What is Symbolic Computing

Thank you to Prof. Roosen-Runge
for the slides on
background and history.
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What is Symbolic Computing

* Computing on
— non-numbers
— non-character-string

— use atoms instead of numbers and strings

* Building structures from atoms

— lists, trees, terms, clauses, propositions, etc.
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Symbols are Used to Describe

* Symbolic programming

— programming that uses descriptions and creates
descriptions

* Reflexive application of symbolic programming
— compute a program from a description

— often used to create special interactive programming
environments (IDEs)
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Operational Programming

* Basic, Pascal, C, Java, etc.
— require describing how something is computed
— program describes a sequence of operations.

— not describing what is computed

j<1

while j < max {
print item(j)
j<+
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Denotational programming

* Describes what to compute
(apply print) : item

- Denotational program has a mathematical meaning

» uses mathematical objects such as functions,
relations, etc.

— Program or segment of a program denotes or names
that object.
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Denotation & Logic

* Denotational program describes its result in terms
of logical properties and relationships.

* Examples of denotational languages:
- Lisp
- Prolog
- APL
- ML
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Timeless vs. State-change

e Denotational semantics uses mathematical
language
— Timeless propositions

— Nothing changes
» x =x + 1 is false

* Operational semantics uses

— language of states (memory) and change-of-state
» x <= x + 1 describes a change in state of x
» =in C/C++,Java, and Fortran

» = in Pascal and Eiffel
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* Denotation = object described by an expression or
referred to by a name.

* In denotational programming languages, the object
is mathematical

— number
— abstract symbol
— function

— equation or proposition
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* Concept of denotation comes from the theories of
how logic connects to mathematics worked out by
Bertrand Russell & Albert North Whitehead at the
turn of the 20'th century (famous book: Principia
Mathematica)

* Based on ideas from German logician Gottlob
Frege

Invented the concepts of the predicate calculus and
quantifiers: (for all, there exists)
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Programs are both descriptions and prescriptions

x=y+3

o interpreted operationally ( )
program = instructions to underlying machine
as to what to do

Add 3 to y and store result in x

o Interpreted denotationally ( )
program = description of mathematical
relationship between input and output

When executed, value of x valueof y + 3
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palindrome ( String x ) : boolean

int half < x.length div 2
i:0..half

x.charAt (1) # x.charAt ( x.length - 1-1))
false

true

palindrome
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[/ Result = (x =)
match ( String x, String y ) : boolean

// Result is the string reversal of x.
reverse ( String x ) : String

palindrome ( String x ) : boolean
match ( x, reverse (x) )
panlindrome
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* Functional (Lisp-like)

— palindrome (x) is x =rev (x) )

» rev ((nil ) is nil

» rev (w ~ x ) is append (rev (x), w )

* Declarative (Prolog-like)

— palindrome (x) if rev (x, x)

> rev ([1,[1)

» rev (w A x, y) if rev (x, z)
append (z, w, y )
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Denotational Semantics

* Can languages like C, Java be given a denotational
semantics?

* Yes, but the result is very complicated.

— The denotations (mathematical objects) have to
model the computer's memory and changes of state.

— This is taken up in greater detail in CSE 3341.
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In a Nutshell

* We investigate symbolic computation by looking at
programming which

— manipulates symbols rather than just characters and
numbers

— uses symbolic descriptions to specify what is to be
computed, rather than how to compute
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General Goals

Understand important ideas and historical context
in computer science

Extend understanding of programming concepts
and vocabulary

Learn to adapt to a new mindsets -
actually two new mindsets!

— pure functional programming - Lisp

— declarative programming - Prolog
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