Utility programs

In utilities.pro discussed at various
times throughout rest of the course

Most are renamed with _op extension
because they cannot be redefined
in modern Prolog interpreters.

© Gunnar Gotshalks

UT-1

member (I, L)

¢ Item | is a member of the list L.

> Reduce the list — second rule -
until first in list — first rule.
or empty — no rule so fail —

member (X,[X1 _1]).
member (X,[_1Z]) :- member (X, Z).

0 Note the use of the anonymous variable _

» We do not care about the value of the rest in the
first rule, nor the value of first in the second rule

» Typically use it when it is the only instance of that
variable in the rule

© Gunnar Gotshalks UT-2

append (L1,L2,R)

0 R is the result of appending list L2 to the end of list L1.

append ([],L,L).
— Appending to nil yields the original list.

append ([XIL1],L2,[XIL3])
- append (L1,L2,L3).

> Simultaneous recursive descent on L1 & L3 first
of the left list is the first of the result.

Pattern
Li=abec L2=2345 L3=abc2345

Xabc2345 L1IIL2
Xabc2345 L3

© Gunnar Gotshalks UT-3

append (L1,L2,R) -2

¢ Queries —[ask for results in all combinations. Not like Java
or C where functions are programmed for only one query

append ([1,2,3],[a,b,c],R).
> What is the result of appending L1 and L2?

append (L1,[a,b,c],[1,2,3,a,b,c]).

>What L1 gives[1,2,3,a,b,c]when
appended with [a,b,c]?

append([1,2,3],L2,[1,2,3,a,b,c]).

>What L2 gives[1,2,3,a,b,c]when
appendedto[1,2,3]?

© Gunnar Gotshalks UT-4

append (L1,L2,R) -3

append (L1,L2,[1,2,3,a,b,c]).

>What L1 and L2 gives[1,2,3,a,b,c]when
L2 is appended to L1?

append (L1,L2,R).

> What L1 and L2 give R? Infinite number of
answers

append (Before , [Middle | After], List).

> If middle is defined we can get the before and
after

append (Before , [4 | After], [1,2,3,4,5,6,7]).

© Gunnar Gotshalks UT-5

Trace—append (P,[a],[1,2,3,a])

¢ Variables are renamed every time a rule is used for
matching
append ([],L,L).
append ([XIL1],L2,[XIL3])
- append (L1,L2,L3).

¢ Try to match rule 1
P=[] [a]=L_1 [1,23,a]=L_1

¢ 1 —Fail, try to match rule 2
P=[X_21L1_2] [a]=L2 2 [1,2,3,a]=[X_21L3_2]

» Succeed with X_2=1 L2 2=[a] L3_2=[2,3,a]

© Gunnar Gotshalks UT-6

Trace —append (P,[a],[1,2,3,a]) -2

append ([], L, L).
append ([XIL1],L2,[XIL3])
- append (L1,L2,L3).

¢ Try tomatchrule 1 append(L1_2, [a], [2,3,a])
L1 2=[] [@]=L_3 [2,3,a]=L_3

¢ 2 — Fail, try to match rule 2
L1 2=[X_41L1_4] L2 4=[a] [2,3,a]=[X_41L3 4]

» Succeed with X_4=2 L2 4=[a] L3 4=[3,a]

¢ Try tomatchrule 1 append(L1_4, [a], [3,a])
L1 4=[] [a]=L 5 [3,a]=L_5

© Gunnar Gotshalks UT-7

Trace —append (P,[a],[1,2,3,a])-3

append ([], L, L).
append ([XIL1],L2,[XIL3])
- append (L1,L2,L3).

¢ 3 — Fail, try to match rule 2
L1 4=[X_61L1.6] [a]=L2 6 [3,a]=[X_61L3 6]

» Succeed with X_ 6=3 L2 6=[a] L3_6=][a]

¢ Try tomatchrule 1 append(L1_6, [a], [a])
L1 6=[] [a]=L_7 [a]=L_7

¢ Succeed, recursion stops, backtrack and substitute values

© Gunnar Gotshalks UT-8

Trace —append (P,[a],[1,2,3,a])-4

0 Instep 3
L1 _4=[3I1[]]=1[3]

¢ In step 2 we had
L1 2=[X_41L1_4] L2 4=[a] [2,3,a]=[X_41L3_4]
» Succeed with X_4=2 L2 4=[a] L3 4=[3,a]
» and from Step 3 L1_4 =[3]
» Thus L1_2=[2, 3]
¢ In step 1 we had
P=[X_2I1L1_2] [a]=L2_2 [a,1,2,3]=[X_21L3_2]
» Succeed with X_2=1 L2 2=[a] L3_2=[2,3,a]
» and from Step 2 L1_2=[2, 3]
» Thus P=][1, 2, 3]

© Gunnar Gotshalks UT-9

delete (1,L,R)

0 R is the result of deleting item | from the list L.
delete (X,[XI1Y],Y).
> Like sayingL =(cons (carL)(cdrL))inLisp

delete (X,[YIW],[YIZ]) :- delete (X, W, Z).

> Check the rest of the list if not the first item.
Analogous to
(cons (car L) (recurse (cdr L))inLisp

© Gunnar Gotshalks UT-10

prefix (P, L)

0 P is the prefix of the list L. It can be defined using
append as follows.

prefix(P,L) - append (P, _ ,L).

> P is a prefix of L if something, including nil, can
be suffixed to P to form L.

© Gunnar Gotshalks UT-11

prefix(P,L) -2

¢ We can define prefix in terms of itself as follows.

List PPPPPPXXXXX ==> XXXXX
Prefix YYYYYY - Empty

rannnr o Check equality until Prefix is
exhausted.

¢ The base case is having the empty list as the prefix.
prefix ([1,_).

¢ The recursive case is having the first items on the prefix
and the list being the same and the reduced prefix and list
satisfy the prefix property.

prefix ([AIB],[AIC]) :- prefix(B, C).

© Gunnar Gotshalks UT-12

suffix (S, L)

¢ S is the suffix of the list L. It can be defined using append
as follows.

suffix (S,L) - append(_,S,L).

> S is a suffix of L if something, including nil, can
be prefixed to S to form L.

© Gunnar Gotshalks UT-13

suffix (S,L) -2

¢ We can define suffix in terms of itself as follows.

List PPPPPPXXXXX ==> XXXXX
Suffix YYYYY YYYYY
nanann Reduce the prefix part of the List.

¢ In the base case the suffix is the list.
suffix (L, L).
¢ The recursive case is to reduce the size of the prefix of the
list.
suffix (S,[_IL]) :- suffix(S,L).

© Gunnar Gotshalks UT-14

sublist (S, L)

¢ Sis a sublist of L can be defined using append as follows.

sublist(S,L) :- append(_,S, Lt),
append (Lt, _,L).

> S is a sublist of L if something, including nil,
can be prefixed to S to form the list Lt

> And something, including nil, can be suffixed to
Lt to form L.

¢ In other words, S is a sublist of L if there exists a prefix P
to S and a suffix Tto Ssuchthat L=PIISIIT

> where || means concatenation.

© Gunnar Gotshalks UT-15

sublist(S,L)

0 We can define sublist in terms of itself and prefix as

follows.
List PPPPSSSSSXXXXXX ==> SSSSSXXXXXX
Sublist YYYYY YYYYY

AANANAN

Reduce the prefix part of the List.
¢ In the base case the suffix is prefix of the list.
sublist (S,L) :- prefix (S, L).

¢ The recursive case is to reduce the size of the prefix of the
list.

sublist (S,[_IL]) :- sublist(S,L).

© Gunnar Gotshalks UT-16

