Accumulators More on Arithmetic and
 Recursion

listlen (L, N)

$\diamond L$ is a list of length \mathbf{N} if ...
listlen ([], 0).
listlen ([H I T] , N) :- listlen ($\mathrm{T}, \mathrm{N} 1$) , N is N1 + 1 .
$>$ On searching for the goal, the list is reduced to empty
$>$ On back substitution, once the goal is found, the counter is incremented from 0
\diamond Following is an example sequence of goals (left hand column) and back substitution (right hand column)

$$
\begin{array}{ll}
\text { listlen([a, b, c] , N). } & \mathrm{N}<==\mathrm{N} 1+1 \\
\text { listlen([b, c] , N1). } & \text { N1 <== N2 + } \\
\text { listlen([c] , N2). } & \text { N2 <== N3 + } \\
\text { listlen([] , N3). } & \text { N3 }<==0
\end{array}
$$

Abstract the counter

\diamond The following abstracts the counter part from listlen.

```
addUp ( 0).
addUp ( C ) :- addUp ( C1 ), C is C1 +1.
```

\diamond Notice the recursive definition occurs on a counter one smaller than in the head.

Count Up

\diamond An alternate method is to count on the way to the fixed point value in the query
\diamond The auxiliary counter accumulates the result on the way to the goal.
adder (C) :- adder (0, C). ;Introduce auxiliary counter adder (C , C) :- nl , write ('a').
$>$ The goal is reached when the auxiliary counter reaches the fixed point count value
adder (Acc1, C) :- write ('b '), Acc2 is Acc1 + 1
, adder (Acc2 , C).
$>$ The predicates in black always succeed, side effect is to write to the terminal - can see order of rule execution

listLen(L,N) - 2

\diamond We can define list length using an accumulator

```
listln(L,N ) :- lenacc ( L , O,N ).
> Introduce the auxiliary counter - length of list L when added to the accumulator is N lenacc ([], A , A ). lenacc ([HIT],A,N):- A1 is A+1 , lenacc ( \(\mathrm{T}, \mathrm{A} 1, \mathrm{~N}\) ).
```

\diamond Following is a sequence of goals
listln ([a, b, c], N).
lenacc ([a, b, c] , 0, N). N <== N1
lenacc ([b , c] , 1, N1). N1 <== N2
lenacc ([c], 2, N2). N2 <== N3
lenacc ([], 3, N3). N3 <== 3

Accumulator - Using vs Not Using

\diamond The definition styles reflect two alternate definitions for counting
> Recursion - counts (accumulates) on back substitution.
> Goal becomes smaller problem
> Do not use accumulator
» Iteration - counts up, accumulates on the way to the goal
$>$ Accumulate from nothing up to the goal
> Goal "counter value" does not change
\diamond Some problems require an accumulator
" see parts assembly

Factorial using recursion

\diamond Following is a recursive definition of factorial

$$
\text { Factorial (} N \text {) = N * Factorial (} \mathrm{N}-1 \text {) }
$$

$$
\text { factr (} N, F)--F \text { is the factorial of } N
$$

$$
\text { factr (} 0,1 \text {). }
$$

$$
\text { factr (N , F) :- } \mathrm{J} \text { is } \mathrm{N}-1, \text { factr }(\mathrm{J}, \mathrm{~F} 1)
$$

$$
\text { , } \mathrm{F} \text { is } \mathrm{N}^{*} \mathrm{~F} 1 \text {. }
$$

\diamond The problem ($\mathrm{J}, \mathrm{F} 1$) is a smaller version of (N, F)
\diamond Work toward the fixed point of a trivial problem
\diamond Does not work for factr ($\mathrm{N}, 120$) and factr (N, F).
» Cannot do arithmetic J is $N-1$ because N is undefined.

Factorial using iteration - accumulators

\diamond An iterative definition of factorial

```
facti( N, F) :- facti ( 0, 1, N , F ).
facti(N,F,N,F ).
facti (I , Fi , N , F ) :- invariant (I , Fi , J , Fj )
, facti(J, Fj, N,F ).
```

invariant ($\mathrm{I}, \mathrm{Fi}, \mathrm{J}, \mathrm{Fj}$) :- J is $\mathrm{I}+1, \mathrm{Fj}$ is J * Fi .
\diamond The last two arguments are the goal and they remain the same throughout.
\diamond The first two arguments are the accumulator and they start from a fixed point and accumulate the result
\diamond Works for queries factr ($\mathbf{N}, 120$) and factr (N, F) because values are always defined for the is operator.

Fibonacci - Ordinary Recursion

\diamond Following is a recursive definition of the fibonacci series. For reference here are the first few terms of the series

Index-0	1	2	3	4	5	6	7	8	9	10	11	12
Value -1	1	2	3	5	8	13	21	34	55	89	144	233

Fibonacci (N) = Fibonacci (N -1) + Fibonacci (N - 2).

```
fib (0, 1).
fib (1, 1).
fib(N,F) :- N1 is N-1,N2 is N-2
, fib(N1,F1), fib(N2,F2)
    , F}\mathrm{ is F1 + F2.
```

\diamond Does not work for queries fib ($\mathrm{N}, 8$) and fib (N, F)》 Values for is operator are undefined.

Fibonacci - Tail Recursion

\diamond A tail recursive definition of the fibonacci series
$>$ Tail recursion is equivalent to iteration

```
fibt (0,1).
fibt (1, 1).
fibt (N , F ) :- fibt (2, 1, 1, N , F ).
```

fibt (N , Last2, Last1, N , F) :- F is Last2 + Last1.
fibt (I , Last2, Last1, N, F) :- J is $\mathrm{I}+1$
, Fi is Last2 + Last1
, fibt (J, Last1, Fi , N , F).
\diamond Works for queries factr ($\mathrm{N}, 120$) and factr (N, F)
» values are always defined for is operator.

Parts Assembly - The Problem 1

\diamond Parts assembly is the problem of accumulating all the parts for a product from a definition of the components of each part
\diamond Consider a bicycle we could have > the following basic components basicPart(spokes). basicPart(rim). basicPart(tire). basicPart(inner_tube). basicPart(handle_bar). basicPart(front_fork). basicPart(rear_fork).
> the following definitions for sub assemblies assembly(bike, [wheel, wheel, frame]). assembly(wheel, [spokes, rim, wheel_cushion]). assembly(wheel_cushion, [inner_tube, tire]). assembly(frame, [handle_bar, front_fork, rear_fork]).

Parts Assembly - The Problem 2

\diamond We are interest in obtaining a parts list for a bicycle.
[rear_ fork, front_ fork, handle_bar , tire , inner_tube , rim , spokes, tire , inner_tube , rim
, spokes]
> We have two wheels so there are two tires, inner_tubes, rims and spokes.
\diamond Using accumulators we can avoid wasteful re-computation as in the case for the ordinary recursion definition of the fibonacci series

Parts Assembly - Accumulator 1

\diamond partsof $(X, P)-P$ is the list of parts for item X
\diamond partsacc (X, A, P) - parts_of $(X) \| A=P$. II is catenate partsof (X, P) :- partsacc ($\mathrm{X},[\mathrm{l}, \mathrm{P}$). (math append)
> Basic part - parts list contains the part partsacc (X , A , [X I A]) :- basicPart (X).
$>$ Not a basic part - find the components of the part partsacc (X, A , P) :- assembly (X, Subparts) ,
> parsacclist - parts_of (Subparts) II A = P partsacclist (Subparts, A, P).

Parts Assembly - Accumulator 2

\diamond parsacclist (ListOfParts, AccParts, P)

- parts_of (ListOfParts) II AccParts = P
$>$ No parts \square no change in accumulator partsacclist ([], A, A).
partsacclist ([P I Tail], A , Total) :-
$>$ Get the parts for the first on the list partsacc (P, A, HeadParts)
> And catenate with the parts obtained from the rest of the ListOfParts
, partsacclist (Tail , HeadParts , Total).

Difference Lists and Holes

\diamond The accumulator in the parts assembly program is a stack » Items are stored in the reverse order in which they are found
\diamond How do we store accumulated items in the same order in which they are formed?
" Use a queue
\diamond Difference lists with holes are equivalent to a queue

Examples for Holes

\diamond Consider the following list

$$
[a, b, c, d \mid X]
$$

$>X$ is a variable indicating the tail of the list. It is like a hole that can be filled in once a value for X is obtained
\diamond For example
Res = [a,b,c,dIX],X =[e,f].
> Yields
Res $=[a, b, c, d, e, f]$

Examples for Holes - 2

\diamond Or could have the following with the hole going down the list

$$
\operatorname{Res}=[a, b, c, d \mid X]
$$

$>$ more goal searching gives $X=[e, f \mid Y]$
$>$ more goal searching gives $Y=[h, i, j]$
> Back substitution Yields

$$
\operatorname{Res}=[a, b, c, d, e, f, h, i, j]
$$

PartsAssembly - Difference List 1

\diamond partsofd $(\mathrm{X}, \mathrm{P})-\mathrm{P}$ is the list of parts for item X
\diamond partsdiff (X , Hole , P) - parts_of (X) II Hole = P
> Hole and P are reversed compared to Clocksin
\& Mellish (v3, v4) to better compare with accumulator version.
partsofd (X, P) :- partsdiff (X , [], P).
> Base case we have a basic part, then the parts list contains the part
partsdiff (X , Hole , [X I Hole]) :- basicPart (X).

PartsAssembly - Difference List 2

> Not a base part, so we find the components of the part
partsdiff (X, Hole , P) :- assembly (X, Subparts)
> parsdifflistd - parts_of (Subparts) II Hole = P
, partsdifflist (Subparts, Hole, P).

PartsAssembly - Difference Lists 3

\diamond parsdifflist (ListOfParts, Hole, P)

- parts_of (ListOfParts) II Hole = P
partsdifflist ([], Hole, Hole).
partsdifflist ([P I Tail], Hole , Total) :-
$>$ Get the parts for the first on the list
partsdiff (P , Hole1, Total)
$>$ And catenate with the parts obtained from the rest of the ListOfParts
, partsdifflist (Tail , Hole, Hole1).

Compare Accumulator with Hole

```
partsof (X,P ) :- partsacc (X , [], P ). Accumulator
partsofd ( X , P ) :- partsdiff ( X , [] , P ). Difference/Hole
```

partsacc ($\mathbf{X}, \mathbf{A},[\mathbf{X} \mid A])$:- basicPart (X).
partsdiff (X , Hole , [X I Hole]) :- basicPart (X).
partsacc ($\mathbf{X}, \mathbf{A}, \mathbf{P}$) :- assembly (\mathbf{X}, Subparts)
, partsacclist (Subparts, A , P).
partsdiff (X , Hole , P) :- assembly (X, Subparts)
, partsdifflist (Subparts, Hole, P).

Compare Accumulator with Hole - 2

```
partsacclist ([], A , A ).
partsdifflist ( [] , Hole, Hole ).
```

partsacclist ([P|Tail], A, Total)
:- partsacc (\mathbf{P}, \mathbf{A}, HeadParts)
, partsacclist (Tail , HeadParts, Total).
partsdifflist ([P I Tail], Hole, Total)
:- partsdiff (P, Hole1, Total)
, partsdifflist (Tail , Hole, Hole1).

