
PROLOG NOTES #6

Syntax
How elements of a language can be put together

Term
Building block of Prolog programs

 constant = names a specific object or relationship

o number

o atom = starts with lower-case letter, can use or start with signs, or enclosed in ‘ ‘

?- and :- are also atoms

 variable = things we do not want or cannot at the time of writing the program

start with upper-case letter or _ ; single _ represents an anonymous variable i.e. variable whose

name will never be used, it saves the need to invent unique variable names for single-use, every

time _ is used it represents a different variable

 structure = “compound term”, single object consisting of components; components can be

made up of other components; structures are made of a functor constant followed by

components enclosed in parenthesis; think of functor as data type

ex. owns(john, book(wuthering_heights, author(bronte, emily)))

structures can participate in question answering ex. ?- owns(john, book(A,B)).

predicates and facts are structures!

Trees can represent structures - the functor is the root and the components are leaves:

 +

+(a,*(b,c)) = |\

a *

 |\

 b c

 NOTE: You can create a directed acyclic graph DAG ex. f(X,g(X,a))

Rule
head :- body Where head is a term and body is made of conjunction of goals which are terms.

Fact
Rule with no body is a fact.

Predicate
The functor constant of the head of a rule plus the arity (number of components)

Two predicates with the same constant but different arity are different.

Lists
Ordered sequence of elements, any practical structures can be represented with lists

It can be an empty lists [] or something with head and tail and tail is a list (including an empty list).

[a] is .(a,[])

[a,b,c] is .(a,.(b,.(c,[]))) .-.-.-[]

 | | |

 a b c

Lists are manipulated by splitting the head and tail:

[a,b,c]  [a|[b,c]]

[a,b,c]  [a,b|[c]]

[a,b,c]  [a,b,c|[]]

NOTE: [white|horse] is legal and not a list, also can be represented as .(white|horse)

Unification
try to make two thing equal if possible, represented by infix =

If X and Y are not instantiated then X=Y will co-refer to the same thing.

Important Built-In Predicates
=:= same number

=/= different number

// integer quotient

mod integer division reminder

NOTE: arithmetic is not performed in Prolog until “is” is used and all values on the right-hand side must

be known at this time.

write(X) write something on the terminal

read(X) read a term from the terminal (must be followed by .)

consult(Fn) load and compilea Prolog program

true do succeed

fail do fail

var(X) is X an uninstantiated variable?

nonvar(X) is X an instantiated variable?

atom(X) is X an atom?

number(X) is X an integer number?

atomic(X) is X an atom or a number?

asserta(C) dynamically add a clause at the beginning of the program

assertz(C) dynamically add a clause at the end of the program

retract(C) dynamically remove a clausefrom the program

clause(H,B) find a matching clause in the current program with head H and body B

listing(C) find all clauses with a given predicate symbol

functor(T,F,A) retrieve the functor F and arity A from structure T

arg(N,T,A) retriever Nth argument A for structure T

X=..L turn a structure into a list ex. a(b,c)=..[a,b,c]

 convert a goal into a list of functor and arguments

repeat repeat and pause

, AND for goals

; OR for goals

call(X) execute/resolve X

\+ NOT

== test if variables are coreferring

Logic Programming and Prolog

Logic programming = stating what is true and asking for conclusions;

declarative; no control over execution is used/required.

Prolog can be both logic programming and procedural language, depending on

the chosen principles/standards. To keep Prolog as logic programming as

possible, keep non-logical parts (built-in library predicates and ! for example) in

helper predicates and use the helper predicates to build logic programs, avoid

state testing predicates (for example var()), avoid assert/retract predicates.

