
DO-1© Gunnar Gotshalks

Defining
Binary & Unary

Operators

DO-2© Gunnar Gotshalks

English-French Dictionary

◊ Can use compound terms to represent a dictionary
> list is a structure that contains an entry followed

by the rest of the list
> For example
 list (entry (book , livre) ,
 list (entry (man , homme) ,
 list (entry (apple , pomme) ,
 empty)))

◊ Illustrates how compound terms could be used

DO-3© Gunnar Gotshalks

English-French Dictionary – 2

◊ Define a custom member function for the list structure

 member (X , list (X , _)).
 member (X , list (_ , L)) :- member (X , L).

DO-4© Gunnar Gotshalks

◊ Here is a predicate that defines the correspondence
between English and French words.

 englishFrench1(English , French) :-
 member (entry (English , French) ,
 list (entry (book , livre) ,
 list (entry (man , homme) ,
 list (entry (apple , pomme) ,
 empty))))

English-French Dictionary – 3

DO-5© Gunnar Gotshalks

English-French Using Standard Lists

◊ We could use the standard list structure.
> The standard member predicate
 member (X , [X | _]).
 member (X , [_ | R]) :- member (X , R).
> The translation predicate
 englishFrench2 (English , French) :-
 member (entry (English , French),
 [entry (book , livre) ,
 entry (man , homme),
 entry (apple , pomme)]).

DO-6© Gunnar Gotshalks

English-French Different Dictionaries

◊ We could change the rule to use a dictionary that holds
the list structure

> It is easier to understand the rule

 englishFrench3 (English , French , Name) :-
 dictionary (Name , Dictionary) ,
 member (entry (English , French) , Dictionary)

> where we have a fact defining the dictionary.
It is easier to change the dictionary and to use it
in other contexts

DO-7© Gunnar Gotshalks

Different Dictionaries

 dictionary(Name, D) :-
 Name = d1 , D = [entry (book , livre) ,
 entry (man , homme) ,
 entry (apple , pomme)] ;

 Name = d2 , D = [entry (book , koob) ,
 entry (man , nam) ,
 entry (apple , elppa)] .

DO-8© Gunnar Gotshalks

Use an infix member function

◊ The previous definition is not a natural way of representing
the member function

◊ A more "natural" use of member is as an infix operator, as
in the following

> Use the letter e to represent the mathematical
symbol belongs to (Œ)

 englishFrench4 (English , French) :-
 entry(English,French) e [entry (book , livre) ,
 entry (man , homme) ,
 entry (apple , pomme)
] .

DO-9© Gunnar Gotshalks

Use an infix member function

◊ The infix operator e can be defined as follows
 :- op (500 , xfy , [e]).

> Later slides describe the meaning of the op
predicate

◊ e is a new operator (predicate) so we must create rules
that define what it means

> Since e is defined to be infix its rules use infix
syntax

> Note the similarity with the definition of the
member predicate

 X e [X | _].
 X e [_ | L] :- X e L .

DO-10© Gunnar Gotshalks

Use an infix member function – 3

◊ We can chose of the name of the operator
 :- op(500, xfy, [belongs_to]).

 X belongs_to [X | _].
X belongs_to [_ | L] :- X belongs_to L .

 englishFrench5 (English , French) :-
 entry (English , French)
 belongs_to
 [entry (book , livre) ,
 entry (man , homme) ,
 entry (apple , pomme)

].

DO-11© Gunnar Gotshalks

Bird – Mammal example

◊ Define some properties of animals
> Use syntax that is more similar to natural

language

 :- op(100, xfx, [has , isa , flies]).

 Animal has hair :- Animal isa mammal.
 Animal has feathers :- Animal isa bird.

 owl isa bird.
 cat isa mammal.
 dog isa mammal.

DO-12© Gunnar Gotshalks

Example with mulitple precedence

◊ Plays and "and" are at different precedence levels.

◊ Define
 :- op (300 , xfx , plays).
 :- op (200 , xfy , and).

◊ Example use
 Term1 = jimmy plays football and squash.
 Term2 = susan plays tennis and basketball

 and volleyball.

DO-13© Gunnar Gotshalks

Example with mulitple precedence – 2

◊ What is the internal stucture when using operators as in
the following?
 Term1 = jimmy plays football and squash.
 Term2 = susan plays tennis and basketball

 and volleyball.

◊ Recall that everything within Prolog is represented with
compound terms, so we have ...
 Term1 = plays (jimmy , and (football , squash))
 Term2 = plays (susan , and (tennis ,

 and (basketball ,
 volleyball)))

DO-14© Gunnar Gotshalks

Example with mulitple precedence – 3

◊ DeMorgan's law – make predicate syntax look more
similar to standard mathematics
 :- op(800, xfx, <==>).

:- op(700, xfy, v).
:- op(600, xfy, &).
:- op(500, fy, ~).

◊ Consider representing the following
 ~ (A & B) <==> ~A v ~B . Uses the above

◊ In standard Prolog, this could be represented as
 equivalence (not (and (A , B)) ,

 or (not (A) , not (B))).
> or, directly use the internal form

 '<==>' ('~' ('&' (A , B)) , 'v ' ('~' (A) , '~' (B))).

DO-15© Gunnar Gotshalks

Why have operators?

◊ Introduce operators to improve the readbility of programs
» Can be infix, prefix or postfix

◊ Operator definitions do not define any action, they only
introduce new notation
» Operators are functors that hold together the

components of compound terms or structures

◊ A programmer can define their own operators
» with their own precedence and associativity
» programmer defined operators can be merged in

precedence and associativity with the Prolog
builtin operators

DO-16© Gunnar Gotshalks

op Predicate

◊ Define one or more operators with a given precedence,
associativity
 op (precedence ,

 associativity ,
 symbol or symbol list
)

◊ Pages 107..108 give a listing of the predicates defining the
"standard" operators in Prolog

DO-17© Gunnar Gotshalks

op Precedence component

◊ Precedence
» between 0 and 1200 – the precedence class
» lower class numbers have higher priority
» higher priority implies do first
» Example
 3 + 4 * 5 = 3 + (4 * 5)
» * (precedence class 400) has lower number than +

(precedence class 500) so times is done first
» Can always use () to force the order of using

operators
> Useful when you do not know relative

precedence or to make it clear to the reader

DO-18© Gunnar Gotshalks

Expression Precedence Class

◊ Precedence class of base operand is 0.

◊ Precedence class of expression with operator, oper, is
the precedence class of oper

DO-19© Gunnar Gotshalks

op Associativity component

◊ Associativity
» Defines which operands belong to which operator

when several operators are used in sequence
» For example in the following
 A oper B

> is oper a unary operator with operand A
is oper a unary operator with operand B
is oper a binary operator with operands A and B

◊ Can define oper as unary operator with ...
 op (100 , fy , oper). -- unary prefix

op (100 , fx , oper). -- unary prefix
op (100 , xf , oper). -- unary postfix
op (100 , yf , oper). -- unary postfix

DO-20© Gunnar Gotshalks

Unary prefix associativity

◊ f y
 oper oper a . -- legal syntax

> oper a has equal precedence class with oper
> y says operand of oper can have lower or equal

precedence class

◊ f x
 oper oper a. -- illegal syntax

> oper a has equal precedence class with oper
> x says operand of oper must have lower

precedence class
> must use () as follows

 oper (oper a) .

DO-21© Gunnar Gotshalks

Unary postfix associativity

◊ y f
 a oper oper . -- legal syntax

> a oper has equal precedence class with oper
> y says operand of oper can have lower or equal

class

◊ x f
 a oper oper . -- illegal syntax

> a oper has equal precedence class with oper
> x says operand of oper must have lower

precedence class
> must use ()

 (a oper) oper .

DO-22© Gunnar Gotshalks

op Associativity component – 2

◊ Given
 A oper B

◊ Can define oper as a binary operator with ...
 op (100 , xfy , oper). -- right associative
 op (100 , yfx , oper). -- left associative
 op (100 , xfx , oper). -- evaluate both operands first
 op (100 , yfy , oper). -- not defined, ambiguous

DO-23© Gunnar Gotshalks

Right associative operator

◊ Define
 :- op (100 , xfy , op1).

◊ Test
> C becomes the full structure, L shows the

substructure
 C = 1 op1 2 op1 3 op1 4 , C =.. L.

◊ Result
 C = 1 op1 2 op1 3 op1 4
 L = [op1 , 1 , 2 op1 3 op1 4]

> Left most op1 is evaluated last
> Apply recursively

DO-24© Gunnar Gotshalks

Left associative operator

◊ Define
 :- op (200 , yfx , op2).

◊ Test
> C becomes the full structure, L shows the

substructure
 C = 1 op2 2 op2 3 op2 4 , C =.. L.

◊ Result
 C = 1 op2 2 op2 3 op2 4
 L = [op2 , 1 op2 2 op2 3 , 4]

> Right most op2 is evaluated last
> Apply recursively

DO-25© Gunnar Gotshalks

Evaluate both operands first

◊ Define
 :- op (300 , xfx , op3).

◊ Test
 C = 1 op3 2 op3 3 op3 4 , C =.. L.

◊ Result
 C = 1 op3 2
 « Syntax Error - check operator precedences » op3

3 op3 4 , C =.. L.
> Error because the middle op3 expects its operands

to its left and right to have lower precedence class
but they have equal precedence class

DO-26© Gunnar Gotshalks

Evaluate both operands first – 2

◊ Define
 :- op (300 , xfx , op3).

◊ Test – with different operators to left and right of op3
 C = 1 op1 2 op3 3 op2 4 , C =.. L.

◊ Result
 C = 1 op1 2 op3 3 op2 4
 L = [op3 , 1 op1 2 , 3 op2 4]

> op1 and op2 are done first (higher priority, lower
precedence class)

> op3 is done last

