Cut \& Not

Cut - !

\diamond Cut, the name of the! operator, is used to
» Not waste time on useless choices
1 Know that if current rule fails then trying further rules for the current predicate is useless

- If you got this far then, this is the only rule to try

2 Stop after one solution - do not look for alternate solutions
3 If you continue with this predicate, you will not find a solution

- Use of ! , fail
\diamond Cut commits to all choices made when entering parent goal - the predicate at the head of the rule
» Cannot be re-satisfied on backtracking

Confirming choice of rule

\diamond Rule 2 for intersection has confirmation use of cut > intersection (A,B,C) - A $\square B=C$ intersection ([], B , []). intersection ([Ah I At], B , [Ah I Ct]) :- member (Ah , B) , ! , intersection (At , B , Ct).
$>$ Rule 2 is applicable when head (A) $] B$ intersection ([Ah I At], B , C) :- intersection (At , B , C).
$>$ Rule 3 is applicable when head (A) $]$ B
\diamond Once we have established that Ah is a member of B , then if we backtrack over the member predicate, there is no need to consider rule 3

Stopping - found first solution

\diamond Consider the predicate sum_to (\mathbf{N}, \mathbf{T}), where \mathbf{T} is the sum of the integers 1 .. N

```
sum_to (1, 1).
sum_to (N,T) :- N1 is N-1,
                                    sum_to( N1, T1),
                                    T is T1 + N.
```

\diamond The above program works as long as N is an integer $>=1$
» but there is only one solution, there is no point in trying rule 2 if rule 1 is ever satisfied.
> If ; return is used Prolog loops until memory is exhausted searching for a non existent second solution

Stopping - found first solution - 2

\diamond So introduce cut into the first case.

```
sum_to (1, 1) :- !.
sum_to (N,T) :- N1 is N-1,
    sum_to( N1, T1),
    T is T1 + N.
```

\diamond Now only one solution is found. Search terminates without infinite loop.
» Also example of choice of rule. Once rule 1 has been picked no point in trying rule 2.

Cut test - 1

\diamond A series of predicates to see how cut works.
\diamond Figure out what the answer will be and then try the queries, test1(Y), test2(Y).

```
w(X) :- nl, write (X).
w (X) :- write (' - w rule 2').
```

test1 (_) :- w ('Path 1'), fail ; w ('Path 2').
test1 (_) :- w ('rule 2 test1').
test2 (_) :- w ('Path 1'), !, fail ; w ('Path 2').
test2 (_) :- w ('rule 2 test2').

Cut test - 2

\diamond A series of predicates to see how cut works.
\diamond Figure out what the answer will be and then try the queries, test3(Y), test4(Y).

```
w(X) :- nl, write (X).
w (X) :- write (' - w rule 2').
test3 ( _ ) :- !, w ( 'Path 1' ), fail ; w ('Path 2' ).
test3 ( _ ) :- w( 'rule 2 test3' ).
```

test4 (_) :- ! , (w ('Path 1') , fail ; w ('Path 2')).
test4 (_) :- w ('rule 2 test4').

Cut-Fail in action

\diamond numlnRange $(X, N)-0 \leq X$ and $X \leq N$

$$
>X=0 \ldots n \quad n=\text { any natural number }
$$

?- numlnRange (X, n).
$X=0 ; X=1$; ...; $X=n$; no
\diamond Definition makes use of cut fail to terminate when n has been reached.
$>$ addUpTo ($\mathrm{A}, \mathrm{X}, \mathrm{N}$) means $\mathrm{A} \leq \mathrm{X}$ and $\mathrm{X} \leq \mathrm{N}$
$>$ Acc1 < N is included to have Acc2 < = N, or else infinite search occurs on rule 2 of addUpTo.
numlnRange (\mathbf{X}, N) :- $\operatorname{addUpTo(0,X,N).}$ addUpTo ($\mathrm{X}, \mathrm{X}, \mathrm{N}$) :- $\mathrm{X}=<\mathbf{N}$; $\mathbf{X}>\mathbf{N},!$, fail. addUpTo (Acc1, X, N)
:- Acc1 < N , Acc2 is Acc1 + 1 , addUpTo(Acc2 , X, N).

Not

\diamond When a rule has the following form
head :- A , B , C , D.
\diamond You can think of
» A as being a guard to trying B, C, D
» A, B as being a guard to trying C, D
» A, B, C as being a guard to trying D
\diamond For example the use of member (Ah,B) in the rule 2 for intersection

Not - 2

\diamond The predicate not (P) is used as a guard to select cases as in the following

Q([HIT], ...) :- not (H = [_I_]), P(H, ...).
> Only try P if H does not have a head and tail
Q ([HIT], ...) :- not (H=[]), P(H, ...).
> Only try P if H is not the empty list
Q ([HIT],X,...) :- not ($\mathrm{H}=\mathrm{X}$), $\mathrm{P}(\mathrm{H}, \ldots)$.
$>$ Only try P if H is not equal to X

Not - Definition

\diamond Not is not built into Prolog as its interpretation depends upon what you want it to mean.

Prolog searches are based on a closed universe
 Truth is relative to the database

\diamond Yes means the query can be satisfied by the database
\diamond No means the query cannot be satisfied by the database
" It does not mean the query is false, just unsatisfiable

Not - Definition

\diamond The following is the definition of not as defined in utitlities.pro
not (P) :- call (P) , ! , fail. not (_).
\diamond Rule 1 tries call (P)
» call queries the database with the predicate P

- analogous to eval in Lisp
\diamond If the call succeeds, then the!, fail combination says fail and do not try the second rule
» So if P gives yes, then not (P) gives no
\diamond If the call fails, then rule 2 is tried and always succeeds.
»So if P gives no, then not (P) gives yes

Not Definition - Consequence

\diamond The following shows that not as defined has side effects > A double negative is not equivalent to a positive!
\diamond Consider the following expressions member ($\mathrm{X},[\mathrm{a}, \mathrm{b}, \mathrm{c}]$), write (X).
$>$ Finds and writes a, b and c on using; return not (not (member (X , [a , b , c]))), write (X).
> Succeeds only once with X being a variable

Not Definition - Consequence - 2

\diamond Trace
$1 \operatorname{not}(\operatorname{not}(\operatorname{member}(X,[a, b, c])))$
$2==>$ call ($\operatorname{not}(\operatorname{member}(X,[a, b, c])))$
3 ==> call (member (X,[a,b, c])
succeeds with $X=a$ but!, fail causes failure
> Failure backs up to 2 , binding to X is lost
$>$ At 2 rule 2 of not is tried and succeeds so call succeeds but !, fail causes failure
$>$ Failure backs up to 1
$>$ At 1 rule 2 of not is tried and succeeds
> So result is yes with X still a variable

Cut \& Not Equivalence

\diamond Cut and not (as defined in slide CN-12) can be used interchangably with a change in rule structure
$>$ Note the use of B as a guard

A :- B, ! C.
A :- D.
\diamond If B succeeds then success or failure of A depends upon C
\diamond If B fails, then success or failure of A depends upon D

Cut is Dangerous

\diamond Using cut we are taking advantage of the way Prolog searches the database
\diamond Consider the predicate number_of_parents (X, N)

- X has N parents defined as follows

```
number_of_parents ( adam, 0) :- !.
number_of_parents ( eve,0) :- !.
number_of_parents ( X , 2 ).
```

\diamond Definition works correctly if we query such as the following when using ; return - the cut prevents finding extra solutions for adam and eve

$$
\begin{array}{ll}
\text { number_of_parents (adam , N). } & ==>0 \\
\text { number_of_parents (eve, N). } & ==>0 \\
\text { number_of_parents (wilhelma , N). } & ==>2
\end{array}
$$

Cut is Dangerous - 2

\diamond But fails on the following queries
number_of_parents (adam, 2). ==> yes
number_of_parents (eve, 2). ==> yes
\diamond Change the definition to
number_of_parents (adam, N) :- !, N = 0.
number_of_parents (eve, N) :- !, N = 0.
number_of_parents ($\mathrm{X}, 2$).
\diamond Or change the definition to
number_of_parents(adam , 0) :- !.
number_of_parents(eve, 0) :- !.
number_of_parents $(X, 2)$:- $X \backslash=$ adam, $X \backslash=$ eve.
\diamond Still fail on queries such as the following, expecting backtracking to enumerate all the possibilites
number_of_parents (Who , N).

Cut is Dangerous - Moral

If you introduce cuts to obtain correct behaviour when the goals are of one form, there is no guarantee that anything sensible will happen if goals of another form start appearing.

It follows that it is only possible to use cut reliably if you have a clear policy about how your rules are going to be used. If you change this policy, all the uses of cut must be reviewed.

$\max (\mathrm{X}, \mathrm{Y}, \mathrm{M})$

$\diamond M$ is the maximum of X and Y if ...

$$
\begin{aligned}
& \max (X, Y, X):-X>=Y,!. \\
& \max (X, Y, Y) .
\end{aligned}
$$

\diamond Responds as follows

$$
\begin{array}{ll}
\max (5,3,5) . & ==>\text { yes } \\
\max (5,3, Z) . & ==>Z=5 \\
\max (3,5,5) . & ==>\text { yes } \\
\max (3,5, Z) . & ==>Z=5 \\
\max (5,3,3) . & ==>\text { yes ????? }
\end{array}
$$

\diamond What happened?
\diamond Lets do a sequence of logical transformations

$\max (\mathrm{X}, \mathrm{Y}, \mathrm{M})-2$

$$
\begin{aligned}
& \max (X, Y, X):-X>=Y,!. \\
& \max (X, Y, Y) .
\end{aligned}
$$

\diamond Is equivalent to ...

$$
\begin{aligned}
& \max (X, Y, M):-M=X, X>=Y,!. \\
& \max (X, Y, M):-M=Y .
\end{aligned}
$$

\diamond Recall the equivalence of not and cut

$$
\begin{array}{ll}
\text { A :- B }, \mathbf{C} . & \text { A :- B , !, C. } \\
\text { A :- not }(B), \text { D. } & \text { A :- D. }
\end{array}
$$

\diamond Apply to (1)

$$
\begin{aligned}
\max (X, Y, M):-M=X, X>=Y . \\
\max (X, Y, M):-\operatorname{not}((M=X, X>=Y)), \\
M=Y .
\end{aligned}
$$

$\max (X, Y, M)-3$

\diamond Have the following equivalence

$$
\begin{array}{ll}
\operatorname{not}((P, Q)) . & \operatorname{not}(\operatorname{not}(P)), \operatorname{not}(Q) . \\
& \operatorname{not}(P) .
\end{array}
$$

\diamond Rewrite left column

$$
\operatorname{not}((P, Q))==>\sim(P \text { and } Q)==>\sim P \text { or } \sim Q
$$

\diamond Rewrite right column

$$
\begin{aligned}
& \operatorname{not}(\operatorname{not}(P)), \operatorname{not}(Q) \text { or } \operatorname{not}(P) \\
& ==>(\sim(\sim P) \text { and } \sim Q) \text { or } \sim P \\
& ==>(P \text { and } \sim Q) \text { or } \sim P \\
& ==>(P \text { or } \sim P) \text { and }(\sim Q \text { or } \sim P) \\
& =\Rightarrow \sim Q \text { or } \sim P \\
& =\Rightarrow \sim P \text { or } \sim Q
\end{aligned}
$$

$\max (X, Y, M)-4$

$$
\begin{aligned}
& \max (X, Y, M):- \\
& \max (X, Y, M)::-\operatorname{not}((M=X, X>=Y)), \\
& M=Y .
\end{aligned}
$$

\diamond Use the following equivalence in rule 2

$$
\begin{array}{ll}
\operatorname{not}((P, Q)) . & \operatorname{not}(\operatorname{not}(P)), \operatorname{not}(Q) . \\
& \operatorname{not}(P) .
\end{array}
$$

\diamond Gives us

$$
\begin{aligned}
\max (X, Y, M):- & M=X, X>=Y . \\
\max (X, Y, M):- & \operatorname{not}(\operatorname{not}(M=X)), \\
& \operatorname{not}(X>=Y), M=Y . \\
\max (X, Y, M):- & \operatorname{not}(M=X), M=Y .
\end{aligned}
$$

$\max (\mathrm{X}, \mathrm{Y}, \mathrm{M})-5$

$\max (X, Y, M):-M=X, X>=Y$.
$\max (X, Y, M):-\operatorname{not}(\operatorname{not}(M=X))$, $\operatorname{not}(X>=Y), M=Y$.
$\max (X, Y, M):-\operatorname{not}(M=X), M=Y$.
$\diamond \operatorname{not}(\operatorname{not}(M=X))$ implies $M=X$, is covered by the remaining terms in rule 1 , so it becomes
$\max (\mathrm{X}, \mathrm{Y}, \mathrm{M})$:- $\operatorname{not}(\mathrm{X}>=\mathrm{Y}), \mathrm{M}=\mathrm{Y}$.
$>$ Giving
$\max (X, Y, M):-M=X, X>=Y$.
$\max (X, Y, M):-\operatorname{not}(X>=Y), M=Y$.
$\max (X, Y, M):-\operatorname{not}(M=X), M=Y$.

$\max (\mathrm{X}, \mathrm{Y}, \mathrm{M})-6$

\diamond Rearranging the terms in the first rule gives our final defintion

$$
\begin{gathered}
\max (X, Y, M):-X>=Y, M=X . \quad<==\text { Correct } \\
\max (X, Y, M):-\operatorname{not}(X>=Y), M=Y .<==\text { logic } \\
\max (X, Y, M):-\operatorname{not}(M=X), M=Y .<==\text { parasitic } \\
>\operatorname{Responsible} \text { for } \max (5,3,3)==>\text { yes }
\end{gathered}
$$

\diamond The logic of the two correct rules guards the equality check $\mathrm{M}=\mathrm{X}$ and $\mathrm{M}=\mathrm{Y}$, whereas the incorrect solution failed to have a guard on the second rule. We should have

$$
\begin{aligned}
& \max (X, Y, X):-X>=Y,!. \\
& \max (X, Y, Y):-X<Y .
\end{aligned}
$$

