Introduction to proofs
Proofs are essential in mathematics and computer science.

Some applications of proof methods

- Proving mathematical theorems
- Designing algorithms and proving they meet their specifications
- Verifying computer programs
- Establishing operating systems are secure
- Making inferences in artificial intelligence
- Showing system specifications are consistent
- ...
Terminology

Theorem:
A statement that can be shown to be true.

Proposition:
A less important theorem.

Lemma:
A less important theorem that is helpful in the proof of other results.
Terminology

Proof:
A convincing explanation of why the theorem is true.

Axiom:
A statement which is assumed to be true.

Corollary:
A theorem that can be established easily from a theorem that has been proven.
Many theorems assert that a property holds for all elements in a domain.

Example:
If \(x>y \), where \(x \) and \(y \) are positive real numbers, then \(x^2 > y^2 \).

For all positive real numbers \(x \) and \(y \), if \(x>y \), then \(x^2 > y^2 \).

\[\forall x \forall y \ (R(x,y) \rightarrow S(x,y)) \text{ domain: all positive real numbers} \]
\[R(x,y): x>y \]
\[S(x,y): x^2 > y^2 \]
Theorem

How to prove $\forall x (R(x) \rightarrow S(x))$?

Universal generalization (review):

$\frac{P(c)}{\therefore \forall x P(x)}$

Show $R(c) \rightarrow S(c)$ where c is an arbitrary element of the domain.

Using universal generalization, $\forall x (R(x) \rightarrow S(x))$ is true.
Theorem

How to prove $\forall x (R(x) \rightarrow S(x))$?

Show $R(c) \rightarrow S(c)$ where c is an arbitrary element of the domain.

Conditional statement (review):

$p \rightarrow q$ is true unless p is true and q is false.

To show $p \rightarrow q$ is true, we need to show that if p is true, then q is true.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \rightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Direct proof

How to prove $\forall x (R(x) \to S(x))$?

Let c be any element of the domain.

Assume $R(c)$ is true.

$\text{S}(c)$ must be true.

These steps are constructed using

- Rules of inference
- Axioms
- Lemmas
- Definitions
- Proven theorems
- …
Direct proof (example)

Theorem:
If n is an odd integer, then n^2 is odd.

Proof:
Assume n is an odd integer.
By definition, \exists integer k,
such that $n = 2k + 1$

$n^2 = (2k + 1)^2$
$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$
Let $m = 2k^2 + 2k$.

$n^2 = 2m + 1$
So, by definition, n^2 is odd.
Direct proof (example)

Theorem:
If n and m are both perfect squares then nm is also a perfect square.

Proof:
Assume n and m are perfect squares. By definition, there exist integers s and t such that $n = s^2$ and $m = t^2$.

$$nm = s^2 t^2 = (st)^2$$

Let $k = st$.

$$nm = k^2$$

So, by definition, nm is a perfect square.

Definition:
An integer a is a perfect square if there exists an integer b such that $a = b^2$.
Proof techniques

Direct proof leads from the hypothesis of a theorem to the conclusion.

Proofs of theorems that do not start with the hypothesis and end with the conclusion, are called **indirect proofs**.
Proof by contraposition

In a proof by contraposition of $p \rightarrow q$, we take $\neg q$ as a hypothesis and we show that $\neg p$ must follow.

Proof by contraposition is an indirect proof.
Proof by contraposition

Proof by contraposition of \(p \rightarrow q \):

Assume \(\neg q \) is true.

\[\neg p \text{ must be true.} \]

These steps are constructed using
- Rules of inference
- Axioms
- Lemmas
- Definitions
- Proven theorems
- …
Proof by contraposition (example)

Theorem:
If n is an integer and 3n+2 is odd, then n is odd.

Proof (by contraposition):
Assume n is even.

∃ integer k, such that n = 2k

3n+2 = 3(2k)+2 = 2(3k+1)

Let m = 3k+1.

3n+2 = 2m

So, 3n+2 is even.

By contraposition, if 3n+2 is odd, then n is odd.
Proof by contraposition (example)

Theorem:
If \(n = ab \), where \(a \) and \(b \) are positive integers, then \(b \leq \sqrt{n} \) or \(a \leq \sqrt{n} \).

Proof (by contraposition):
Assume \(b > \sqrt{n} \) and \(a > \sqrt{n} \).
\[
ab > (\sqrt{n}) \cdot (\sqrt{n}) = n
\]
So, \(n \neq ab \).
By contraposition, if \(n = ab \), then \(b \leq \sqrt{n} \) or \(a \leq \sqrt{n} \).
Example

Assume P(n) is “if $n > 0$, then $n^2 > 0$”. Show that P(0) is true.

Proof:

P(0) is “if 0>0, then $0^2 > 0$”. Since the hypothesis of P(0) is false, then P(0) is true.

Vacuous proof:
p→q is true when p is false.
Example

Assume P(n) is “if \(ab > 0 \), then \((ab)^n > 0\)”. Show that P(0) is true.

Proof:

P(0) is “if \(ab > 0 \), then \((ab)^0 > 0\)”.

\((ab)^0 = 1 > 0\)

Since the conclusion of P(0) is true, P(0) is true.

Trivial proof:

\(p \rightarrow q \) is true when q is true.
Example

Theorem:

The sum of two rational numbers is rational.

Proof:

Assume \(r \) and \(s \) are rational.

\[\exists p,q \quad r = \frac{p}{q}, \quad q \neq 0 \]

\[\exists t,u \quad s = \frac{t}{u}, \quad u \neq 0 \]

\[r+s = \frac{p}{q} + \frac{t}{u} = \frac{pu+tq}{qu} \]

Since \(q \neq 0 \) and \(u \neq 0 \) then \(qu \neq 0 \).

Let \(m=(pu+tq) \) and \(n=qu \) where \(n \neq 0 \).

So, \(r+s = \frac{m}{n} \), where \(n \neq 0 \).

So, \(r+s \) is rational.

Definition:

The real number \(r \) is rational if \(r=\frac{p}{q}, \) \(\exists \) integers \(p \) and \(q \) that \(q \neq 0 \).
Example

Theorem:
If n is an integer and \(n^2 \) is even, then n is even.

Direct proof or proof by contraposition?

Proof (direct proof):
Assume \(n^2 \) is an even integer.
\[n^2 = 2k \quad \text{(k is integer)} \]
\[n = \pm \sqrt{2k} \]
???
dead end!
Example

Theorem:
If n is an integer and n^2 is even, then n is even.

Direct proof or proof by contraposition?

Proof (proof by contraposition):
Assume n is an odd integer.

$n = 2k + 1$ \hspace{1cm} (k is integer)

$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$

Assume integer $m = 2k^2 + 2k$.

$n^2 = 2m + 1$

So, n^2 is odd.

By contraposition, If n^2 is even, then n is even.
Proof by contradiction

How to prove a proposition by contradiction?

☐ Assume the proposition is false.
☐ Using the assumption and other facts to reach a contradiction.
☐ This is another kind of indirect proof.
Proof by contradiction

Proof by contradiction of \(p \rightarrow q \):

Assume \(p \) and \(\neg q \) is true.

These steps are constructed using

- Rules of inference
- Axioms
- Lemmas
- Definitions
- Proven theorems
- …

Contradiction.

Proof by contradiction
Proof by contradiction (example)

Prove that $\sqrt{2}$ is not rational by contradiction.

Proof (proof by contradiction):

Assume $\sqrt{2}$ is rational.

$\exists a,b \; \sqrt{2} = \frac{a}{b} \; b \neq 0$

If a and b have common factor, remove it by dividing a and b by it

$2 = \frac{a^2}{b^2}$

$2b^2 = a^2$

So, a^2 is even and by previous theorem, a is even.

$\exists k \; a = 2k.$

$2b^2 = 4k^2$

$b^2 = 2k^2$

So, b^2 is even and by previous theorem, b is even.

$\exists m \; b = 2m.$

So, a and b have common factor 2 which contradicts the Assumption.

Definition:

The real number r is rational if $r = \frac{p}{q}$, \exists integers p and q that $q \neq 0$.
Proof by contradiction (example)

Prove if \(3n+5\) is even then \(n\) is odd.

Proof (proof by contradiction):

Assume \(3n+5\) is even and \(n\) is even.

\[n = 2k\] (\(k\) is some integer)

\[3n+5 = 3(2k) + 5 = 6k + 5 = 2(3k + 2) + 1\]

Assume \(m = 3k+2\).

\[3n+5 = 2m + 1\]

So, \(3n+5\) is odd.

Assume \(p\) is “\(3n+5\) is even ”.

\[p \land \neg p\] is a contradiction.

By contradiction, if \(3n+5\) is even then \(n\) is odd.
Proof by contradiction (example)

Prove if n^2 is odd then n is odd.

Proof (proof by contradiction):

Assume n^2 is odd and n is even.

\exists integer $k \quad n = 2k$

$n^2 = 4k^2 = 2(2k^2)$

Let $m = 2k^2$.

$n^2 = 2m$

So, n^2 is even.

Let p is “n^2 is odd”.

$p \land \neg p$ is a contradiction.

By contradiction, if n^2 is odd then n is odd.
Proofs of equivalences

How to prove $p \iff q$?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>$p \iff q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

$p \iff q \equiv (p \implies q) \land (q \implies p)$
Proofs of equivalences

How to prove $p \iff q$?

We need to prove

- $p \implies q$
- $q \implies p$
Proofs of equivalences

How to prove $p \iff p_1 \iff p_2 \iff \ldots \iff p_n$?

$p \iff p_1 \iff p_2 \iff \ldots \iff p_n \equiv (p_1 \rightarrow p_2) \land (p_2 \rightarrow p_3) \land \ldots \land (p_{n-1} \rightarrow p_n) \land (p_n \rightarrow p_1)$

We need to prove

- $p_1 \rightarrow p_2$
- $p_2 \rightarrow p_3$
- ...
- $p_{n-1} \rightarrow p_n$
- $p_n \rightarrow p_1$
Proofs of equivalences (example)

\(\neg p \land \neg q \) is true if and only if \(\neg (p \lor q) \) is true.

Proof:

Part1: if \(\neg p \land \neg q \) is true then \(\neg (p \lor q) \) is true.

- \(\neg p \land \neg q \) is true.
- \(\neg p \) is true and \(\neg q \) is true.
- \(p \) is false and \(q \) is false.
- \(p \lor q \) is false.
- \(\neg (p \lor q) \) is true.
Proofs of equivalences (example)

\(-p \land \neg q\) is true if and only if \(- (p \lor q)\) is true.

Proof:

Part2: if \(- (p \lor q)\) is true then \(-p \land \neg q\) is true.

- \(- (p \lor q)\) is true.
- \(p \lor q\) is false.
- \(p\) is false and \(q\) is false.
- \(-p\) is true and \(-q\) is true.
- \(-p \land \neg q\) is true.
Proofs of equivalences (example)

Show these statements about integer n are equivalent:

p: n is odd.
q: $n+1$ is even.
r: n^2 is odd.

How to prove it?

$p \iff q \iff r \equiv (p \rightarrow q) \land (q \rightarrow r) \land (r \rightarrow p)$
Proofs of equivalences (example)

Show these statements about integer \(n \) are equivalent

- \(p: n \) is odd.
- \(q: n+1 \) is even.
- \(r: n^2 \) is odd.

Proof:

1. \(p \rightarrow q: \) if \(n \) is odd then \(n+1 \) is even. (direct proof)

\[
\begin{align*}
\text{n is odd.} & \quad n = 2k + 1 \\
n+1 = 2k+2 = 2(k+1) & \quad m = k + 1 \\
n+1 = 2m & \quad n+1 \text{ is even.}
\end{align*}
\]
Proofs of equivalences (example)

Show these statements about integer \(n \) are equivalent
p: \(n \) is odd.
q: \(n+1 \) is even.
r: \(n^2 \) is odd.

Proof:
2. \(q \rightarrow r: \) if \(n+1 \) is even then \(n^2 \) is odd. (direct proof)

\[
\begin{align*}
n+1 & \text{ is even.} \\
n & = 2k-1 \\
n^2 & = 4k^2-4k+1 = 2(2k^2-2k)+1 \\
n^2 & = 2m+1
\end{align*}
\]

\(m = 2k^2-2k \)

\(n^2 \) is odd.
Proofs of equivalences (example)

Show these statements about integer \(n \) are equivalent

\(p: n \) is odd.
\(q: n+1 \) is even.
\(r: n^2 \) is odd.

Proof:

3. \(r \rightarrow p: \) if \(n^2 \) is odd then \(n \) is odd.
 by previous example
Counterexample (review)

- How to show $\forall x \, P(x)$ is false?
 find a counterexample
Counterexample (example)

Show “every positive integer is a sum of the squares of two integers.” is false.

Proof:
3 cannot be written as the sum of the squares of two integers.
Because only squares not exceeding 3 are $0^2 = 0$ and $1^2 = 1$.
There is no way to get 3 as the sum of these squares.
Recommended exercises

1, 3, 7, 9, 10, 11, 15, 17, 25, 27, 33, 39