Strong Induction and WellOrdering

Strong induction

When we cannot easily prove a result using mathematical induction, strong induction can often be used to prove the result.

Strong induction

Assume $\mathrm{P}(\mathrm{n})$ is a propositional function.

Principle of strong induction:

To prove that $P(n)$ is true for all positive integers n we complete two steps

1. Basis step:

Verify $\mathrm{P}(1)$ is true.
2. Inductive step:

Show $[P(1) \wedge P(2) \wedge \ldots \wedge P(k)] \rightarrow P(k+1)$ is true for all positive integers k.

Strong induction

Basis step: P(1)
Inductive step: $\forall \mathrm{k}([\mathrm{P}(1) \wedge \mathrm{P}(2) \wedge \ldots \wedge \mathrm{P}(\mathrm{k})] \rightarrow \mathrm{P}(\mathrm{k}+1))$
Result: $\forall \mathrm{n} P(\mathrm{n}) \quad$ domain: positive integers

1. $P(1)$
2. $\forall k([P(1) \wedge P(2) \wedge \ldots \wedge P(k)] \rightarrow P(k+1))$
3. $P(1) \rightarrow P(2)$
4. $P(2)$
by Modus ponens
5. $P(1) \wedge P(2)$
6. $P(1) \wedge P(2) \rightarrow P(3)$
7. $P(3)$
by Modus ponens

Strong induction VS. mathematical induction

\square Strong induction is a more flexible proof technique.
\square Mathematical induction and strong induction are equivalent.

Strong induction VS. mathematical induction

\square When to use mathematical induction.

- When it is straightforward to prove $\mathrm{P}(\mathrm{k}+1)$ from the assumption $\mathrm{P}(\mathrm{k})$ is true.
\square When to use strong induction.
- When you can see how to prove $P(k+1)$ from the assumption $P(j)$ is true for all positive integers j not exceeding k.

Example

Show that if n is an integer greater than 1 , then n can be written as the product of primes.
Proof by strong induction:
\square First define $P(n)$
$P(n)$ is n can be written as the product of primes.
\square Basis step: (Show $\mathrm{P}(2)$ is true.)
2 can be written as the product of one prime, itself. So, $\mathrm{P}(2)$ is true.

Example

Show that if n is an integer greater than 1 , then n can be written as the product of primes.
Proof by strong induction:
\square Inductive step: (Show $\forall k \geq 2([P(2) \wedge \ldots \wedge P(k)] \rightarrow P(k+1))$ is true.)

- Inductive hypothesis:
j can be written as the product of primes when $2 \leq j \leq k$.
- Show $P(k+1)$ is true.
\square Case 1: $(k+1)$ is prime.
If $k+1$ is prime, $k+1$ can be written as the product of one prime, itself. So, $\mathrm{P}(\mathrm{k}+1)$ is true.

Example

Show that if n is an integer greater than 1 , then n can be written as the product of primes.
Proof by strong induction:
\square Case 2: $(k+1)$ is composite.
$k+1=a \cdot b$ with $2 \leq a \leq b \leq k$
By inductive hypothesis, a and b can be written as the product of primes.
So, $k+1$ can be written as the product of primes, namely, those primes in the factorization of a and those in the factorization of b.

- We showed that $P(k+1)$ is true.

So, by strong induction $\forall n P(n)$ is true.

Example

Game:

- There the two piles of matches.
- Two players take turns removing any positive number of matches they want from one of the two piles.
- The player who removes the last match wins the game.
Show that if two piles contain the same number of matches initially, the second player always guarantees a win.

Example

Proof by strong induction:

\square First define $P(n)$
$P(n)$ is "player 2 can win when there are initially n matches in each pile".
\square Basis step: (Show $\mathrm{P}(1)$ is true.) When $n=1$, player 1 has only one choice, removing one match from one of the piles, leaving a single pile with a single match, which player 2 can remove to win the game.
So, $\mathrm{P}(1)$ is true.

Example

Proof by strong induction:

\square Inductive step: (Show $\forall k([P(1) \wedge P(2) \wedge \ldots \wedge P(k)] \rightarrow P(k+1))$ is true.)

- Inductive hypothesis:
$\mathrm{P}(\mathrm{j})$ is true when $1 \leq \mathrm{j} \leq \mathrm{k}$.
Player 2 can win the game when there are j matches in each pile.
- Show $P(k+1)$ is true.

We need to show $P(k+1)$ is true.
$P(k+1)$ is "Player 2 can win the game when there are $k+1$ matches in each pile".

Example

Proof by strong induction:

- Assume there are $k+1$ matches in each pile.
- Case 1: Player 1 removes $k+1$ from one of the piles.
\square Player 2 can win by removing the remaining matches from the other pile.
- Case 2: Player 1 removes r matches from one of the piles. ($1 \leq r \leq k)$.
\square So, $k+1-r$ matches are left in this pile.
\square Player 2 removes r matches from the other pile.
\square Now, there are two piles each with $k+1-r$ matches.
\square Since $1 \leq k+1-r \leq k$, by inductive hypothesis, Player 2 can win the game.
- We showed that $P(k+1)$ is true.

So, by strong induction $\forall n P(n)$ is true.

Strong induction

Sometimes $\mathrm{P}(\mathrm{n})$ is true for all integer n with $\mathrm{n} \geq \mathrm{b}$.
Strong induction:
\square Basis step:

- Show $P(b), P(b+1), \ldots, P(b+j)$ are true.
\square Inductive step:
- Show $(P(b) \wedge P(b+1) \wedge \ldots \wedge P(k)) \rightarrow P(k+1)$ is true for every positive integer $k \geq b+j$.

Example

Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps.
Proof by strong induction:
$\square \quad$ First define $P(n)$ $P(n)$ is "Postage of n cents can be formed using 4-cent and 5cent stamps".
$\square \quad$ Basis step: (Show $\mathrm{P}(12), \mathrm{P}(13), \mathrm{P}(14)$ and $\mathrm{P}(15)$ are true.)
$P(12)$ is true, because postage of 12 cents can be formed by three 4-cent stamps.
$P(13)$ is true, because postage of 13 cents can be formed by three 4-cent stamps and one 5-cent stamp.
$P(14)$ is true, because postage of 14 cents can be formed by two 5-cent stamps and one 4-cent stamp.
$P(15)$ is true, because postage of 15 cents can be formed by three 5-cent stamps.

Example

Prove that every amount of postage of 12 cents or more can be formed using just 4 -cent and 5 -cent stamps.
Proof by strong induction:
\square Inductive step: (Show $\forall \mathrm{k} \geq 12([\mathrm{P}(12) \wedge \mathrm{P}(13) \wedge \ldots \wedge \mathrm{P}(\mathrm{k})] \rightarrow$ $P(k+1)$) is true.)

- Inductive hypothesis:
$P(j)$ is true when $12 \leq j \leq k$ and $k \geq 15$.
The postage of j cents can be formed can be formed using just 4 -cent and 5 -cent stamps.
- Show $P(k+1)$ is true.
$P(k+1)$ is "The postage of $k+1$ cents can be formed using just 4-cent and 5-cent stamps".

Example

Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps.
Proof by strong induction:

- Since $12 \leq k-3 \leq k, P(k-3)$ is true by inductive hypothesis.
- So, postage of $k-3$ cents can be formed using just 4-cent and 5-cent stamps.
- To form postage of $k+1$ cents, we need only add another 4cent stamp to the stamps we used to form postage of $k-3$ cents.
\square We showed $P(k+1)$ is true.
So, by strong induction $\forall n P(n)$ is true.

Well-ordering

The well-ordering property:
Every non-empty set of nonnegative integers has a least element.

Example

Use the well-ordering property to prove if a is an integer and d is a positive integer, then there are unique integers q and r with $0 \leq r<d$ and $a=d q+r$.
Proof by well-ordering:
\square We want to show that there are unique q and r.
$\square r=a-d q$
\square Let S be the set of nonnegative integers of the form adq, where q is an integer.
$\square S$ is non-empty.

- If $q<0$, then $a-d q \geq 0$ and $a-d q \in S$.
\square By the well-ordering property, S has a least element nonnegative integer $\mathrm{r}=\mathrm{a}-\mathrm{dq}_{0}$.

Example

Use the well-ordering property to prove if a is an integer and d is a positive integer, then there are unique integers q and r with $0 \leq r<d$ and $\mathrm{a}=\mathrm{dq}+\mathrm{r}$.
Proof by well-ordering:
\square If $r \geq d$, then $r=d+x$ where $0 \leq x<r$.

- $x+d=a-d q_{0}$
- $x=a-d\left(q_{0}+1\right)$
- So, $x \in S$ and $x<r$ contradicts the well-ordering property (r is a least element of S.)
- So, $\mathrm{r}<\mathrm{d}$.
$\square S$ So, there is integer r (a least element of S) that $r=a-d q$ with $0 \leq r<d$.
\square Also, there is integer q that $q=(a-r) / d$.
$\square \quad$ We showed that there exist integers r and q.
$\square \quad$ Show q and r are unique as exercise.

Well-ordering

The well-ordering property, the mathematical induction principle and strong induction are all equivalent

Example

Show that strong induction is a valid method of proof by showing that it follows from the well-ordering property.

Solution:

\square Assume we showed $\forall \mathrm{n} P(\mathrm{n})$ using strong induction.

- Basis step: $\mathrm{P}(1)$ is true.
- Inductive step: $\forall k([P(1) \wedge P(2) \wedge \ldots \wedge P(k)] \rightarrow P(k+1))$ is true.
$\square \quad$ Assume strong induction is not valid (proof by contradiction), so \exists $n \neg P(n)$.
$\square \quad$ Let S be the set of counterexamples.
- $S=\{n \mid \neg P(n)\}$
\square So, $S \neq \varnothing$.
$\square \quad$ By well-ordering property, S has a least element x.
\square Since by basis step $P(1)$ is true, $1 \notin S$ and $x \neq 1$.

Example

Show that strong induction is a valid method of proof by showing that it follows from the well-ordering property.

Solution:

\square So, $x>1$ and $P(x)$ is false, since $x \in S$.
\square Also, $\forall j<x, P(j)$ is true.
\square By inductive step, $(P(1) \wedge P(2) \wedge \ldots \wedge P(x-1)) \rightarrow P(x)$.
$\square P(1) \wedge P(2) \wedge \ldots \wedge P(x-1)$ is true, so by Modus ponens $P(x)$ is true (which contradicts the fact that $x \in S$).
$\square \mathrm{So}, \mathrm{S}=\varnothing$.

Recommended exercises

$$
3,7,11,14,26,29,30,31,32,35,42
$$

