
Some examples and/or figures were borrowed (with permission)
from slides prepared by Prof. H. Roumani

Java By Abstraction: Chapter 2

Programming by Delegation

2CSE1020 W09 (Steven C.)

Object Oriented Programming (OOP)

• Encapsulate real-world entities in a class
• Class usually represents a noun (i.e., a thing)
• One-word class names begin with a capital letter

• E.g., First, Rectangle3, Check01

• Multi-word names begin each word with capital
• E.g., FirstApp, PrintStream

• Instances of a class are called objects

3CSE1020 W09 (Steven C.)

Object Oriented Programming (OOP)

• Characteristics are represented as attributes
• Attribute also usually represents a noun

• One-word attribute name all in lowercase
• E.g., width, height

• Multi-word names begin second and subsequent
words with capital

• E.g., countPositive, cardNumber

• Constant attribute name all in UPPER_CASE with
words separated with an underscore

4CSE1020 W09 (Steven C.)

Object Oriented Programming (OOP)

• Operations are represented as methods
• Method usually represents a verb (i.e., an action)
• Always followed by parentheses (even if empty)
• Additional data (called parameters) included in

parentheses if necessary
• One-word method name all in lowercase

• E.g., equals(anotherObject), round()

• Multi-word names begin second and subsequent
words with capital

• E.g., scale(x, y, w, h), getArea()

5CSE1020 W09 (Steven C.)

Accessing Attributes

• Assume r represents a Rectangle3 object
• Attributes of type int: width, height

• Attribute access syntax
• objectIdentifier.attributeName

• Examples
• int currentWidth = r.width;
• int newWidth = 8;

r.width = newWidth ;

6CSE1020 W09 (Steven C.)

Invoking a Method

• Assume r represents a Rectangle3 object

• Method getArea() returns area as int

• Method invokation syntax
• objectIdentifier.methodName(parameters)

• Examples
• int area = r.getArea();

7CSE1020 W09 (Steven C.)

Instantiating Objects

• Use the keyword new to instantiate (i.e., create)
an object

• Invoke the class’s constructor method to
initialize the object’s state

• Object declaration and instantiation syntax
• ClassName identifier = new ClassName();

• Example
• Rectangle3 r = new Rectangle3();

8CSE1020 W09 (Steven C.)

Using Objects (Example)

…
int width = 8;
int height = 5;
Rectangle3 r = new Rectangle3();
r.width = width;
r.height = height;
int rArea = r.getArea();
System.out.println(rArea);
…

9CSE1020 W09 (Steven C.)

Utility Classes

• Uses Procedural Paradigm
• Performs computation, not data storage

• Represent computations, not objects
• E.g., Math class
• All methods and attributes are static

• Can be called without first declaring an object
• E.g., Math.PI, Math.E, Math.round(), Math.log()

• Non-utility classes may also have some static
methods and/or attributes

10CSE1020 W09 (Steven C.)

Main Classes

• Can be run from the command-line
• Starting point for a Java application
• Coordinates use of helper classes

(i.e., components)

11CSE1020 W09 (Steven C.)

Delegation by Abstraction

• Determine what needs to be done
• Which helper class can accomplish each task
• Abstract the details of how each is accomplished
• Bread analogy in text (p. 56)

• Difficult to grow, harvest, and mill wheat, to bake
into bread

• Instead, coordinate with a farmer, miller, and baker

12CSE1020 W09 (Steven C.)

The Client View

• The client develops the main class
• Understands the big picture, the purpose of the

application
• Knows what each component does but not how it

does it
• The implementer develops a component

• Focuses only on the inner details of one component
• Client and Implementer share info on a

need-to-know basis

13CSE1020 W09 (Steven C.)

The Client View

CLIENT

Interface
Interface In

te
rf

ac
e

IMPLEMENTER

Interface

14CSE1020 W09 (Steven C.)

Access Modifiers

• Hide implementation details from clients
• Apply to classes, methods, and/or attributes

• Features with public access appear in the API and are
accessible to clients

• Features with private access are not in the API and are not
accessible to clients

• Features with protected access are in the API, but are
accessible only to other implementers

• Features with no specified access are not in the API and are
available only classes in the same package (i.e., directory)

15CSE1020 W09 (Steven C.)

Contracts

• Guarantee between client and implementer
• Precondition

• What the client must satisfy
• Postcondition

• What the implementer must deliver
• Liability

• Pre. is satisfied and post. is satisfied Good
• Pre. is satisfied and post. is not satisfied Implementer at fault
• Pre. is not satisfied Client at fault
• If no precondition stated, then client need not satisfy anything

16CSE1020 W09 (Steven C.)

Contracts in Java

• Methods in the Java specify contracts as follows:
• Precondition is always true unless stated otherwise
• Postcondition is specified under Returns and Throws

• Example:

double squareRoot(double x)
Returns the square root of the given argument.

Parameters:

x - an argument.
Returns:

the positive square root of x.
Throws:

an exception if x < 0.

17CSE1020 W09 (Steven C.)

TYPE and Java Standard Library

• Contains over 3000
components

• Class details contained in
TYPE API and Java API

• Organized into packages
and subpackages

• Examples
• type.lib.Rectangle3
• java.util.Scanner

java.awt Provides support for drawing graphics.
AWT = Abstract Windowing Toolkit

java.beans Provide support for Java Beans.
java.io Provides support for file and other I/O operations.

java.lang Provides the fundamental Java classes.
This package is auto-imported by the compiler.

java.math Provides support for arbitrary-precision arithmetic
java.net Provides support for network access.

java.rmi Provides support for RMI.
RMI = Remote Method Invocation

java.security Provides support for the security framework.

java.sql
Provides support for databases access over JDBC
JDBC = Java Database Connectivity,
SQL = Structured Query Language

java.text Provides formatting for text, dates, and numbers.

java.util Miscellaneous utility classes including JCF.
JCF = Java Collection Framework

javax.crypto Provides support for cryptographic operations.

javax.servlet Provides support for servlet and JSP development.
JSP = Java Server Pages

javax.swing Provides support for GUI development.
GUI = Graphical User Interface

javax.xml Provides support for XML processing.
XML = eXtensible Markup Language

18CSE1020 W09 (Steven C.)

Importing Packages and Classes

• Indicate use of Java Standard Library (other than
java.lang.*) or other Java library (e.g., TYPE)

• Import one or all classes in a subpackage (using *)
• Import statement syntax

• import package.subpackage.class; // imports a single class
• import package.subpackage.*; // imports all classes in subpackage

• Example
• import java.util.Scanner; // imports only the Scanner class
• import type.lib.*; // imports all classes in the lib subpackage

19CSE1020 W09 (Steven C.)

Ready-Made Input and Output

• import java.util.Scanner; // place at top of file
• Captures user input from the terminal
• Parses lines, words, and primitive data types

• import java.io.PrintStream; // place at top of file
• Outputs text to the terminal
• Formats output

• Field width
• Specify number of decimal places

20CSE1020 W09 (Steven C.)

Parsing Input

• Scanner input = new Scanner(System.in);
• Tokenizes input (i.e., separates using whitespace)

• nextInt()
• Parses next token as int

• nextDouble()
• Parses next token as double

• nextLong()
• nextFloat()

• next()
• Returns the next word

• nextLine()
• Returns the next line

• nextBoolean()
• nextChar()

21CSE1020 W09 (Steven C.)

Formatting Output

• PrintStream output = new PrintStream(System.out);
• print(variable) or print(“string literal”)

• Outputs text to the terminal
• println(variable) or println(“string literal”)

• Outputs text to the terminal and appends a newline
character

• printf(“format string”, variable...)
• Outputs formatted text to the terminal

22CSE1020 W09 (Steven C.)

Formatting Output

• Format string syntax (see p. 111)
• %[flags][width][.precision]conversion
• flag: , or 0
• width: field width (text: left aligned; digits: right aligned)
• precision: number of decimals
• conversion: d (integer), f (real), s (text), or n (newline)

• Can also include non-format text
• Example

• double x = 15.753;
output.printf(“Cost: %.2f”, x); // outputs Cost: 15.75

23CSE1020 W09 (Steven C.)

Program Template

• See page 70

• Template for all of your 1020 Java programs

• Memorize it

24CSE1020 W09 (Steven C.)

Java Quick Reference Guide

www.cse.yorku.ca/course/1020/docs/Java_QuickRef.pdf

