
RES-1© Gunnar Gotshalks

Prolog and the
Resolution Method

The Logical Basis of Prolog

Chapter 10

RES-2© Gunnar Gotshalks

Background

◊ Prolog is based on the resolution proof method
developed by Robinson in 1966.

◊ Complete proof system with only one rule.
» If something can be proven from a set of logical

formulae, the method finds it.

◊ Correct
» Only theorems will be proven, nothing else.

◊ Proof by contradiction
» Add negation of a purported theorem to a body of

axioms and previous proven theorems
» Show resulting system is contradictory

RES-3© Gunnar Gotshalks

Propositional case

◊ Have a collection of clauses in conjunctive normal form
» Each clause is a set of propositions connected

with or
» Propositions can be negated (use not ~)
» set of clauses implicitly anded together

◊ Example
 A or B
 C or D or ~ E
 F

 ==>
 (A or B) and (C or D or ~ E) and F

RES-4© Gunnar Gotshalks

Propositional case – 2

◊ What happens if there is a contradiction in the set of
clauses

◊ Example – only one clause
 P

◊ Add ~P to the set of clauses
 P

~ P
 ==>

 P and ~ P
 ==>
[] -- null the empty clause is false

◊ Think of P and ~P canceling each other out of existence

RES-5© Gunnar Gotshalks

◊ Given the clause
 Q or ~R

◊ and the clause
 R or P

◊ then resolving the two clauses is the following
 (Q or ~R) and (R or P)

 ==>
P or Q -- new clause that can be added to the set

◊ Combining two clauses with a positive proposition and its
negation (called literals) leads to adding a new clause to
the set of clauses consisting of all the literals in both
parent clauses except for the literals resolved on

Resolution rule

RES-6© Gunnar Gotshalks

Resolution method

◊ Combine clauses using resolution to find the empty clause
» Implying one or more of the clauses in the set is

false.

◊ Given the clauses
 1 P

2 ~P or Q
3 ~ Q or ~R
4 R

◊ Can resolve as follows
 5 P and (~P or Q) ==> Q resolve 1 and 2
 6 Q and (~Q or ~R) ==> ~R resolve 5 and 3
 7 ~R and R ==> [] resolve 6 and 4

RES-7© Gunnar Gotshalks

Resolution method – 2

◊ Using resolution to prove a theorem
> 1 Given the non contradictory clauses

 – assuming original set of clauses is true
 P

~P or Q
~ Q or ~R

> 2 Add the negation of the theorem, ~R , to be
proven true

 R
– Clause set now contains a contradiction

> 3 Find [] – showing that a contradiction exits,
(see previous slide)

> 4 implies R is false, hence the theorem, ~ R, is
true

RES-8© Gunnar Gotshalks

Resolution method – 3

◊ In general resolution leads to longer and longer clauses
» Length 2 & length 2 --> length 2 (see earlier slide) –

no shorter
» Length 3 & length 2 –> length 3 (longer)
» In general length p & length q --> length p + q - 2

◊ Non trivial to find the sequence of resolution rule
applications needed to find []

◊ But at least there is only one rule to consider, which has
helped automated theorem proving

RES-9© Gunnar Gotshalks

If A then B –!Propositional case

◊ Example 1: In prolog we write
 A :- B.

◊ Which in logic is
 A if B ==> if B then A
 ==> A or ~B

◊ Example 2
 A :- B , C , D.
 A if B and C and D
 ==> if B and C and D then A
 ==> A or ~B or ~C or ~D

RES-10© Gunnar Gotshalks

If A then B –!Propositional case – 2

◊ Example 2
 if B and C and D then P and Q and R
 ==> ~B or ~C or ~D or (P and Q and R)
 ==> (~B or ~C or ~D) or (P and Q and R)
 ==> ~B or ~C or ~D or P

 ~B or ~C or ~D or Q
 ~B or ~C or ~D or R

> In Prolog
 P :- B , C , D.

Q :- B , C , D.
R :- B , C , D.

RES-11© Gunnar Gotshalks

If A then B –!Propositional case – 4

◊ Example 3
 if B and C and D then P or Q or R
 ==> ~B or ~C or ~D or P or Q or R

> No single statement in Prolog for such an if ...
then ..., choose one or more of the following
depending upon the expected queries and
database

 P :- B , C , D , ~Q , ~R
Q :- B , C , D , ~P , ~R
R :- B , C , D , ~P , ~Q

RES-12© Gunnar Gotshalks

If A then B –!Propositional case – 5

◊ Example 4
 if the_moon_is_made_of_green_cheese
 then pigs_can_fly
 ==>
 ~ the_moon_is_made_of_green_cheese or

pigs_can_fly

> In Prolog
 pigs_can_fly :-

 the_moon_is_made_of_green_cheese

RES-13© Gunnar Gotshalks

Prolog facts – propositional case

◊ Prolog facts are just themselves.
 A

P
the_moon_is_made_of_green_cheese
pigs_can_fly

◊ Comes from
 if true then pigs_can_fly
 ==> pigs_can_fly or ~true

==> pigs_can_fly or false
==> pigs_can_fly

◊ In Prolog
 pigs_can_fly :- true :- true is implied,

 so it is not written

RES-14© Gunnar Gotshalks

Query

◊ A query "A and B and C", when negated is equivalent to
 if A and B and C then false

> insert the negation into the database, expecting
to find a contradiction

◊ Translates to
 false or ~A or ~B or ~C
 ==> ~A or ~B or ~C

RES-15© Gunnar Gotshalks

Is it true pigs_fly?

◊ Add the negated question to the database
 If pigs_fly then false
 ==> ~pigs_fly or false ==> ~pigs_fly

◊ If the database contains
 pigs_fly

◊ Then resolution obtains [], the contradiction, so the
negated query is false, so the query is true.

◊ Prolog distinguishes between facts and queries depending
upon the mode in which it is being used. In (re)consult
mode we are entering facts. Otherwise we are entering
queries.

RES-16© Gunnar Gotshalks

Predicate Calculus

◊ Step up to predicate calculus as resolution is not
interesting at the propositional level.

◊ We add
» the universal quantifier – for all x – " x
» the existential quantifier – there exists an x – $ x

RES-17© Gunnar Gotshalks

Forall x – " x "x

◊ The universal quantifier is used in expressions such as the
following
 " x • P (x)

> For all x it is the case that P(x) is true
 " x • lovesBarney (x)

> For all x it is the case that lovesBarney(x) is true

◊ The use of variables in Prolog takes the place of universal
quantification – a variable implies universal quantification
 P (X)

> For all X it is the case that P(X) is true
 lovesBarney (X)

> For all x it is the case that lovesBarney(X) is true

RES-18© Gunnar Gotshalks

Exists x – $ x x

◊ The existential quantifier is used in expressions such as the
following
 $ x • P(x)

> There exists an x such that P(x) is true
 $ x • lovesBarney (x)

> There exists an x such that lovesBarney(x) is true
◊ Constants in Prolog take the place of existential quantification

 – a constant implies existential quantification
– The constant is a value of x that satisfies existence

 P (a) a is an instance such that P(a) is
true

 lovesBarney (elliot) elliot is an instance such that
 lovesBarney (elliot) is true

RES-19© Gunnar Gotshalks

Nested quantification

◊ $ x $ y • sisterOf (x , y)
> There exists an x such that there exists a y such

that x is the sister of y
> In Prolog introduce two constants

 sister (mary , eliza)

◊ $ x " y • sisterOf (x , y)
> There exists an x such that forall y it is the case

that x is the sister of y
 sister (leila , Y)

> One constant for all values of Y

RES-20© Gunnar Gotshalks

Nested quantification – 2

◊ " x $ y • sisterOf (x , y)
> Forall x there exists a y such that x is the sister

of y
> The value of y depends upon which X is chosen,

so Y becomes a function of X
 sisterOf (X , f (X))

◊ " x " y • sisterOf (x , y)
> Forall x and forall y it is the case that x is the

sister of y
 sisterOf (X , Y)

> Two independent variables

RES-21© Gunnar Gotshalks

Nested quantification – 3

◊ " x " y $ z • P (z)
> Forall x and for all y there exists a z such that

P(z) is true
> The value of z depends upon both x and y, and

so becomes a function of X and Y
 P (g (X , Y))

◊ " x $ y " z $ w • P (x , y , z , w)
> Forall x there exists a y such that forall z there

exists a w such that P(x,y,z,w) is true
> The value of y depends upon x, while the value

of w depends upon both x and z
 P (X , h (X) , Z , g (X , Z))

RES-22© Gunnar Gotshalks

Skolemization

◊ Removing quantifiers by introducing variables and
constants is called skolemization

◊ Removal of $ gives us functions and constants – functions
with no arguments.
» Functions in Prolog are called structures or

compound terms

◊ Removal of " gives us variables

◊ Each predicate is called a literal

RES-23© Gunnar Gotshalks

Herbrand universe

◊ The transitive closure of the constants and functions is
called the Herbrand universe – in general it is infinite

◊ A Prolog database defines predicates over the Herbrand
universe determined by the database

RES-24© Gunnar Gotshalks

Herbrand universe – Determination

◊ It is the union of all contants and the recursive application
of functions to constants
» Level 0 – Base level – is the set of constants
» Level 1 constants are obtained by the substitution

of level 0 constants for all the variables in the
functions in all possible patterns

» Level 2 constants are obtained by the substitution
of level 0 and level 1 constants for all the variables
in the functions in all possible patterns

» Level n constants are obtained by the substitution
of all level 0..n-1 constants for all variables in the
functions in all possible patterns

RES-25© Gunnar Gotshalks

Back to Resolution

◊ Predicate calculus case is similar to the propositional case
in that resolution combines two clauses where two literals
cancel each other

◊ With variables and constants we use pattern matching to
find the most general unifier (binding list for variables)
between two literals

◊ The unifier is applied to all the literals in the two clauses
being resolved

◊ All the literals, except for the two which were unified, in
both clauses are combined with “or”

◊ The new clause is added to the set of clauses
◊ When [] is found, the bindings in the path back to the

query give the answer to the query

RES-26© Gunnar Gotshalks

Example

◊ Given the following clauses in the database
 person (bob).
 ~person (X) or mortal (X).

 forall X • if person (X) then mortal (X)

◊ Lets make a query asking if bob is a person

◊ The query adds the following to the database
 ~person (bob).

◊ Resolution with the first clause is immediate with no
unification required

◊ The empty clause is obtained
So ~person(bob) is false, therefore person(bob) is true

RES-27© Gunnar Gotshalks

Example – 2

◊ Given the following clauses in the database
 person (bob).
 ~person (X) or mortal (X).

 forall X • if person (X) then mortal (X)

◊ Lets make a query asking if bob is mortal

◊ The query adds the following to the database
 ~mortal (bob).

◊ Resolution with the second clause gives with X_1 = bob
(renaming is required!)
 ~person (bob).

◊ Resolution with the first clause gives []
So ~mortal(bob) is false, therefore mortal(bob) is true

RES-28© Gunnar Gotshalks

Example – 3

◊ Given the following clauses in the database
 person (bob).

~person (X) or mortal (X).

◊ Lets make a query asking does a mortal exits
The query adds the following to the database
 ~mortal (X). ~ ($ x • mortal (x)) -- negated query

◊ Resolution with the second clause gives with X_1 = X
(renaming is required!)
 ~person (X_1).

◊ Resolution with the first clause gives [] with X_1 = bob
So ~mortal(X) is false, therefore mortal(X) is true with
X = bob

RES-29© Gunnar Gotshalks

Example – 4

◊ Given the following clauses in the database
 person (bob).

~person (X) or mortal (X).

◊ Lets make a query asking is alice mortal
 ~mortal (alice).

◊ Resolution fails with the first clause but succeeds with the
second clause gives with X_1 = alice
 ~person (alice).

◊ Resolution with the first clause and second clause fails,
searching the database is exhausted without finding []

◊ So ~mortal(alice) is true, therefore mortal(alice) is false

RES-30© Gunnar Gotshalks

Example – 4 cont'd

◊ Actually all that the previous query determined is that
~mortal(alice) is consistent with the database and
resolution was unable to obtain a contradiction

Prolog searches are based on a
closed universe

Truth is relative to the database

RES-31© Gunnar Gotshalks

Factoring

◊ General resolution permits unifying several literals at once
by factoring

> unifying two literals within the same clause - if
they are of the same "sign", both positive, P(...)
or P(...), or both negative, ~P(...) or ~P(...)

◊ Why factor?
> Gives shorter clauses, making it easier to find

the empty clause

RES-32© Gunnar Gotshalks

Factoring – 2

◊ For example given the following clause
 loves (X , bob) or loves (mary , Y)

◊ We can factor (obtain the common instances) by unifying
the two loves literals
 loves (mary , bob) X = mary and Y = bob

◊ The factored clause is implied by the unfactored clause as
it represents a subset of the cases that make the
unfactored clause true

> Can be added to the database without
contradiction

RES-33© Gunnar Gotshalks

Creating a database

◊ A large part of the work in creating a database is to
convert general predicate calculus statements into
conjunctive normal form.

◊ Much of Chapter 10 of Clocksin & Mellish describes how
this can be done.

RES-34© Gunnar Gotshalks

Horn clauses

◊ Clauses where the consequent is a single literal.
> For example, X is the consequent in

 If A and B and C then X

◊ Horn clauses are important because, while resolution is
complete, it usually leads to getting longer and longer
clauses while finding contradiction means getting the
empty clause
» Need to get shorter clauses or at least contain the

growth in clauses
» General resolution can lead to exponential growth

in both
> clause size
> size of the set of clauses

RES-35© Gunnar Gotshalks

Horn clauses – 2

◊ Horn clauses have the property
> Every clause has at most one positive literal

(un-negaged) and zero or more negative literals
 person (bob).

mortal (X) ~person (X)
binTree (t (D , L , R))
 ~treeData (D) ~binTree (L) ~binTree (R).

◊ Facts are clauses with one positive literal and no negated
literals, resolving with facts reduces the length of clauses

◊ Horn clauses can represent anything we can compute
» Any database and theorem that can be proven

within first order predicate calculus can be
translated into Horn clauses

