Functional Programming

also see the notes on functionals

History

$\diamond 1977$ Turing ${ }^{1}$ Lecture John Backus described functional programming
"The problem with 'current languages' is that they are word-at-a-time" ${ }^{2}$
> Notable exceptions then were Lisp and APL
> Now ML

- 1 Turing award is the Nobel prize of computer science.
- 2 "Word-at-a-time" translates to "byte-at-a-time" in modern jargon. A word typically held 2 to 8 bytes depending upon the type of computer.

Meaningful Units of Work

\diamond Work with operarations meaningful to the application, not to the underlying hardware \& software
> Analogy with word processing is not to work with characters and arrays or lists of characters
" But work with words, paragraphs, sections, chapters and even books at a time, as appropriate.

Requires Abstraction

\diamond Abstract out the control flow patterns
\diamond Give them names to easily reuse the control pattern
» For example in most languages we explicitly write a loop every time we want to process an array of data
» If we abstract out the control pattern, we can think of processing the entire array as a single operation

Example 1

\diamond Consider the inner product of two vectors

$$
\begin{aligned}
& <a 1, a 2, \ldots, a n>\oplus<b 1, b 2, \ldots, b n> \\
& ==>\left(a 1^{*} b 1+a 2^{*} b 2+\ldots+a n * b n\right)
\end{aligned}
$$

\diamond In Java or C/C++, the following is an algorithm

```
result = 0;
for (i=1,i<= n ,i++) {
    result = result + a[i]*b[i];
}
```

\diamond Note the explicit loop (or recursion) and introduction of variables result, i and n (have to explicitly know the length of the vectors

Example 1 - FP form

\diamond innerProduct $::=(/+) \circ(\square \mathrm{x}) \circ$ trans
\diamond Note the following properties of functional programs
» NO explicit loops (or recursion)
» NO sequencing at a low level
> NO local variables
\diamond In addition, functional programs have the following properties
» functions as input - in the above
> + (plus), x (times)
》 functions as output - not shown in the above
$>$ In FP frequently write functions that produce a new function using other functions as input

Evaluating (/+) ○ (\quad x) ○ trans

\diamond Apply the function to a single argument consisting of a list of the actual arguments.
innerProduct : <<a1, ... , an ><b1, ... bn >>
\diamond Work from right to left - 0 is function compostion

$$
f \circ g: x==>f(g(x))
$$

\diamond Thus we execute trans first - which means the transpose of a matrix - swap rows and columns

$$
\begin{aligned}
& \text { trans :<<a1, ... an }><\text { b1, ... bn } \gg \\
& ==>\ll a 1, \text { b1>< a2, b2 }>\ldots<a n, \text { bn } \gg
\end{aligned}
$$

Evaluating (/ +) ○ ($\square \mathrm{x}$) ○ trans - 2

\diamond Now execute ($\square \mathbf{x}$)
" (\square x) - read as apply times to all - means apply the function x (times) to all items in the arugment list (\square x) : \ll a1, b1> < a2, b2 > ... < an, bn >> ==> < a1 x b1, a2 x b2, ..., an x bn >
\diamond Now execute (/ +)
》 (/ +) - read as reduce using + - means put the function + (plus) between the arguments and apply from left to right

$$
\begin{aligned}
& (/+):<a 1 \times b 1, \text { a2 } \times \text { b2, ... , an } \times \text { bn > } \\
& ==><a 1 \times b 1+a 2 \times b 2+\ldots+\text { an } \times \text { bn > }
\end{aligned}
$$

\diamond And we have the inner product

Backus notation (BN) and Lisp

\diamond Data structures - the list

$$
\begin{aligned}
& >\operatorname{Lisp}-(\mathrm{a} b \mathrm{c} d) \\
& B N-\langle a, b, c, d\rangle
\end{aligned}
$$

$>$ The list is a fundamental structure we will see it again in Prolog
\diamond Selector functions
> Lisp - car / first, cdr / rest BN - tail (equivalent to rest), 1, 2, 3, ... as needed or implemented, select item from the list
\diamond Constructor functions
" Lisp - cons
BN - [f-1, f-2 , ... , f-n] - each f-i operates on the input to produce a list as output

Backus notation (BN) and Lisp - 2

\diamond Choice - if ... then ... else ...

$$
\begin{gathered}
>\text { Lisp - (cond (p.1 } \\
\text { s.1-1 } \\
\text { (p.1-2 }
\end{gathered} \text {.... s.1-p) }
$$

» BN - predicate --> function-true ; function-else

Backus notation (BN) and Lisp - 3

\diamond Function application

$$
\begin{aligned}
& >\text { Lisp - (f x1 ... xn) (apply f(x1 ... xn)) (funcall f x1 ... xn) } \\
& \text { BN - f:<x1, ... xn > }
\end{aligned}
$$

\diamond Mapping functions

$$
\begin{aligned}
& \text { > Lisp - (map f...) (mapcar f...) (maplist f ...) } \\
& \text { BN - (} \square \mathrm{f})
\end{aligned}
$$

\diamond Other functions

Function

Reduction	Composition	Binding	Constant
» Lisp - (reduce $\mathrm{f} x)$	$($ comp fg$)$	$($ bu fk) $)$	literal
$\mathrm{BN}-(/ \mathrm{f})$	fog	$($ bufk)	k

Library of functions

\diamond Depending upon the application area other functions are created.
" For example trans - transpose a matrix
\diamond Some are created using existing functionals
» For example innerProduct

Library of functions - 2

\diamond Others are created "outside" of the system for efficiency reasons

" For example trans may be more efficient to implement outside of Lisp

- Although as compiler knowledge grows compilers produce more efficient code than "coding by hand"
- Machine speeds increase so many functions execute fast enough
\diamond The file prism:/cs/course/functionals.lsp contains additional library functions

Binding function - bu - 1

\diamond Given a binary function it is often useful to bind the first parameter to a constant - creating a unary function
> Also called currying after the mathematician Curry who developed the idea
" (bu ‘+3) - creates a unary "add 3" from the binary function "+"

$$
\text { (mapcar (bu ‘+ 3) '(1 } 2 \text { 3)) }==>\left(\begin{array}{ll}
4 & 5
\end{array}\right)
$$

》Cons x before every item in a list (mapcar (bu 'cons 'x) '(123)) ==> ((x.1) (x.2) (x.3))
» Note that mapcar expects a function definition as the second argument, so we use bu to help construct the function

Binding function - bu - 2

\diamond We could define the function $3+$
(define 3+ (x) (+3x))
> and use
(mapcar '3+ '(1 2 3)) ==> (4 5 6)
> but this adds to our name space
\diamond For use-once functions we can use lambda expressions
(mapcar \#'(lambda (x) (+ 3 x)) '(1 2 3)) ==> (4 5 6)
(mapcar (function

Binding function - bu - 3

\diamond The previous slide solutions are seen as being clumsy and more difficult to read compared to the following - bu has a clear meaning - with the above you have to reverse engineer to understand
(mapcar (bu ' +3 3) '(1 2 3)) ==> (4 5 6)
\diamond Can define functions using bu
(defun 3+ (y) (funcall (bu ‘+ 3) y))
In such cases we would write
(defun 3+ (y) (+ 3 y))
We do not normally use bu to define named functions

Binding function - bu - 4

$\diamond B U$ is defined as follows
(defun bu (f x)
\#'(lambda (y) (funcall f x y))
)
$>$ The long form
(defun bu (f x)
(function (lambda (y) (funcall fxy)))
)
\diamond BU uses a function as input and produces a function as output

Binding function - bu - 5

\diamond How does Lisp represent the output of bu?
\diamond In gcl you can see what takes place

" (bu '+ 3)

(LAMBDA-CLOSURE ((X 3) (F +)) () ((BU BLOCK \#<@001E8D10>))
(Y)
(FUNCALL F X Y)
)
\diamond We see the parameter and body from the definition of bu together with the bindings ((X 3) (F +))
\diamond The closure adds the bindings to the environment so the body uses those bindings when it executes.

The Functional rev

\diamond rev - reverse the order of the arguments of a binary function (defun rev (f)
\#'(lambda (x y) (funcall fy x))
)
\diamond Earlier we wrote
(mapcar (bu 'cons 'x) '(123)) $==>((x .1)(x .2)(x .3))$
\diamond Suppose we want ((1.x) (2.x) (3.x)) then we write
(mapcar (bu (rev 'cons) 'x) '(1 2 3))
$==>$ ((1.x) (2.x) (3.x))

Other Functionals in the notes $\mathbf{- 1}$

\diamond In prism:/cs/course/3401/functionals.lsp and the notes on functionals the following functionals are described
\diamond (comp unaryFunction1 unaryFunction2)
$>$ Compose two unary functions
\diamond (compl unaryFunction1 unaryFunction2 ... unaryFunctionN)
> Compose a list of unary functions
\diamond (trans matrix)
> See slides on developing functional programs

Other Functionals in the notes - 2

\diamond (distl anltem theList)
> Distribute anltem to the left of items in theList
(distl ‘a ‘(1 2 3)) ==> ((a 1) (a 2) (a 3))
\diamond (distr anltem theList)
> Distribute anltem to the right of items in theList
(distr 'a '(1 2 3)) ==> ((1 a) (2 a) (3 a))

Inner Product - 1 argument versions

\diamond Lisp recursive version
(defun innerProduct (a-b-pair)

$$
\begin{aligned}
& \text { (cond ((null (car a-b-pair)) } 0) \\
& \qquad \begin{array}{l}
(\mathrm{t}(+ \text { * (caar a-b-pair })(\text { caadr a-b-pair }))^{(\text {innerProduct }(\text { list }(\text { cdar a-b-pair })} \\
(\text { cdadr a-b-pair })))))
\end{array}
\end{aligned}
$$

))

Inner Product - 1 argument versions - 2

\diamond Lisp functional version
(defun innerProduct (a-b-pair)

Matrix multiplication

\diamond Lisp 2-argument version
(defun matProd (ab)
(mapcar (bu 'prodRow (trans b)) a))
(defun prodRow (bt r) (mapcar (bu 'ip r) bt))
> ip is the inner product (see previous slide)
\diamond Backus notation version
matProd ::= ($\square \square$ ip) 0 (\square distl) o distr o [1 , trans 02]

