
Some examples and/or figures were borrowed (with permission)
from slides prepared by Prof. H. Roumani

Java By Abstraction: Chapter 4

Using Objects

2CSE1020 W09 (Steven C.)

What is an Object

• An object has: attributes, methods, an identity, and a state
• A class has: attributes and methods
• Objects with the same attributes and methods can be

replaced with a class that abstracts them:

A
bstract

Instantiate

3CSE1020 W09 (Steven C.)

Objects vs. Primitives

• Primitives
• Contains a single value

• Objects
• Can contain numerous attributes
• Each attribute has its own value
• Attributes can represent primitives or other objects

4CSE1020 W09 (Steven C.)

Object Reference

• Variables of non-primitive types are called
references

• References hold the memory address of an
object, but not the object itself

• Because it is a variable, a references can be
changed to point to a different object in memory

• However, the memory address cannot be directly
manipulated

5CSE1020 W09 (Steven C.)

Object Constructor

• Use the keyword new to instantiate an object
(i.e., reserve memory for it)

• Invoke the class’s constructor to initialize the
object’s state (i.e., the value of its attributes)

• Constructors look like methods, but…
• Have no return type (not even void)
• Have the same name as their class

• Multiple constructors could exist for a single
class, providing differing initializations

6CSE1020 W09 (Steven C.)

Object Creation in Memory

1. Locate the class

7CSE1020 W09 (Steven C.)

Object Creation in Memory

2. Declare a reference

+f : Fraction
Main Class

+numerator : long
+denominator : long

Fraction Class

8CSE1020 W09 (Steven C.)

Object Creation in Memory

3. Instantiate the class

+f : Fraction
Main Class

+numerator : long
+denominator : long

Fraction Class

numerator : long = 3
denominator : long = 5

Object : Fraction

9CSE1020 W09 (Steven C.)

Object Creation in Memory

4. Assign a reference

+f : Fraction
Main Class

+numerator : long
+denominator : long

Fraction Class

numerator : long = 3
denominator : long = 5

Object : Fraction

10CSE1020 W09 (Steven C.)

Using Objects (Example)

…
int width = 8;
int height = 5;
Rectangle3 r = new Rectangle3();
r.width = width;
r.height = height;
int rArea = r.getArea();
System.out.println(rArea);
…

11CSE1020 W09 (Steven C.)

Multiple References to an Object

• A reference can only point to one object at a time
• Multiple references can point to the same object
• Example

Fraction f1;
f1 = new Fraction(3, 5);
Fraction f2;
f2 = f1; // both point to the same object

• State changes via one reference affects the object
• Object changes are visible via any reference to it

12CSE1020 W09 (Steven C.)

Multiple References to an Object

13CSE1020 W09 (Steven C.)

Object Equality

• Comparison using == operator only check
memory address, not object state

• Comparison of object state requires use of the
equals() method

• Example
• objRef1.equals(objRef2);

• Definition of object equality defined by class
implementer (in API)

14CSE1020 W09 (Steven C.)

Object Equality

15CSE1020 W09 (Steven C.)

Obligatory Methods

• The equals() method
• Determines equality
• Default: compare memory address

• The toString() method
• Returns textual representation of the object
• Default: object type, followed by memory address
• Implicitly called by print methods

• Default behaviour are typically overridden by
the class implementer

16CSE1020 W09 (Steven C.)

Accessor and Mutator Methods

• Accessor methods
• Allow clients to determine an object’s state
• Names typically begin with “get”
• E.g., getNumerator(), getDenominator()

• Mutator methods
• Allow clients to change an object’s state
• Names typically begin with “set”
• E.g., setFraction(long numerator, long denominator)

17CSE1020 W09 (Steven C.)

Attribute Privacy

• Facilitated by using accessor and mutator methods
• Enhances encapsulation
• Provides means to check and enforce pre-conditions and post-

conditions

• Use of accessor and mutator
• Read/write access with contracts

• Use of a accessor only
• Read only access with contracts

• Use of a mutator only
• Write only access with contracts

18CSE1020 W09 (Steven C.)

Classes with Static Features

• Stored in the class’s memory region, not object’s
• Changes in value affect all objects of that class
• Example:

• Because isQuoted is static, setting it to false affects both objects
Fraction f = new Fraction(3, 2);
f.isQuoted = true;
Fraction g = new Fraction(5, 2);
g.isQuoted = false;
System.out.println(f.toProperString());
System.out.println(g.toProperString());

• Should be invoked on the class, not the object

19CSE1020 W09 (Steven C.)

Object Deletion (…sort of)

• In Java, the programmer cannot remove an object from
memory

• Can orphan an object by removing referent to it
• Example

Fraction x = new Fraction(3, 5);
Fraction y = x;
y = new Fraction(4, 7);
x = null;

• Orphaned objects are cleared via garbage collection

