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Cut & Not
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Cut – !

◊ Cut, the name of the ! operator, is used to
» Not waste time on useless choices

1 Know that if current rule fails then trying further
rules for the current predicate is useless

– If you got this far then, this is the only rule to try
2 Stop after one solution – do not look for

alternate solutions
3 If you continue with this predicate, you will not

find a solution
– Use of  ! , fail

◊ Cut commits to all choices made when entering parent
goal – the predicate at the head of the rule
» Cannot be re-satisfied on backtracking



CN-3© Gunnar Gotshalks

Confirming choice of rule

◊ Rule 2 for intersection has confirmation use of cut
> intersection (A , B , C )  –   A « B  = C

 intersection ( [] , B , [] ).
 intersection ( [ Ah | At ] , B , [ Ah | Ct ] )

    :-  member ( Ah , B ) , ! , intersection ( At , B , Ct ).
> Rule 2 is applicable when  head (A )  Œ  B

 intersection ( [ Ah | At ] , B , C )
    :-  intersection ( At , B , C ).

> Rule 3 is applicable when  head (A )  œ  B

◊ Once we have established that Ah is a member of B, then if
we backtrack over the member predicate, there is no need to
consider rule 3
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Stopping – found first solution

◊ Consider the predicate sum_to ( N ,T ), where T is the
sum of the integers  1 .. N

 sum_to ( 1 , 1 ).
 sum_to ( N , T )  :-  N1  is  N – 1 ,
                                 sum_to ( N1 , T1 ) ,
                                 T  is  T1 + N.

◊ The above program works as long as N is an integer >= 1
» but there is only one solution, there is no point in

trying rule 2 if rule 1 is ever satisfied.
> If ; return is used Prolog loops until memory is

exhausted searching for a non existent second
solution
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◊ So introduce cut into the first case.
 sum_to ( 1 , 1 )  :-  ! .
 sum_to ( N , T )  :-  N1  is  N – 1 ,
                                 sum_to ( N1 , T1 ) ,
                                 T  is  T1 + N.

◊ Now only one solution is found.  Search terminates
without infinite loop.
» Also example of choice of rule.  Once rule 1 has

been picked no point in trying rule 2.

Stopping – found first solution – 2
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Cut test – 1

◊ A series of predicates to see how cut works.

◊ Figure out what the answer will be and then try the
queries, test1(Y), test2(Y).

 w ( X )  :-  nl ,  write ( X ).
 w ( X )  :-  write ( ' - w rule 2' ).

 test1 ( _ )  :-  w ( 'Path 1' ) , fail ; w ( 'Path 2' ).
 test1 ( _ )  :-  w ( 'rule 2 test1' ).

 test2 ( _ )  :-  w ( 'Path 1' ) , ! , fail ; w ( 'Path 2' ).
 test2 ( _ )  :-  w ( 'rule 2 test2' ).
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Cut test – 2

◊ A series of predicates to see how cut works.

◊ Figure out what the answer will be and then try the queries,
test3(Y), test4(Y).

 w ( X )  :-  nl ,  write ( X ).
 w ( X )  :-  write ( ' - w rule 2' ).

 test3 ( _ )  :-  ! , w ( 'Path 1' ) , fail ; w ( 'Path 2' ).
 test3 ( _ )  :-  w( 'rule 2 test3' ).

 test4 ( _ )  :-  ! , ( w ( 'Path 1' ) , fail ; w ( 'Path 2' ) ).
 test4 ( _ )  :-  w ( 'rule 2 test4' ).
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Cut-Fail in action

◊  numInRange ( X , N ) – 0 ≤ X  and  X ≤ N
> X  =  0 .. n    n = any natural number
 ?- numInRange (X , n ).

X = 0  ;  X = 1  ;  ... ;  X = n ; no

◊ Definition makes use of cut fail to terminate when n has been
reached.

> addUpTo ( A ,X , N )  means   A ≤ X and X ≤ N
> Acc1 < N is included to have Acc2 <= N, or else infinite

search occurs on rule 2 of addUpTo.
 numInRange ( X , N )  :-  addUpTo ( 0 , X , N ).

addUpTo ( X , X , N )   :-  X =< N   ;   X > N , ! , fail .
addUpTo ( Acc1 , X , N )
    :- Acc1 < N , Acc2 is Acc1 + 1 , addUpTo( Acc2 , X , N ).
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Not

◊ When a rule has the following form
 head  :-  A  ,  B  ,  C  ,  D.

◊ You can think of
» A  as being a guard to trying  B, C, D
» A, B  as being a guard to trying  C, D
» A, B, C  as being a guard to trying  D

◊ For example the use of  member ( Ah , B ) in the rule 2
for intersection
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Not –"2

◊ The predicate  not ( P ) is used as a guard to select cases
as in the following
 Q ( [ H | T ] , ... )  :-  not ( H = [ _ | _ ] ) , P ( H , ... ) .

> Only try P if H does not have a head and tail
 Q ( [ H | T ] , ... )  :-  not ( H = [ ] ) , P ( H , ... ) .

> Only try P if H is not the empty list
 Q ( [ H | T ] , X , ... )  :-  not ( H = X ) , P ( H , ... ) .

> Only try P if H is not equal to X
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Not – Definition

◊ Not is not built into Prolog as its interpretation depends
upon what you want it to mean.

◊ Yes means the query can be satisfied by the database

◊ No means the query cannot be satisfied by the database
» It does not mean the query is false, just

unsatisfiable

Prolog searches are based on a
closed universe

Truth is relative to the database
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Not – Definition

◊ The following is the definition of not as defined in
utitlities.pro

 not ( P )  :-  call ( P ) , ! , fail.
 not ( _ ) .

◊ Rule 1 tries  call ( P )
» call queries the database with the predicate P

 – analogous to eval in Lisp

◊ If the call succeeds, then the  ! , fail  combination says fail
and do not try the second rule
» So if P gives yes, then not ( P ) gives no

◊ If the call fails, then rule 2 is tried and always succeeds.
» So if P gives no, then not ( P ) gives yes
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Not Definition – Consequence

◊ The following shows that  not  as defined has side effects
» A double negative is not equivalent to a positive!

◊ Consider the following expressions
 member  ( X , [ a , b , c ] ) , write ( X ).

> Finds and writes a, b and c on using ; return
 not ( not ( member ( X , [ a , b , c ] ) ) ) , write ( X ).

> Succeeds only once with X being a variable
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Not Definition – Consequence – 2

◊ Trace
 1  not ( not ( member ( X , [ a , b , c ] ) ) )
 2  ==> call ( not ( member ( X , [ a , b , c ] ) ) )
 3  ==> call ( member ( X , [ a , b , c ] ) )
     succeeds with X = a  but ! , fail causes failure
> Failure backs up to 2 , binding to X is lost
> At 2 rule 2 of not is tried and succeeds so call

succeeds but ! , fail causes failure
> Failure backs up to 1
> At 1 rule 2 of not is tried and succeeds
> So result is yes with X still a variable
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Cut & Not Equivalence

◊ Cut and not (as defined in slide CN-12) can be used
interchangably with a change in rule structure

> Note the use of B as a guard

 A  :-  B , C. A  :-  B , ! , C.
 A  :-  not ( B ) , D. A  :-  D.

◊ If B succeeds then success or failure of A depends upon
C

◊ If B fails, then success or failure of A depends upon D
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Cut is Dangerous

◊ Using cut we are taking advantage of the way Prolog
searches the database

◊ Consider the predicate  number_of_parents ( X , N )
 – X has N parents defined as follows

 number_of_parents ( adam , 0 )  :-  ! .
number_of_parents ( eve , 0 )  :-  !.
number_of_parents ( X , 2 ).

◊ Definition works correctly if we query such as the following
when using ; return – the cut prevents finding extra
solutions for adam and eve

 number_of_parents ( adam , N ). ==> 0
number_of_parents ( eve , N ). ==> 0
number_of_parents ( wilhelma , N ). ==> 2
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Cut is Dangerous – 2

◊ But fails on the following queries
 number_of_parents ( adam , 2 ). ==> yes

number_of_parents ( eve , 2 ). ==> yes
◊ Change the definition to

 number_of_parents ( adam , N )  :-  ! , N = 0.
number_of_parents ( eve , N )  :-  ! , N = 0.
number_of_parents ( X , 2 ).

◊ Or change the definition to
 number_of_parents( adam , 0 )  :-  ! .

number_of_parents( eve , 0 )  :-  !.
number_of_parents(X,2)  :-  X \= adam , X \= eve.

◊ Still fail on queries such as the following, expecting
backtracking to enumerate all the possibilites

 number_of_parents ( Who , N ).
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Cut is Dangerous – Moral

If you introduce cuts to obtain correct behaviour when the
goals are of one form, there is no guarantee that anything
sensible will happen if goals of another form start appearing.

It follows that it is only possible to use cut reliably if you
have a clear policy about how your rules are going to be
used.  If you change this policy, all the uses of cut must be
reviewed.
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max ( X , Y , M )

◊ M is the maximum of X and Y if ...
 max ( X , Y , X )  :-  X  >=  Y  ,  ! .
 max ( X , Y , Y ) .

◊ Responds as follows
 max( 5, 3, 5). ==> yes
 max( 5, 3, Z). ==> Z = 5
 max( 3, 5, 5). ==> yes
 max( 3, 5, Z). ==> Z = 5
 max( 5, 3, 3). ==> yes   ?????

◊ What happened?

◊ Lets do a sequence of logical transformations
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max ( X , Y , M ) – 2

 max ( X , Y, X )  :-  X  >=  Y  ,  ! .
 max ( X , Y , Y ) .

◊ Is equivalent to ...
 max ( X , Y , M )  :-  M = X  ,  X  >=  Y  ,  ! .       (1)
 max ( X , Y , M )  :-  M = Y .

◊ Recall the equivalence of not and cut
 A  :-  B , C. A  :-  B , ! , C.
 A  :-  not ( B ) , D. A  :-  D.

◊ Apply to (1)
 max ( X , Y , M )  :-  M = X  ,  X  >=  Y .
 max ( X , Y , M )  :-  not ( ( M = X  ,  X >= Y ) ) ,

                                 M = Y .
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max ( X , Y , M ) – 3

◊ Have the following equivalence
 not ( ( P , Q ) ). not ( not ( P ) ) , not ( Q ).
  not ( P ).

◊ Rewrite left column
 not ( ( P , Q ) ) ==>  ~ ( P and Q ) ==>  ~ P  or  ~ Q

◊ Rewrite right column
 not ( not ( P ) ) , not ( Q )  or  not ( P )
 ==>  ( ~ ( ~ P )  and   ~ Q )  or   ~ P
 ==>  ( P   and   ~ Q )  or   ~ P
 ==>  ( P  or  ~ P )  and  ( ~ Q  or  ~ P )
 ==>   ~ Q  or  ~ P
 ==>   ~ P  or  ~ Q
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max ( X , Y , M ) – 4

 max ( X , Y , M )  :-  M = X  ,  X  >=  Y .
 max ( X , Y , M )  :-  not ( ( M = X  ,  X  >=  Y ) ) ,

                                 M = Y .

◊ Use the following equivalence in rule 2
 not( ( P , Q ) ). not ( not( P ) ) , not( Q ).
  not( P ).

◊ Gives us
 max ( X , Y , M )  :-  M = X  ,  X >= Y .
 max ( X , Y , M )  :-  not ( not ( M = X ) ) ,

                                 not ( X  >=  Y )  ,  M = Y .
 max ( X , Y , M )  :-  not ( M = X )  ,  M = Y .
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max ( X , Y , M ) – 5

 max ( X , Y , M )  :-  M = X  ,  X  >=  Y .
 max ( X , Y , M )  :-  not ( not ( M = X ) ) ,

                                 not ( X  >=  Y )  ,  M = Y .
 max ( X , Y , M )  :-  not ( M = X )  ,  M = Y .

◊ not( not ( M = X ) ) implies M = X, is covered by the
remaining terms in rule 1, so it becomes
 max ( X , Y , M )  :-  not ( X  >=  Y )  ,  M = Y .

> Giving
 max ( X , Y , M )  :-  M = X  ,  X  >=  Y .
 max ( X , Y , M )  :-  not ( X  >=  Y )  ,  M = Y .
 max ( X , Y , M )  :-  not ( M = X )  ,  M = Y .
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max ( X , Y , M ) – 6

◊ Rearranging the terms in the first rule gives our final
defintion
 max ( X, Y, M)  :-  X >= Y , M = X.     <==  Correct
 max ( X, Y, M)  :-  not( X >= Y ) , M = Y . <== logic
 max ( X, Y, M)  :-  not( M = X ) , M = Y .  <== parasitic

> Responsible for   max( 5, 3, 3) ==> yes

◊ The logic of the two correct rules guards the equality
check M = X  and M = Y , whereas the incorrect solution
failed to have a guard on the second rule.  We should
have

 max ( X , Y , X )  :-  X  >=  Y  ,  ! .
 max ( X , Y , Y )  :-  X  <  Y .


