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Utility programs

In utilities.pro discussed at various
times throughout rest of the course

Most are renamed with _op extension
because they cannot be redefined

in modern Prolog interpreters.
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member ( I , L )

◊ Item I is a member of the list L.
> Reduce the list – second rule  –

until first in list – first rule.
        or empty – no rule so fail –

 member ( X , [ X | _ ] ).
 member ( X , [ _ | Z ] )  :-  member ( X , Z ).

◊ Note the use of the anonymous variable _
» We do not care about the value of the rest in the

first rule, nor the value of first in the second rule
» Typically use it when it is the only instance of that

variable in the rule
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append ( L1, L2 , R )

◊ R is the result of appending list L2 to the end of list L1.
 append ( [] , L , L ).

– Appending to nil yields the original list.
 append ( [ X | L1 ] , L2 , [ X | L3 ] )

           :-  append (L1 , L2 , L3 ) .
> Simultaneous recursive descent on L1 & L3 first

of the left list is the first of the result.
 Pattern

  L1 = a b c     L2 = 2 3 4 5   L3 = a b c 2 3 4 5
   X a b c 2 3 4 5      L1 || L2
   X a b c 2 3 4 5      L3
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append ( L1 , L2 , R ) – 2

◊ Queries –!ask for results in all combinations.  Not like Java
or C where functions are programmed for only one query

 append ( [ 1 , 2 , 3 ] , [ a , b , c ] , R ).
> What is the result of appending L1 and L2?

 append ( L1 , [ a , b , c ] , [ 1 , 2 , 3 , a , b , c ] ).
> What L1  gives [ 1 , 2 , 3 , a , b , c ] when

appended with  [ a , b , c ] ?
 append ( [ 1 , 2 , 3 ] , L2 , [ 1 , 2 , 3 , a , b , c ] ).

> What L2  gives [ 1 , 2 , 3 , a , b , c ] when
appended to [ 1 , 2 , 3 ] ?
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append ( L1 , L2 , R ) –!3

 append ( L1 , L2 , [ 1 , 2 , 3 , a , b , c ] ).
> What L1 and L2  gives [ 1 , 2 , 3 , a , b , c ] when

L2 is appended to L1?
 append ( L1 , L2 , R ).

> What L1 and L2  give R?  Infinite number of
answers

 append ( Before , [Middle | After] , List ).
> If middle is defined we can get the before and

after
 append ( Before , [4 | After] , [1,2,3,4,5,6,7] ).
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Trace – append ( P, [ a ] , [ 1 , 2 , 3 , a ] )

◊ Variables are renamed every time a rule is used for
matching
 append ( [] , L , L ).

append ( [ X | L1 ] , L2 , [ X | L3 ] )
            :-  append ( L1 , L2 , L3 ).

◊ Try to match rule 1
    P = []    [a] = L_1   [1,2,3,a] = L_1

◊ 1 – Fail, try to match rule 2
    P = [X_2 | L1_2]    [a] = L2_2    [1,2,3,a] = [X_2 | L3_2]
» Succeed with  X_2 = 1     L2_2 = [a]     L3_2 = [2,3,a]
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Trace – append ( P, [ a ] , [ 1 , 2 , 3 , a ] ) –!2

 append ( [] , L , L ).
append ( [ X | L1 ] , L2 , [ X | L3 ] )
            :-  append ( L1 , L2 , L3 ).

◊ Try  to match rule 1   append(L1_2, [a], [2,3,a])
    L1_2 = []     [a] = L_3     [2,3,a] = L_3

◊ 2 – Fail, try to match rule 2
    L1_2 = [X_4 | L1_4]     L2_4 = [a]   [2,3,a] = [X_4 | L3_4]
» Succeed with   X_4 = 2    L2_4 = [a]    L3_4 = [3,a]

◊ Try  to match rule 1   append(L1_4, [a], [3,a])
    L1_4 = []     [a] = L_5     [3,a] = L_5
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Trace – append ( P, [ a ] , [ 1 , 2 , 3 , a ] ) –!3

 append ( [] , L , L ).
append ( [ X | L1 ] , L2 , [ X | L3 ] )
            :-  append ( L1 , L2 , L3 ).

◊ 3 – Fail, try to match rule 2
    L1_4 = [X_6 | L1_6]    [a] = L2_6   [3,a] = [X_6 | L3_6]
» Succeed with   X_6 = 3    L2_6 = [a]    L3_6 = [a]

◊ Try  to match rule 1   append(L1_6, [a], [a])
    L1_6 = []     [a] = L_7     [a] = L_7

◊ Succeed, recursion stops, backtrack and substitute values
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Trace – append ( P, [ a ] , [ 1 , 2 , 3 , a ] ) – 4

◊ In step 3
    L1 _4 = [ 3 | [] ] = [3]

◊ In step 2 we had
    L1_2 = [X_4 | L1_4]     L2_4 = [a]   [2,3,a] = [X_4 | L3_4]
» Succeed with   X_4 = 2    L2_4 = [a]    L3_4 = [3,a]
» and from Step 3   L1_4 = [3]
» Thus    L1_2 = [2, 3]

◊ In step 1 we had
    P = [X_2 | L1_2]    [a] = L2_2     [a,1,2,3] = [X_2 | L3_2]
» Succeed with  X_2 = 1     L2_2 = [a]     L3_2 = [2,3,a]
» and from Step 2   L1_2 = [2, 3]
» Thus    P = [1, 2, 3]
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delete ( I , L , R )

◊ R is the result of deleting item I from the list L.
 delete ( X , [ X | Y ] , Y ).

> Like saying L = ( cons  ( car L ) ( cdr L ) ) in Lisp

 delete ( X , [ Y | W ] , [ Y | Z ] )  :-  delete (X , W , Z ).
> Check the rest of the list if not the first item.

Analogous to
( cons  ( car  L )  ( recurse  ( cdr  L ) ) in Lisp
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prefix ( P , L )

◊ P is the prefix of the list L.   It can be defined using
append as follows.

 prefix ( P , L )  :-  append ( P ,  _  , L ).

> P is a prefix of L if something, including nil, can
be suffixed to P to form L.



UT-12© Gunnar Gotshalks

prefix ( P , L ) – 2

◊ We can define prefix in terms of itself as follows.

 List   PPPPPPXXXXX  ==>  XXXXX
 Prefix YYYYYY       -         Empty
        ^^^^^^  Check equality until Prefix is

exhausted.

◊ The base case is having the empty list as the prefix.
 prefix ( [] , _ ).

◊ The recursive case is having the first items on the prefix
and the list being the same and the reduced prefix and list
satisfy the prefix property.
 prefix ( [A | B ] , [ A | C ] )  :-  prefix ( B , C ).
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suffix ( S , L )

◊ S is the suffix of the list L.   It can be defined using append
as follows.

 suffix ( S , L )  :-  append ( _ , S , L ).

> S is a suffix of L if something, including nil, can
be prefixed to S to form L.
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suffix ( S , L ) –!2

◊ We can define suffix in terms of itself as follows.

 List   PPPPPPXXXXX  ==>  XXXXX
 Suffix       YYYYY       YYYYY
        ^^^^^^   Reduce the prefix part of the List.

◊ In the base case the suffix is the list.
 suffix ( L , L ).

◊ The recursive case is to reduce the size of the prefix of the
list.
 suffix ( S , [ _ | L ] )  :-  suffix ( S , L ).
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sublist ( S , L )

◊  S is a sublist of L can be defined using append as follows.

 sublist ( S , L )  :-  append ( _ , S , Lt ) ,
                               append ( Lt , _ , L ).

> S is a sublist of L if something, including nil,
can be prefixed to S to form the list Lt

> And something, including nil, can be suffixed to
Lt to form L.

◊ In other words, S is a sublist of L if there exists a prefix P
to S and a suffix T to S such that  L = P || S || T

> where || means concatenation.



UT-16© Gunnar Gotshalks

sublist(S,L)

◊ We can define sublist in terms of itself and prefix as
follows.

 List    PPPPSSSSSXXXXXX  ==>  SSSSSXXXXXX
 Sublist     YYYYY             YYYYY
         ^^^^     Reduce the prefix part of the List.

◊ In the base case the suffix is prefix of the list.
 sublist ( S , L )  :-  prefix ( S , L ).

◊ The recursive case is to reduce the size of the prefix of the
list.
 sublist (S , [ _ | L ] )  :-  sublist ( S , L ).


