
FDV-1© Gunnar Gotshalks

Examples of how a Functional
Program can be Developed

 From
 - an existing recursive program
 - analysis of input and output diagrams

FDV-2© Gunnar Gotshalks

Transpose a 2d-Matrix – 1

◊ 2-d matrix is represented as a list of rows all of the same
length

◊ For example
 1 2 3
 4 5 6
 7 8 9

◊ The transpose (swap rows and columns) of the above is
 1 4 7
 2 5 8
 3 6 9

--> ((1 2 3) (4 5 6) (7 8 9))

--> ((1 4 7) (2 5 8) (3 6 9))

FDV-3© Gunnar Gotshalks

Transpose a 2d-Matrix – 2

 (defun trans (theMatrix)
 (cond ((null (car theMatrix)) nil)
 (t (cons (firstOfEach theMatrix)
 (trans (restOfEach theMatrix))))
))

 (defun firstOfEach (theMatrix) ; Extract first of each row
 (cond ((null theMatrix) nil)

 (t (cons (caar theMatrix)
 (firstOfEach (cdr theMatrix))))
))

 (defun restOfEach (theMatrix) ; remove first of each row
 (cond ((null theMatrix) nil)
 (t (cons (cdar theMatrix)
 (restOfEach (cdr theMatrix))))
))

FDV-4© Gunnar Gotshalks

Transpose a 2d-Matrix – 3

◊ Analysis of the transpose program shows that trans invokes
firstOfEach to every decreasing rows (restOfEach)

◊ This is what maplist does

◊ So a first pass of trans becomes
 (defun trans (theMatrix)
 (maplist ‘firstOfEach theMatrix)
)
» (trans ‘((1 2 3) (4 5 6) (7 8 9))) ==> ((1 4 7) (4 7) (7))

◊ What went wrong?

FDV-5© Gunnar Gotshalks

Transpose a 2d-Matrix – 4

◊ Put a print statement in firstOfEach
 (defun firstOfEach (theMatrix) ; Extract first of each row

 (print theMatrix)
 (cond ((null theMatrix) nil)
 (t (cons (caar theMatrix) (firstOfEach (cdr theMatrix))))
))

◊ The output is
 ((1 2 3) (4 5 6) (7 8 9)) ; first call from maplist
 ((4 5 6) (7 8 9)) ; recursion
 ((7 8 9))
 NIL
 ((4 5 6) (7 8 9)) ; second call from maplist
 ((7 8 9)) ; recursion
 NIL
 ((7 8 9)) ; third call from maplist
 NIL ; recursion
 ((1 4 7) (4 7) (7)) ; the answer

FDV-6© Gunnar Gotshalks

Transpose a 2d-Matrix – 5

◊ maplist is removing the rows not the first of each row
because maplist is working on the matrix a row at a time
» Input is ((1 2 3) (4 5 6) (7 8 9)) -- one list of rows

◊ We want maplist to work on each row
» Input should be (1 2 3) (4 5 6) (7 8 9) -- three lists
» This is a common problem we want to remove the

outer parenthesis
» Recall that apply removes the outer level of

parenthesis when invoking a function on arguments

◊ Thus trans becomes
 (defun trans (theMatrix)

 (apply ‘maplist ‘firstOfEach theMatrix)
)

FDV-7© Gunnar Gotshalks

Transpose a 2d-Matrix – 6

◊ We try trans and get an error message such as
 Error: Expected 1 args but received 3 args
 Fast links are on: do (si::use-fast-links nil) for

debugging
 Error signalled by MAPLIST.
 Broken at FIRSTOFEACH

FDV-8© Gunnar Gotshalks

Transpose a 2d-Matrix – 7

◊ Ah! now we have one argument for each row as input to
firstOfEach but the function expects a single argument – a list
of rows
» Use the keyword &rest to gather all the arguments into

one.

 (defun firstOfEach (&rest theMatrix)
 (cond ((null theMatrix) nil)
 (t (cons (caar theMatrix)

 (firstOfEach (cdr theMatrix))))
))

FDV-9© Gunnar Gotshalks

Transpose a 2d-Matrix – 8

◊ We try trans and get infinite recursion – the print
statement shows the following for the first few lines
 ((1 2 3) (4 5 6) (7 8 9))
 (((4 5 6) (7 8 9))) ; list nested one deeper
 (NIL)
 (NIL)
 (NIL) goes on forever

FDV-10© Gunnar Gotshalks

Transpose a 2d-Matrix – 9

◊ Each recursive call to firstOfEach adds a layer of
parenthesis
» Again a common error –!we need to remove the

parenthesis before the recursive call – use apply

 (defun firstOfEach (&rest theMatrix)
 (cond ((null theMatrix) nil)
 (t (cons (caar theMatrix)

 (apply 'firstOfEach
 (cdr theMatrix))))
))

FDV-11© Gunnar Gotshalks

Transpose a 2d-Matrix – 10

◊ trans now works with the upper level being a functional
but firstOfEach is still recursive

 (defun trans (theMatrix)
 (apply ‘maplist ‘firstOfEach theMatrix)
)

 (defun firstOfEach (&rest theMatrix)
 (cond ((null theMatrix) nil)
 (t (cons (caar theMatrix)
 (apply ‘firstOfEach
 (cdr theMatrix))))
))

FDV-12© Gunnar Gotshalks

Transpose a 2d-Matrix – 11

◊ Notice that firstOfEach takes the first item from each
sublist
 (defun firstOfEach (&rest theMatrix)
 (cond ((null theMatrix) nil)
 (t (cons (caar theMatrix) (apply ‘firstOfEach
 (cdr theMatrix))))
))

◊ car gives the first of a list and mapcar will apply it to
every sublist in a list and collect the results in a list so we
have

 (defun firstOfEach (&rest theMatrix)
 (mapcar ‘car theMatrix)
)

FDV-13© Gunnar Gotshalks

Transpose a 2d-Matrix – 12

◊ We have two functionals for the solution
 (defun trans (theMatrix)
 (apply ‘maplist ‘firstOfEach theMatrix)
)

 (defun firstOfEach (&rest theMatrix)
 (mapcar ‘car theMatrix)
)

◊ Using lambda we can eliminate firstOfEach
 (defun trans (theMatrix)

 (apply ‘maplist #’(lambda (&rest theMatrix)
 (mapcar ‘car theMatrix))
 theMatrix)
)

FDV-14© Gunnar Gotshalks

Transpose a 2d-Matrix – 13

◊ But nothing beats creative insight and knowledge of
available operations

◊ The following gives the transpose

 (defun trans (theMatrix)
 (apply 'mapcar 'list theMatrix)
)

FDV-15© Gunnar Gotshalks

All pairs functional – 1

◊ We want the following functional
 allPairs : < <a, b, c> <1, 2, 3, 4> >
 ==>
 < <a,1> <a,2> <a,3> <a,4>
 <b,1> <b,2> <b,3> <b,4>
 <c,1> <c,2> <c,3> <c,4> >

◊ We make use of the ‘picture’ of the input and output to
infer a functional solution

input

output

FDV-16© Gunnar Gotshalks

All pairs functional – 2

◊ Looking at the functionals in the library it seems that
distribution may be useful

◊ Lets try it
 distl : < <a, b, c> <1, 2, 3, 4> >
 ==>
 < << a, b, c >, 1 > << a, b, c >, 2 > << a, b, c >, 3 > ... >

◊ Looks good but we want to distribute second argument over
the first

◊ rev could be used but we have distr
 distr : < <a, b, c> <1, 2, 3, 4> >
 ==>
 < < 1, < a, b, c > > < 2, < a, b, c > > < 3, < a, b, c > ... >

FDV-17© Gunnar Gotshalks

All pairs functional – 3

◊ We have
 distr : < <a, b, c> <1, 2, 3, 4> >
 ==>
 < < 1, < a, b, c > > < 2, < a, b, c > > < 3, < a, b, c > ... >

◊ If we distribute ‘right’ the numbers over each list we have
 < < <a , 1>, < b, 1>, <c, 1 > > ... >

◊ But examining the output we see that ‘a’ is repeated first not
the “1”
 < <a,1> <a,2> <a,3> <a,4>
 <b,1> <b,2> <b,3> <b,4>
 <c,1> <c,2> <c,3> <c,4> >

output

FDV-18© Gunnar Gotshalks

All pairs functional – 4

◊ What we need to do is to reverse the order of the
arguments so the letters are distributed first
 distr o [2 , 1] : < <a, b, c> <1, 2, 3, 4> >
 ==>
 < < a, < 1, 2, 3, 4 > > < b, < 1, 2, 3, 4 > > ... >

◊ Now if we apply distribute left to each sublist we have
 (a distl) : < < a, < 1, 2, 3, 4 > >

 < b, < 1, 2, 3, 4 > > ... >
 ==>
 < < < a, 1 > < a, 2 > < a, 3 > < a, 4 > >

 < < b, 1 > ... >

FDV-19© Gunnar Gotshalks

All pairs functional – 5

◊ So far we have
 (a distl) o distr o [2 , 1]
 ==>
 < < < a, 1 > < a, 2 > < a, 3 > < a, 4 > > < < b, 1 > ... >

◊ But we have the pairs nested within an extra pair of lists

◊ What we need to do is to reduce the lists into one using
append
 (/ append) :
 < < < a, 1 > < a, 2 > < a, 3 > < a, 4 > > < < b, 1 > ... >
 ==>
 < < a, 1 > < a, 2 > < a, 3 > < a, 4 > < b, 1 > ... >

FDV-20© Gunnar Gotshalks

All pairs functional – 6

◊ So the final function definition is
 allPairs ::= (/ append) o (a distl) o distr o [2 , 1]

◊ Other orderings are possible using other combinations of
swapping or not swapping the initial lists and using left or
right distribution for the second distribution
 allPairs ::= (/ append) o (a distr) o distr o [2 , 1]

 allPairs ::= (/ append) o (a distl) o distr

 allPairs ::= (/ append) o (a distr) o distr

