
UT-1© Gunnar Gotshalks

Utility programs

In utilities.pro discussed at various
times throughout rest of the course

Most are renamed with _op extension
because they cannot be redefined

in modern Prolog interpreters.

UT-2© Gunnar Gotshalks

member (I , L)

◊ Item I is a member of the list L.
> Reduce the list – second rule –

until first in list – first rule.
 or empty – no rule so fail –

 member (X , [X | _]).
 member (X , [_ | Z]) :- member (X , Z).

◊ Note the use of the anonymous variable _
» We do not care about the value of the rest in the

first rule, nor the value of first in the second rule
» Typically use it when it is the only instance of that

variable in the rule

UT-3© Gunnar Gotshalks

append (L1, L2 , R)

◊ R is the result of appending list L2 to the end of list L1.
 append ([] , L , L).

– Appending to nil yields the original list.
 append ([X | L1] , L2 , [X | L3])

 :- append (L1 , L2 , L3) .
> Simultaneous recursive descent on L1 & L3 first

of the left list is the first of the result.
 Pattern

 L1 = a b c L2 = 2 3 4 5 L3 = a b c 2 3 4 5
 X a b c 2 3 4 5 L1 || L2
 X a b c 2 3 4 5 L3

UT-4© Gunnar Gotshalks

append (L1 , L2 , R) – 2

◊ Queries –!ask for results in all combinations. Not like Java
or C where functions are programmed for only one query

 append ([1 , 2 , 3] , [a , b , c] , R).
> What is the result of appending L1 and L2?

 append (L1 , [a , b , c] , [1 , 2 , 3 , a , b , c]).
> What L1 gives [1 , 2 , 3 , a , b , c] when

appended with [a , b , c] ?
 append ([1 , 2 , 3] , L2 , [1 , 2 , 3 , a , b , c]).

> What L2 gives [1 , 2 , 3 , a , b , c] when
appended to [1 , 2 , 3] ?

UT-5© Gunnar Gotshalks

append (L1 , L2 , R) –!3

 append (L1 , L2 , [1 , 2 , 3 , a , b , c]).
> What L1 and L2 gives [1 , 2 , 3 , a , b , c] when

L2 is appended to L1?
 append (L1 , L2 , R).

> What L1 and L2 give R? Infinite number of
answers

 append (Before , [Middle | After] , List).
> If middle is defined we can get the before and

after
 append (Before , [4 | After] , [1,2,3,4,5,6,7]).

UT-6© Gunnar Gotshalks

Trace – append (P, [a] , [1 , 2 , 3 , a])

◊ Variables are renamed every time a rule is used for
matching
 append ([] , L , L).

append ([X | L1] , L2 , [X | L3])
 :- append (L1 , L2 , L3).

◊ Try to match rule 1
 P = [] [a] = L_1 [1,2,3,a] = L_1

◊ 1 – Fail, try to match rule 2
 P = [X_2 | L1_2] [a] = L2_2 [1,2,3,a] = [X_2 | L3_2]
» Succeed with X_2 = 1 L2_2 = [a] L3_2 = [2,3,a]

UT-7© Gunnar Gotshalks

Trace – append (P, [a] , [1 , 2 , 3 , a]) –!2

 append ([] , L , L).
append ([X | L1] , L2 , [X | L3])
 :- append (L1 , L2 , L3).

◊ Try to match rule 1 append(L1_2, [a], [2,3,a])
 L1_2 = [] [a] = L_3 [2,3,a] = L_3

◊ 2 – Fail, try to match rule 2
 L1_2 = [X_4 | L1_4] L2_4 = [a] [2,3,a] = [X_4 | L3_4]
» Succeed with X_4 = 2 L2_4 = [a] L3_4 = [3,a]

◊ Try to match rule 1 append(L1_4, [a], [3,a])
 L1_4 = [] [a] = L_5 [3,a] = L_5

UT-8© Gunnar Gotshalks

Trace – append (P, [a] , [1 , 2 , 3 , a]) –!3

 append ([] , L , L).
append ([X | L1] , L2 , [X | L3])
 :- append (L1 , L2 , L3).

◊ 3 – Fail, try to match rule 2
 L1_4 = [X_6 | L1_6] [a] = L2_6 [3,a] = [X_6 | L3_6]
» Succeed with X_6 = 3 L2_6 = [a] L3_6 = [a]

◊ Try to match rule 1 append(L1_6, [a], [a])
 L1_6 = [] [a] = L_7 [a] = L_7

◊ Succeed, recursion stops, backtrack and substitute values

UT-9© Gunnar Gotshalks

Trace – append (P, [a] , [1 , 2 , 3 , a]) – 4

◊ In step 3
 L1 _4 = [3 | []] = [3]

◊ In step 2 we had
 L1_2 = [X_4 | L1_4] L2_4 = [a] [2,3,a] = [X_4 | L3_4]
» Succeed with X_4 = 2 L2_4 = [a] L3_4 = [3,a]
» and from Step 3 L1_4 = [3]
» Thus L1_2 = [2, 3]

◊ In step 1 we had
 P = [X_2 | L1_2] [a] = L2_2 [a,1,2,3] = [X_2 | L3_2]
» Succeed with X_2 = 1 L2_2 = [a] L3_2 = [2,3,a]
» and from Step 2 L1_2 = [2, 3]
» Thus P = [1, 2, 3]

UT-10© Gunnar Gotshalks

delete (I , L , R)

◊ R is the result of deleting item I from the list L.
 delete (X , [X | Y] , Y).

> Like saying L = (cons (car L) (cdr L)) in Lisp

 delete (X , [Y | W] , [Y | Z]) :- delete (X , W , Z).
> Check the rest of the list if not the first item.

Analogous to
(cons (car L) (recurse (cdr L)) in Lisp

UT-11© Gunnar Gotshalks

prefix (P , L)

◊ P is the prefix of the list L. It can be defined using
append as follows.

 prefix (P , L) :- append (P , _ , L).

> P is a prefix of L if something, including nil, can
be suffixed to P to form L.

UT-12© Gunnar Gotshalks

prefix (P , L) – 2

◊ We can define prefix in terms of itself as follows.

 List PPPPPPXXXXX ==> XXXXX
 Prefix YYYYYY - Empty
 ^^^^^^ Check equality until Prefix is

exhausted.

◊ The base case is having the empty list as the prefix.
 prefix ([] , _).

◊ The recursive case is having the first items on the prefix
and the list being the same and the reduced prefix and list
satisfy the prefix property.
 prefix ([A | B] , [A | C]) :- prefix (B , C).

UT-13© Gunnar Gotshalks

suffix (S , L)

◊ S is the suffix of the list L. It can be defined using append
as follows.

 suffix (S , L) :- append (_ , S , L).

> S is a suffix of L if something, including nil, can
be prefixed to S to form L.

UT-14© Gunnar Gotshalks

suffix (S , L) –!2

◊ We can define suffix in terms of itself as follows.

 List PPPPPPXXXXX ==> XXXXX
 Suffix YYYYY YYYYY
 ^^^^^^ Reduce the prefix part of the List.

◊ In the base case the suffix is the list.
 suffix (L , L).

◊ The recursive case is to reduce the size of the prefix of the
list.
 suffix (S , [_ | L]) :- suffix (S , L).

UT-15© Gunnar Gotshalks

sublist (S , L)

◊ S is a sublist of L can be defined using append as follows.

 sublist (S , L) :- append (_ , S , Lt) ,
 append (Lt , _ , L).

> S is a sublist of L if something, including nil,
can be prefixed to S to form the list Lt

> And something, including nil, can be suffixed to
Lt to form L.

◊ In other words, S is a sublist of L if there exists a prefix P
to S and a suffix T to S such that L = P || S || T

> where || means concatenation.

UT-16© Gunnar Gotshalks

sublist(S,L)

◊ We can define sublist in terms of itself and prefix as
follows.

 List PPPPSSSSSXXXXXX ==> SSSSSXXXXXX
 Sublist YYYYY YYYYY
 ^^^^ Reduce the prefix part of the List.

◊ In the base case the suffix is prefix of the list.
 sublist (S , L) :- prefix (S , L).

◊ The recursive case is to reduce the size of the prefix of the
list.
 sublist (S , [_ | L]) :- sublist (S , L).

