
PROLOG NOTES #2 

Structure Joining 
append([],L,L). 

append([H|T1],L2,[H|T3]):-append(T1,T2,T3). 

 

?- append([a,b], [c,d], X). 

X=[a,b,c,d]. 

?- append(Y, [c,d], [a,b,c,d]). 

Y=[a,b]. 

Order of Predicates Matters 
Not Good, will recurse forever: 

isList([A|B]):-isList(B). 

isList([]). 

 

OK: 

isList([]). 

isList([A|B]):-isList(B). 

Accumulators 
 Ordinary Recursion: counting/result computation is done in back substitution, recusrsion usually 

works on a smaller input. 

 Accumulator-Based Recursion: counting/result computation is done first and then passed to 

recursion. 

Factorial Example 

Ordinary Recursive: 

factr(0,1). 

factr(N,F):- J is N-1,factr(J,F1), F is N*F1. 

Accumulators: 

facti(N,F):-facti(0,1,N,F). 

facti(N,F,N,F). 

facti(I,Fi,N,F):- J is I+1, Fj is J*Fi, facti(J,Fj,N,F). 



Length of List Example 

Ordinary Recursive 

listlen([],0). 

listlen([H|T],N) :- listlen(T,Nt), N is Nt+1. 

Accumulators 

listlen(L,N) :- lenacc(L,0,N). 

lenacc([],A,A). 

lenacc([H|T],A,N) :- Ax is A+1, lenacc(T,Ax,N). 

 

For initial argument [a,b,c,d] the arguments to lenacc as subsequently: 

lenacc([a,b,c,d],0,N) 

lenacc([b,c,d],1,N) 

lenacc([c,d],2,N) 

lenacc([d],3,N) 

lenacc([],4,N)  

At this pont lenacc([],A,A) is matched, therefore N is unified with 4 and goal is satisfied. 

Fibonacci Example 

Ordinary Recursive: 

fib(0,1). 

fib(1,1). 

fib(N,F):-N1 is N-1, N2 is N-2,fib(N1,F1), fib(N2,F2), F is F1+F2. 

 

?- fib(10,X). 

X = 89 . 

?- fib(Y,89). 

ERROR: is/2: Arguments are not sufficiently instantiated 

^  Exception: (8) _L136 is _G241-1 ? creep 

?- fib(X,Y). 

X = 0, 

Y = 1 ; 

X = 1, 

Y = 1 ; 

ERROR: is/2: Arguments are not sufficiently instantiated 

^  Exception: (8) _L136 is _G235-1 ? 

Accumulators: 

fibt(0,1). 

fibt(1,1). 

fibt(N,F):-fibt(2,1,1,N,F). 



fibt(N,Last2,Last1,N,F):-F is Last1+Last2. 

fibt(I,Last2,Last1,N,F):- 

 J is I+1, 

 Fi is Last1+Last2, 

 fibt(J,Last1,Fi,N,F). 

 

?- fib(10,X). 

X = 89 . 

?- fibt(X,89). 

X = 10 . 

?- fibt(X,Y). 

X = 0, 

Y = 1 ; 

X = 1, 

Y = 1 ; 

X = 2, 

Y = 2 ; 

X = 3, 

Y = 3 ; 

X = 4, 

Y = 5 ; 

X = 5, 

Y = 8 ; 

X = 6, 

Y = 13 . 

CUT ! 
Advantages: 

a) Faster program execution – CUT = commit i.e. this is it, don’t try alternatives if you backtrack to 

CUT. For example: 

foo :-a,b,c,!,d,e,f. 

if a,b,c succeed then we are commited to what d,e,f do – if they fail foo fails. 

b) Less memory consumption – the information about alternatives is not remembered. 

Disadvantages: 

a) Programs are much harder to follow. 

b) Some alternative results will not be found. 

Common Use Cases: 

a) Commit to the results obtained so far. 

b) Fail the predicate totally – use: !,fail. 

c) Terminate alternative solutions. 



d) Prevent infinite loops – backtracking (even one that is not explicit and thus hard to anticipate) 

from the only solution may throw a predicate into an infinite loop. 

Example of Commit 

 

sum_to(1,1):-!. 

sum_to(N,Res):- N1 is N-1, sum_to(N1,Res1), Res is Res1+N. 

 

Better yet, catch all grounding conditions to be more robust (behave well on bad input): 

 

sum_to(N,1):-N=<1,!. 

sum_to(N,Res):- N1 is N-1, sum_to(N1,Res1), Res is Res1+N. 

Fail the Predicate Totally Example 

If sth2 is true then don’t try anything else: 

sth1 :-sth2,!,fail. 

 

For example: 

sibling(A,B):-A=B,!,fail. 

sibling(A,B):-parentOf(A,P),parentOf(B,P). 

Prevention of Infinite Loops 

The below program for do_sth would go into an infinite loop if the re was no CUT in sum_to: 

 

do_sth :-sum_to(3,X),sth_bad. 

sth_bad:-fail. 

Example of Efficiency 

The predicate \+X will succeed if X fails.  

In the below example B will be evaluated twice if it fails: 

A:-B,C. 

A:\+B,D. 

 

In the below example B will be evaluated only once: 

A:-B,!,C. 

A:-D. 

Problems with CUT 

No alternatives: 

append([],L,L):-!. 

Append([H|T1],B,[H|T2]):-append(T1,B,T2). 

?-append(X,Y,[a,b,c]). 

X=[], Y=[a,b,c]. 

 



Using CUT to Handle Exceptions 

Exceptions do not commit: 

number_of_parents(adam,0). 

number_of_parents(eve,0). 

number_of_parents(_,2). 

?- number_of_parents(dam,2). 

True. 

 

Exceptions do commit: 

number_of_parents(adam,N):-!,N=0. 

number_of_parents(eve,N):-!,N=0. 

number_of_parents(_,2). 

?- number_of_parents(dam,2). 

No. 

 

 

Not 
The NOT predicate is built in but it is logically equivalent to: 

not(P):- call(P), !, fail. 

not(P). 

 

The uninstantiated variables do not get instantiated inside NOT. Not acts as an existential quantifier thus 

if not instantiated, then X inside NOT is not the same as the X outside of it: 

?- not(not(member(X,[a,b,c]))),write(X). 

_G421 

true. 

 


