Utility programs

In utilities.pro discussed at various times throughout rest of the course

Most are renamed with _op extension because they cannot be redefined in modern Prolog interpreters.

member (I, L)

\diamond Item I is a member of the list L .
> Reduce the list - second rule until first in list - first rule. or empty - no rule so fail -

> member $\left(X,\left[X I _\right]\right)$.
> member $\left(X,\left[I_{Z}\right]\right):-\operatorname{member}(X, Z)$.
\diamond Note the use of the anonymous variable _
» We do not care about the value of the rest in the first rule, nor the value of first in the second rule
> Typically use it when it is the only instance of that variable in the rule

append (L1, L2, R)

$\diamond R$ is the result of appending list $L 2$ to the end of list $L 1$. append ([], L, L).

- Appending to nil yields the original list.
append ([X I L1], L2 , [X I L3]) :- append (L1, L2, L3).
> Simultaneous recursive descent on L1 \& L3 first of the left list is the first of the result.

Pattern

L1 =abc L2 = $2345 \quad$ L3 $=a b c 2345$
Xabc2345 L1 II L2
Xabc2345 L3

append (L1, L2, R) - 2

\diamond Queries - ask for results in all combinations. Not like Java or C where functions are programmed for only one query
append ([1, 2, 3], [a, b, c], R).
$>$ What is the result of appending L1 and L2?
append (L1, $[a, b, c],[1,2,3, a, b, c])$.
$>$ What L1 gives $[1,2,3, a, b, c$] when appended with [a, b, c] ?
append ($[1,2,3]$, L2 , $[1,2,3, a, b, c])$.
> What L2 gives [1, 2, 3, a , b, c] when appended to [1, 2, 3]?

append (L1, L2, R) - 3

append (L1, L2 , [1, 2, 3, a , b, c]).
> What L1 and L2 gives [$1,2,3$, a, b, c] when L 2 is appended to L 1 ?
append (L1, L2, R).
$>$ What L1 and L2 give R? Infinite number of answers
append (Before, [Middle I After], List).
$>$ If middle is defined we can get the before and after append (Before , [4 I After] , [1,2,3,4,5,6,7]).

Trace - append (P, [a] , [1, 2, 3, a])

\diamond Variables are renamed every time a rule is used for matching

```
append ([], L, L ).
append([ XIL1], L2, [ X I L3 ])
                :- append( L1, L2, L3).
```

\diamond Try to match rule 1

$$
\mathrm{P}=[] \quad[\mathrm{a}]=\mathrm{L}_{-} 1 \quad[1,2,3, \mathrm{a}]=\mathrm{L}_{-} 1
$$

$\diamond 1$ - Fail, try to match rule 2

$$
\mathrm{P}=\left[\mathrm{X} _2 \mid \mathrm{L} 1 _2\right] \quad[\mathrm{a}]=\mathrm{L} 2 _2 \quad[1,2,3, \mathrm{a}]=\left[\mathrm{X} _2 \mid\right. \text { L3_2] }
$$

> Succeed with X_2 = $1 \quad$ L2_2 = [a] L3_2 = [2,3,a]

Trace-append ($\mathrm{P},[\mathrm{a}$],[1,2,3, a])-2

```
append ([], L , L ).
append([ XIL1 ], L2, [ X I L3 ])
    :- append( L1 , L2 , L3 ).
```

\diamond Try to match rule 1 append(L1_2, [a], [2,3,a])

$$
\mathrm{L} 1 _2=[] \quad[\mathrm{a}]=\mathrm{L} _3 \quad[2,3, \mathrm{a}]=\mathrm{L} _3
$$

$\diamond 2$ - Fail, try to match rule 2
L1_2 = [X_4 | L1_4] L2_4 = [a] [2,3,a] = [X_4 | L3_4]

》 Succeed with X_4=2 L2_4 = [a] L3_4 = [3,a]
\diamond Try to match rule 1 append(L1_4, [a], [3,a])

$$
\text { L1 } _4=[] \quad[a]=L _5 \quad[3, a]=L _5
$$

Trace-append (P, [a],[1,2,3, a])-3

```
append ([], L, L ).
append([ XIL1 ], L2, [ X I L3 ])
                :- append(L1, L2, L3).
```

$\diamond 3$ - Fail, try to match rule 2
L1_4 = [X_6 | L1_6] [a] = L2_6 [3,a] = [X_6 | L3_6]

》 Succeed with X_6=3 L2_6 = [a] L3_6 = [a]
\diamond Try to match rule 1 append(L1_6, [a], [a])

$$
\text { L1_6 = [] } \quad[\mathrm{a}]=\mathrm{L} _7 \quad[\mathrm{a}]=\mathrm{L} _7
$$

\diamond Succeed, recursion stops, backtrack and substitute values

Trace-append ($\mathrm{P},[\mathrm{a}$],[1, 2, 3, a]) - 4

\diamond In step 3

$$
\text { L1_4 = [} 3 \text { | []] = [3] }
$$

\diamond In step 2 we had

$$
\text { L1_2 = [X_4 | L1_4] L2_4 = [a] }[2,3, a]=\left[X _4 \mid \text { L3_4 }\right]
$$

》 Succeed with X_4 = 2 L2_4 = [a] L3_4 = [3,a]
> and from Step 3 L1_4 = [3]
» Thus L1_2 = [2, 3]
\diamond In step 1 we had

$$
P=\left[X _2 \mid L 1 _2\right] \quad[a]=L 2 _2 \quad[a, 1,2,3]=\left[X _2 \mid L 3 _2\right]
$$

> Succeed with X_2 = $1 \quad$ L2_2 = [a] L3_2 = [2,3,a]
> and from Step 2 L1_2 = [2, 3]
> Thus $P=[1,2,3]$

delete (I, L, R)

$\diamond R$ is the result of deleting item I from the list L.
delete ($\mathrm{X},[\mathrm{XI} \mathrm{Y}], \mathrm{Y}$).
> Like saying L = (cons (car L) (cdr L)) in Lisp
delete (X , [Y I W] , [Y I Z]) :- delete (X, W, Z).
> Check the rest of the list if not the first item. Analogous to
(cons (car L) (recurse (cdr L)) in Lisp

prefix (P, L)

$\diamond P$ is the prefix of the list L. It can be defined using append as follows.
prefix (P, L) :- $\operatorname{append}(\mathrm{P}, \quad, \quad \mathrm{L})$.
$>P$ is a prefix of L if something, including nil, can be suffixed to P to form L .

prefix (\mathbf{P}, \mathbf{L}) - $\mathbf{2}$

\diamond We can define prefix in terms of itself as follows.

List Prefix	PPPPPPXXXXX	==>	xxxxx
	YYYYYy	-	Empty
exhausted. ${ }^{\text {^^^^^^^ }}$ Check equality until Prefix is			

\diamond The base case is having the empty list as the prefix. prefix ([], _).
\diamond The recursive case is having the first items on the prefix and the list being the same and the reduced prefix and list satisfy the prefix property.
prefix ([AIB],[AIC]):- prefix (B,C).

suffix (S, L)

$\diamond S$ is the suffix of the list L. It can be defined using append as follows.
suffix (S, L) :- append (_, S L).
$>S$ is a suffix of L if something, including nil, can be prefixed to S to form L.

suffix (S, L) - 2

\diamond We can define suffix in terms of itself as follows.

List	PPPPPPXXXXX	$==>$
Suffix	XXXXX	
	^^^^^^^YYY	YYYYY
	Reduce the prefix part of the List.	

\diamond In the base case the suffix is the list.
suffix (L, L).
\diamond The recursive case is to reduce the size of the prefix of the list.

suffix (S , [_IL]) :- suffix (S , L).

sublist (S , L)

$\diamond S$ is a sublist of L can be defined using append as follows.

$$
\begin{aligned}
\text { sublist }(S, L):- & \text { append }(-, S, L t), \\
& \text { append }(L t,-, L) .
\end{aligned}
$$

$>S$ is a sublist of L if something, including nil, can be prefixed to S to form the list Lt
> And something, including nil, can be suffixed to Lt to form L.
\diamond In other words, S is a sublist of L if there exists a prefix P to S and a suffix T to S such that $L=P$ II S II T
> where II means concatenation.

sublist(S,L)

\diamond We can define sublist in terms of itself and prefix as follows.

| List PPPPSSSSSXXXXXX | $==>$ | SSSSSXXXXXX |
| :--- | :--- | :--- | :--- |
| Sublist \quad YYYYY | | YYYYY |

^^^^ Reduce the prefix part of the List.
\diamond In the base case the suffix is prefix of the list. sublist (S , L) :- prefix (S, L).
\diamond The recursive case is to reduce the size of the prefix of the list.
sublist (S , [_IL]) :- sublist (S , L).

