lookup value in one String, replace with value
in a second String at same index
• Use parallel strings for lookup

•0 1 2 3 4 5 6
•Sun Mon Tue Wed Thu Fri Sat

• Use indexOf() method to find index of value in
“top” String

• Use substring() method to retrieve value from
“bottom” String

15CSE1020 W09 (Steven C.)

Exercise: DigitSpeller

• Task:
• Occurrences of digits in input are written as words
• E.g., “Hello 2 you” returns “two”

• Code:
• (Presented in lecture)
• See section 6.3.4

16CSE1020 W09 (Steven C.)

StringBuffer

• Strings cannot be modified (no mutator methods)
• Repeatedly creating new Strings is inefficient
• StringBuffer allows char sequence modification
• StringBuffer mutator methods:

• append: adds parameter to the end of the sequence
• insert: adds parameter to this sequence at specified

index; existing characters are shifted to the right
• delete: removes characters between two indexes;

existing characters are shifted to the left

