What is Symbolic Computing

Thank you to Prof. Roosen-Runge
for the slides on
background and history.

Edited by Gunnar Gotshalks

What is Symbolic Computing

* Computing on
— non-numbers
— non-character-string

— use atoms instead of numbers and strings

* Building structures from atoms

— lists, trees, terms, clauses, propositions, etc.

Edited by Gunnar Gotshalks

Symbols are Used to Describe

* Symbolic programming

— programming that uses descriptions and creates
descriptions

* Reflexive application of symbolic programming
— compute a program from a description

— often used to create special interactive programming
environments (IDEs)

Edited by Gunnar Gotshalks

Operational Programming

* Basic, Pascal, C, Java, etc.
— require describing how something is computed
— program describes a sequence of operations.

— not describing what is computed

j<1

while j < max {
print item(j)
j<+

Edited by Gunnar Gotshalks

Denotational programming

* Describes what to compute
(apply print) : item

- Denotational program has a mathematical meaning

» uses mathematical objects such as functions,
relations, etc.

— Program or segment of a program denotes or names
that object.

Edited by Gunnar Gotshalks

Denotation & Logic

* Denotational program describes its result in terms
of logical properties and relationships.

* Examples of denotational languages:
- Lisp
- Prolog
- APL
- ML

Edited by Gunnar Gotshalks

Timeless vs. State-change

e Denotational semantics uses mathematical
language
— Timeless propositions

— Nothing changes
» x =x + 1 is false

* Operational semantics uses

— language of states (memory) and change-of-state
» x <= x + 1 describes a change in state of x
» =in C/C++,Java, and Fortran

» = in Pascal and Eiffel

Edited by Gunnar Gotshalks

* Denotation = object described by an expression or
referred to by a name.

* In denotational programming languages, the object
is mathematical

— number
— abstract symbol
— function

— equation or proposition

Edited by Gunnar Gotshalks

* Concept of denotation comes from the theories of
how logic connects to mathematics worked out by
Bertrand Russell & Albert North Whitehead at the
turn of the 20'th century (famous book: Principia
Mathematica)

* Based on ideas from German logician Gottlob
Frege

Invented the concepts of the predicate calculus and
quantifiers: (for all, there exists)

Edited by Gunnar Gotshalks

Programs are both descriptions and prescriptions

x=y+3

o interpreted operationally ()
program = instructions to underlying machine
as to what to do

Add 3 to y and store result in x

o Interpreted denotationally ()
program = description of mathematical
relationship between input and output

When executed, value of x valueof y + 3

Edited by Gunnar Gotshalks

palindrome (String x) : boolean

int half < x.length div 2
i:0..half

x.charAt (1) # x.charAt (x.length - 1-1))
false

true

palindrome

Edited by Gunnar Gotshalks

[/ Result = (x =)
match (String x, String y) : boolean

// Result is the string reversal of x.
reverse (String x) : String

palindrome (String x) : boolean
match (x, reverse (x))
panlindrome

Edited by Gunnar Gotshalks

* Functional (Lisp-like)

— palindrome (x) is x =rev (x))

» rev ((nil) is nil

» rev (w ~ x) is append (rev (x), w)

* Declarative (Prolog-like)

— palindrome (x) if rev (x, x)

> rev ([1,[1)

» rev (w A x, y) if rev (x, z)
append (z, w, y)

Edited by Gunnar Gotshalks

Denotational Semantics

* Can languages like C, Java be given a denotational
semantics?

* Yes, but the result is very complicated.

— The denotations (mathematical objects) have to
model the computer's memory and changes of state.

— This is taken up in greater detail in CSE 3341.

Edited by Gunnar Gotshalks

In a Nutshell

* We investigate symbolic computation by looking at
programming which

— manipulates symbols rather than just characters and
numbers

— uses symbolic descriptions to specify what is to be
computed, rather than how to compute

Edited by Gunnar Gotshalks

General Goals

Understand important ideas and historical context
in computer science

Extend understanding of programming concepts
and vocabulary

Learn to adapt to a new mindsets -
actually two new mindsets!

— pure functional programming - Lisp

— declarative programming - Prolog

Edited by Gunnar Gotshalks

