
LISP NOTES #2

Links
Free Microsoft Software -
http://www.microsoft.com/education/facultyconnection/software/softwarelist.aspx?c1=en-us&c2=0

Defining Functions
Syntax: (DEFUN function_name list_of_parameters body_block1 ... body_block_last)
DEFUN is a special function, it associates the function definition with the symbol function_name
The defined function is used just like any other LISP function, the actual parameters are plugged into the formal
parameters listed in list_of_parameters, then the blocks body_block1 ... body_block_last are evaluated and the
result of body_block_last is returned from the function
Examples:

(defun addthree (x) (+ x 3))
ADDTHREE

(addthree 5)
8
(addthree (* 4 (1- 7)))
27

Function wrappers – user defined functions that modify the appearance of other existing functions, ex. accepting
a different order of parameters

(defun xcons (ls hd) (cons hd ls))

New functions can be used inside (composed) other functions

(defun listoflists (x) (list (list (car x)) (list (card x))))

Variables declared in the list of function parameters are “bound” and any changes to their value are effective
within the function body i.e. they have a locals scope.
Variables not declared in the list of function parameters are “free” and any changes to their value are effective
even outside the function body, under normal circumstances (no apply or funcall function invocations in effect)
they are treated as global variables, i.e. they have a global scope.
 NOTE: Free variables may have a dynamic scope if apply or funcall function invocations are in effect. In dynamic
scoping the free variable refers to the most recent variable created with the same name. This is discouraged and
more about this later.

TIP: Free variables should be done with big care – avoid or know what is going on. Use free variables to
communicate between functions ex. for counters and timers etc. It is a good practice to put * before and after
free symbols that are meant to be global, ex. *my_global_var*

http://www.microsoft.com/education/facultyconnection/software/softwarelist.aspx?c1=en-us&c2=0

Logical values in LISP
Nil represents false, any non-nil value represents TRUE. For convienience atom t is done as a special symbol – its
value cannot be changed, it is used to clearly represent TRUE and it evaluates to t (self). Likewise atom nil is
special its value cannot be changed, it is used to clearly represent FALSE and it evaluates to nil (self).

LISP Predicates
Functions that test for some properties of objects and answer FALSE (i.e. nil) or TRUE (i.e. non-nil, usually t).
Predicates have a letter p at the end of their name.

(atom x) = test if x is an atom
(listp x) = test if x is a list
(null x) = test if x is nil
(consp x) = test if x is a cons cell
(equal x y) = test if x and y are equivalent
(eq x y) = test if x and y point to the same object
(eql x y) = test if x and y point to the same object or equivalent atoms
(number x) = test if x is a number
(zerop x) = test if x is 0
(oddp x) = test if x is an odd number
(evenp x) = test if x is an even number
(typep x ‘number) = test if x is of type ‘number, the other types are ‘list, ‘atom, ‘symbol etc.
(member el ls) = test if element el is in the list ls, return the sublist of ls starting at the occurrence of el
(< x y) = test if x < y
(> x y) = test if x > y

(member ‘b ‘(a b c))
(b c)
(member ‘b ‘(a (b) c))
Nil

Custom-defined predicate to test id the first element of a list is an atom:

(defun car_atomp (x) (atom (car x)))
CAR_ATOMP
(car_atomp ‘(a b c))
T
(car_atomp ’a)
ERROR, we will protect against this later

Conditional Execution
IF – simple if … then … else …
(if test_block block_if_true block_if_false)

Ex. define a function to add an element to a list if it is not there:

(defun addjoin (el ls) (if (member el ls) ls (cons el ls))
ADDJOIN

COND – any required (one and up) conditional blocks, the processing exits when the first positive block is found,
otherwise returns nil
(cond
 (cond1 block11 … block1n)
 …
 (condm blockm1 … blockmk)
)

Ex. define ADDJOIN using COND, if the second parameter is an empty list then suppress appending

(defun addjoin (el ls)
 (cond
 ((member el ls) l)
 ((null ls) ls)
 (t (cons el ls))
)
)
ADDJOIN

Logical operators
Functions that perform logical operations on their arguments.
(not x) = negate x
(and c1 … cn) = test if all (c1 and … and cn) conditions are TRUE, the evaluation is “lazy” i.e. the if a FALSE
condition is encountered then the operator stops (no point going further) and answers FALSE (i.e. nil), else return
what cn evaluates to.
(or c1 … cn) = test if any (c1 or … or cn) conditions are TRUE, the evaluation is “lazy” i.e. the if a TRUE
condition is encountered then the operator stops (no point going further) and answers TRUE (i.e. t) , else return
what cn evaluates to.

Ex. Define a predicate for “nice number” that are between 4 and 11

(defun nicep (x) (and (< 4 x) (< x 11)))
NICEP

Ex. Define a predicate for testing for a number or nil

(defun numnilp (x) (or (null x) (numberp x)))
NUMNILP

TRICK: the following are equivalend due to the “lazy” nature or AND

(cond ((listp lls) (number (car ls)))) = (and (listp lls) (number (car ls)))

Iteration and Recursion

Iteration should not be used for functional programming and thus is not permitted in this course. You must use
recursion perform processing equivalent to iteration.

Recursion occurs when a function calls (directly or indirectly) itself from within its body.

Three elements of successful recursive solution:

1) Recursive Relation i.e. explain why and how the function needs to invoke itself
2) Grounding Condition i.e. when the function should stop invoking itself
3) Progress towards the goal i.e. make sure that if the function invokes itself then the parameter passed to

the recursive invocation is closer to the grounding condition i.e. the function invokes itself with a smaller
and smaller argument if the grounding condition is an empty list.

Example:

(defun recursive-length (ls)
 (if (null ls)
 0
 (1+ (recursive-length (cdr ls)))
)
)

(recursive-length ‘(a b c))
 3

Example:

(defun recursive-member (el ls)
 (cond
 ((null ls) nil)
 ((equal el (car ls)) ls)
 (t (recursive-member el (cdr ls)))
)
)

(recursive-member ‘a ‘(b c a d))
 (a d)

Example:

(defun recursive-member (el ls)
 (and
 ls
 (or
 (equal el (car ls))
 (recursive-member el (cdr ls))
)
)
)

(recursive-member ‘a ‘(b c a d))
 T

Example:

(defun factorial (n)
 (cond
 ((zerop n) 1)
 (t (* n (factorial (1- n))))
)
)

 (factorial 500)

12201368259911100687012387854230469262535743428031928421924135883858453731538819
97605496447502203281863013616477148203584163378722078177200480785205159329285477
90757193933060377296085908627042917454788242491272634430567017327076946106280231
04526442188787894657547771498634943677810376442740338273653974713864778784954384
89595537537990423241061271326984327745715546309977202781014561081188373709531016
35632443298702956389662891165897476957208792692887128178007026517450776841071962
43903943225364226052349458501299185715012487069615681416253590566934238130088562
49246891564126775654481886506593847951775360894005745238940335798476363944905313
06232374906644504882466507594673586207463792518420045936969298102226397195259719
09452178233317569345815085523328207628200234026269078983424517120062077146409794
56116127629145951237229913340169552363850942885592018727433795173014586357570828
35578015873543276888868012039988238470215146760544540766353598417443048012893831
38968816394874696588175045069263653381750554781286400000000000000000000000000000
00
000000000000000

Note: Be careful to always catch the grounding condition. Does (factorial 10.5) work?

Types of Recursion
 Single Recursion – one effective occurrence of self-calling within a function body; can be disguised i.e.

self-calling may appear in multiple places within the function body but only one recursive call can
happen along any branch of the code; at most linear complexity for functions that make progress
towards the grounding condition with regards to the size of the argument

 Tail Recursion – a special case of single recursion; the self-call is the last statement within the function
body; compilers are often equipped to recognize it and it is converted to a loop at compile time hence
very efficient

 Multiple Recursion – the function may call itself several times within its body; can be very expensive
computationally ex. exponential if the function calls itself twice

NOTE: recursion adds some overhead to “save” local variables since new set is needed in the recursive call.

Example (disguised single recursion)

(defun recursive-substitution (in out struct)
 (cond
 ((equal out struct) in)
 ((atom struct) struct)
 (t (cons
 (recursive-substitution in out (car struct))
 (recursive-substitution in out (cdr struct)))
)
)
)

(recursive-substitution ‘(a b) ‘(c d) ‘(a b (c d (c d))))
 (a b (c d (a b)))

Example (exponential complexity multiple recursion)

(defun fibonacci (n)
 (cond
 ((or (equal n 1) (equal n 2)) 1)
 (t (+ (fibonacci (- n 1)) (fibonacci (- n 2))))
)
)

NOTE: simple and elegant but expensive, try (fibonacci 100) !!!

Accumulators and Auxiliary Functions
Sometimes it is possible to keep some partial results in a variable and pass it to the recursive call only to amend
it, then output these partial results at the grounding case level since at this point the entire argument is
considered processed; think of it as an accumulator for your result that can be output once there is nothing more
to do.

Example

(defun reverse-in-out (todo done)
 (cond
 ((null todo) done) ; nothing more to do – just output what we have so far
 (t (reverse-in-out (cdr todo) (cons (car todo) done))) ; add to partial results and reverse a smaller list
)
)

(reverse-in-out ‘(a b c d) ‘())
 (d c b a)

Now, do we need to concern the end-user of the function that there is some empty initial argument that needs
to be passed? No, we can hide this fact – we will define a “proper” reverse function that will call reverse-in-out.
The reverse-in-out function is an auxiliary function for the reverse function.

(defun reverse-easy (todo)
 (reverse-in-out todo nil))

(reverse-easy ‘(a b c d))
 (d c b a)

