
1 CSE6390A Oct 08

Prolog Overview

Yves Lespérance
(Some material comes from Peter

 Roosen-Runge)

2 CSE6390A Oct 08

Prolog idea

  programming language based on first
-order Horn theories, SLD resolution

  search strategy is fixed:depth-first, left
 to right, top to bottom

  programmer uses this to order search,
 is responsible for efficiency and
 termination

  good for symbolic computing

3 CSE6390A Oct 08

syntax of terms

  variables begin with upper-case letter or _
  constants and functors (function and predicate

 symbols) begin with lower-case
  E.g. john, john_smith, X, Node, _person,

 ’CSE’, fatherOf(paul), date(25,10,2005)
  compound terms are called structures, e.g.

 course(complexity,time(monday
,9,11),lecturer(patrick,dymond),location(’CSE’
,3311))

4 CSE6390A Oct 08

E.g. program: family
 relations

  rules
parent(Parent, Child) :- mother(Parent, Child).
parent(Parent, Child) :- father(Parent, Child).
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

  facts
father('George', 'Elizabeth').
father('George', 'Margaret').
father(’Paul', ’George').
mother('Mary', 'Elizabeth').
mother('Mary', 'Margaret').

5 CSE6390A Oct 08

rules

  rules are definite clauses, or conditional
 statements.

  e.g.
 ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).
 i.e. ∀x∀y∀z(Ancestor(z,y) ∧ Parent(x,z) ⊃
 Ancestor(x,y)) or
 [Ancestor(x,y), ¬Ancestor(x,y),
 ¬Ancestor(x,y)].

  , represents conjunction and :- represents
 implication.

6 CSE6390A Oct 08

rules

  variables are universally quantified from
 outside; can think of variables that appear
 only in rule body as existentially quantified.

  a program is a set of rules/definite clauses.
  ; represents disjunction, e.g.

 parent(Parent, Child) :- mother(Parent, Child);
 father(Parent, Child).

7 CSE6390A Oct 08

facts

  facts are a special case of rules, definite
 clauses with no negative literals, i.e.
 atomic formulas.

  e.g. father('George', 'Elizabeth').

8 CSE6390A Oct 08

queries

  a query asks whether a (conjunction of)
 atomic formula is entailed by the program.

  ?- parent(X,’Elizabeth’).
 X = ’Mary’
 Yes

  this asks whether
 Program |= ∃x Parent(x, Elizabeth) or
 Program U {∀x ¬Parent(x, Elizabeth)} |- [].

  variables in queries can be viewed as
 existentially quantified, can be used to
 retrieve information.

9 CSE6390A Oct 08

simpler family relations e.g.

  rules
parent(Parent, Child) :- mother(Parent, Child).
parent(Parent, Child) :- father(Parent, Child).

  facts
father('George', 'Elizabeth'). father('George', 'Margaret').
mother('Mary', 'Elizabeth'). mother('Mary', 'Margaret').

10 CSE6390A Oct 08

unification

  unification is used to match queries with
 facts or the head or rules

  no fixed input or output parameters
  ?- parent(’Mary’,X).
 X = ’Elizabeth’
 Yes

11 CSE6390A Oct 08

finding all solutions
| ?- parent(Parent, Child).
Parent = 'Mary',
Child = 'Elizabeth' ;

Parent = 'Mary',
Child = 'Margaret' ;

Parent = 'George',
Child = 'Elizabeth' ;

Parent = 'George',
Child = 'Margaret' ;

no

12 CSE6390A Oct 08

search strategy/control

  Prolog searches to find a SLD resolution derivation of []
 from the query.

  it works on the literals in the query from left to right.
  it resolves the first literal in the query against the first

 rules that matches, and the instantiated body of the
 rule replaces that literal in the query

  if eventually [] is derived, the query succeeds and the
 instantiation of the variables is returned.

  if at some point in the search no rule matches, the
 current query fails and Prolog backtracks to that last
 rule choice, and tries the next rule that matches.

  amounts to backward chaining, depth-first, left to right
 search.

13 CSE6390A Oct 08

rules as procedures

  rule has form goal :- body
  goal or head is like name of procedure
  terms on the RHS are like the body of

 the procedure, the sub-goals that have
 to be achieved to show that the goal
 holds

  the sub-goals will be attempted left-to
-right

  rule succeeds if all sub-goals succeed

14 CSE6390A Oct 08

how prolog finds solutions

[trace] ?-
 parent(Parent, Child1),
 parent(Parent, Child2),
 not(Child1 = Child2).

 Call: (8) parent(_G313,
 _G314) ? creep

Call: (9) mother(_G313, _G314) ?
 creep

Exit: (9) mother('Mary',
 'Elizabeth') ? creep

Exit: (8) parent('Mary',
 'Elizabeth') ? creep

Call: (8) parent('Mary', _G317) ?
 creep

Call: (9) mother('Mary', _G317) ?
 creep

Exit: (9) mother('Mary',
 'Elizabeth') ? creep

Exit: (8) parent('Mary',
 'Elizabeth') ? creep

Redo: (9) mother('Mary', _G317) ?
 creep

Exit: (9) mother('Mary',
 'Margaret') ? creep

Exit: (8) parent('Mary',
 'Margaret') ? creep

Parent = 'Mary'
Child1 = 'Elizabeth'
Child2 = 'Margaret'

15 CSE6390A Oct 08

search control

  programmer can control search by
 ordering rules and goals in the body of
 rules.

  also can use ! (cut) as explained in
 textbook.

  not (negation as failure) can also be
 used to have a query succeed if
 another fails.

16 CSE6390A Oct 08

arithmetic functions

  Prolog retains arithmetic functions as functions (more
 intuitive):
 ?- X is exp(1). % exp(1) = e1

 X = 2.71828
 Yes
 ?- X is (4 + 2) * 5.
 X = 30
 Yes

  How does is compare with =, assignment?

17 CSE6390A Oct 08

operators

  some functors are represented by infix
 or prefix or postfix operators

  some infix operators: is, =, +, *, /,
 mod, >, >=, “:-”, “,”, etc.

  + and - are both prefix and infix
  :- as prefix is a command, used for

 declarations
  operators have precedence
  can define our own operators

18 CSE6390A Oct 08

arithmetic examples

factorial(0,1).
factorial(N,M):- K is N -1, factorial(K,L),

 M is N * L.

min(X,Y,X):- X =< Y, !.
min(X,Y,Y).

19 CSE6390A Oct 08

lists

  lists are a special kind of term that allows arbitrary
 number of components

  [] is the empty list
  .(a,b) is a dotted pair
  [a, b, c] = .(a,.(b,.(c,[]))) is a list of 3 components.
  the functor . builds binary trees (as in Lisp)
  can use display(X) to print internal representation of X

20 CSE6390A Oct 08

lists

  can refer to the first and rest of a list using the
 notation: [First | Rest]

  e.g. ?- X = [a,b,c], X = [F|R].
 X = [a,b,c]
 F = a
 R = [b,c]

  E.g. X = [b], Y = a, Z = [Y|X].
 X = [b]
 Y = a
 Z = [a,b]

21 CSE6390A Oct 08

e.g. append predicate

append([],L,L).
append([X|L1],L2,[X|L3]) :- append(L1,L2,L3).

?- append([a,b],[c],X).
X = [a, b, c]

Yes
?- append(X,[c],[a,b,c]).
X = [a, b]

Yes
?- append([a,b],[c],[a,b,d]).

No

22 CSE6390A Oct 08

more append examples

?- append([a,b],X,Y).
X = _G187
Y = [a, b|_G187]
Yes
?- append(X,Y,Z).
X = []
Y = _G181
Z = _G181 ;

X = [_G262]
Y = _G181
Z = [_G262|_G181] ;

X = [_G262, _G268]
Y = _G181
Z = [_G262, _G268|_G181]

append is an example of a reversible or steadfast predicate (Richard O’Keefe)

23 CSE6390A Oct 08

building a knowledge base

  to be used in a computation, facts and
 rules must be stored in the (dynamic)
 database

  facts and rules get into the database
 through assertion and consultation

  consultation loads facts and rules from
 a file

24 CSE6390A Oct 08

assertion

  ?- assert(human(ulyssus)).
  ?- human(X).
 X = ulyssus
 Yes

  assertion can be done dynamically
  also retract to remove facts and rules

 from the DB
  like assignment, change state; avoid

 when possible

25 CSE6390A Oct 08

consultation

  ?- consult(’family.pl’).
 loads facts and rules from file family.pl

  ?- [family].
 does the same thing

  ?- [user].
 lets you enter facts and rules from the
 keyboard

26 CSE6390A Oct 08

help is sometimes helpful

?- help(reverse).
reverse(+List1, -List2)
 Reverse the order of the elements in List1 and unify the

 result with the elements of List2.

+arg: arg is input and should be instantiated.
-arg: arg is output and can be initially uninstantiated; if the

 query succeeds, the arg is instantiated with the "output" of
 the query.

?arg: arg can be either input or output

27 CSE6390A Oct 08

online help

?- help(lists).
No help available for lists
Yes
?- apropos(lists).
merge/3 Merge two sorted lists
append/3 Concatenate lists
Section 11-1 "lists: List Manipulation"
Section 15-2-1 "lists”
Yes
?- help(append/3).
append(?List1, ?List2, ?List3)

 Succeeds when List3 unifies with the concatenation of List1 and
 List2. The predicate can be used with any instantiation pattern
 (even three variables).

28 CSE6390A Oct 08

e.g. solving a logic puzzle

29 CSE6390A Oct 08

the zebra puzzle

1.  There are 5 houses, occupied by politically-incorrect
 gentlemen of 5 different nationalities, who all have different
 coloured houses, keep different pets, drink different drinks,
 and smoke different (now-extinct) brands of cigarettes.

2.  The Englishman lives in a red house.
3.  The Spaniard keeps a dog.
4.  The owner of the green house drinks coffee.
…
6.  The ivory house is just to the left of the green house.
…
11.  The Chesterfields smoker lives next to a house with a fox.

Who owns the zebra and who drinks water?

30 CSE6390A Oct 08

Prolog implementation

  represent the 5 houses by a structure of
 5 terms
 house(Colour, Nationality, Pet, Drink,
 Cigarettes)

  create a partial structure using
 variables, to be filled by the solution
 process

  specify constraints to instantiate
 variables

31 CSE6390A Oct 08

house building

makehouses(0,[]).

makehouses(N,[house(Col, Nat, Pet, Drk, Cig)|List])
 :- N>0, N1 is N - 1, makehouses(N1,List).

or more cleanly with anonymous variables:

makehouses(N,[house(_, _, _, _, _)|List])
 :- N>0, N1 is N - 1, makehouses(N1,List).

32 CSE6390A Oct 08

the empty houses

?- makehouses(5, List).

List = [house(_G233, _G234, _G235, _G236, _G237),
 house(_G245, _G246, _G247, _G248, _G249),
 house(_G257, _G258, _G259, _G260, _G261),
 house(_G269, _G270, _G271, _G272, _G273),
 house(_G281, _G282, _G283, _G284, _G285)]

33 CSE6390A Oct 08

constraints

  The Englishman lives in a red house.
 house(red, englishman, _, _, _) on List,

  The Spaniard keeps a dog.
 house(_, spaniard, dog, _, _) on List,

  The owner of the green house drinks coffee.
 house(green, _, _, coffee, _) on List

  The ivory house is just to the left of the green house
 sublist2([house(ivory, _, _, _, _)
 ,house(green, _, _, _, _)], List),

  The Chesterfields smoker lives next to a house with a fox.
 nextto(house(_, _, _, _, chesterfields),
 house(_, _, fox, _, _), List),

34 CSE6390A Oct 08

defining the on operator

  on is a user-defined infix operator that
 is a version of member/2

  :- op(100,zfy,on).
 X on List :- member(X,List).
 amounts to
 X on [X|_].
 X on [_|R]:- X on R.

See /cs/dept/course/2005-06/F/3401/zebra.pl

35 CSE6390A Oct 08

predicates for defining
 constraints

  “just to the left of”? “lives next to”?
  define sublist2(S,L)
 sublist2([S1, S2], [S1, S2 | _]) .
 sublist2(S, [_ | T]) :- sublist2(S, T).

  define nextto predicate
 nextto(H1, H2, L) :- sublist2([H1, H2], L).
 nextto(H1, H2 ,L) :- sublist2([H2, H1], L).

36 CSE6390A Oct 08

translating the constraints

  The ivory house is just to the left of the green house
 sublist2([house(ivory, _, _, _, _),

 house(green, _, _, _, _)], List),
  The Chesterfields smoker lives next to a house with a

 fox.
 nextto(house(_, _, _, _, chesterfields),
 house(_, _, fox, _, _), List),

37 CSE6390A Oct 08

looking for the zebra

  Who owns the zebra and who drinks water?
 find(ZebraOwner, WaterDrinker) :-
 makehouses(5, List),
 house(red, englishman, _, _, _) on List,
 … % all other constraints
 house(_, WaterDrinker, _, water, _) on List,

 house(_, ZebraOwner, zebra, _, _) on List.
  solution is generated and queried in the same

 clause
  neither water or zebra are mentioned in the

 constraints

38 CSE6390A Oct 08

solving the puzzle

?- [zebra].
% zebra compiled 0.00 sec, 5,360 bytes

Yes
?- find(ZebraOwner, WaterDrinker).

ZebraOwner = japanese
WaterDrinker = norwegian ;

No

39 CSE6390A Oct 08

how Prolog finds solution

After first 8 constraints:
List = [
house(red, englishman, snail, _G251, old_gold),
house(green, spaniard, dog, coffee, _G264),
house(ivory, ukrainian, _G274, tea, _G276),
house(green, _G285, _G286, _G287, _G288),
house(yellow, _G297, _G298, _G299, kools)]

40 CSE6390A Oct 08

how Prolog solves the puzzle

Then need to satisfy “the owner of the
 third house drinks milk”, i.e.

List = [_, _, house(_, _, _, milk, _),_, _],
Can’t be done with current instantiation of

 List. So Prolog will backtrack and find
 another.

41 CSE6390A Oct 08

how Prolog solves the puzzle

The unique complete solution is
L = [
house(yellow, norwegian, fox, water, kools),
house(blue, ukrainian, horse, tea, chesterfields),
house(red, englishman, snail, milk, old_gold),
house(ivory, spaniard, dog, orange, lucky_strike),
house(green, japanese, zebra, coffee, parliaments)]
See /cs/dept/course/2005-06/F/3401/zebra.pl

