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CSE 4201
Computer Architecture

Prof. Mokhtar Aboelaze
Parts of these slides are taken from 
Notes by Prof. David Patterson at UCB
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CSE4201

• Office hours
• Grading Policy

– HW
– Quizzes
– Midterm
– Final

• Text: Computer Architecture: QA 4th

edition
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Syllabus
• Introduction and performance
• Review –MIPS and pipelines
• ILP (Instruction Level Parallelism) and limits of 

ILP
• Multiprocessors and thread level parallelism
• Memory
• Storage Systems
• Network processor or Multi-Core systems 

(depending on time)
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Outline

• Historical prospective and new technology 
trends.

• Performance: How to measure it? What 
does it mean? 

• MIPS 5 stage pipelining and IS
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Historical Prospective
• Decade of 70’s (Microprocessors)

Programmable Controllers, Single Chip Microprocessors, 
Personal Computers

• Decade of 80’s (RISC Architecture)
Instruction Pipelining, Fast Cache Memories, Compiler

Optimizations

• Decade of 90’s (Instruction Level Parallelism)
Superscalar Processors, Aggressive Code Scheduling, Low 

Cost Supercomputing, Out of Order Execution

• Decade of 00
 Thread level parallelism, Data level parallelism, multicore, SoC
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Computer Architecture

• Computer architecture now is >> ISA
• What matters is how the complete system 

performs
• Time spent on IS this year is les than 

previous offering of the course More on 

ILP, TLP, multiprocessing, and if time 
permit non conventional computing.
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Computer Architecture
“We are dedicating all of our future product 

development to multicore designs. … This is 
a sea change in computing”

Paul Otellini, President, Intel (2004)

1000+ Level Parallelism, cannot be solved by 
just by computer architects and compiler 
writers alone, but also cannot be solved 
without participation of computer 
architects

David Patterson
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Technology trends

• Used to be transistors are important, 
power is not a problem.

• Now, Power is the problem Transistors 
are almost free ?

• New challenges: Power and ILP (adding 
hardware helps, but finally the law of 
diminishing return kicks in).
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Number of transistors

http://www.intel.com/technology/mooreslaw/index.htm
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CPUs:
• 1982 Intel 80286 
• 12.5 MHz
• 2 MIPS (peak)
• Latency 320 ns
• 134,000 xtors, 47 mm2

• 16-bit data bus, 68 pins
• Microcode interpreter, 

separate FPU chip
• (no caches)

• 2001 Intel Pentium 4
• 1500 MHz (120X)
• 4500 MIPS (peak) (2250X)
• Latency 15 ns (20X)
• 42,000,000 xtors, 217 mm2 

• 64-bit data bus, 423 pins
• 3-way superscalar,

Dynamic translate to RISC, 
Superpipelined (22 stage),
Out-of-Order execution

• On-chip 8KB Data caches, 
96KB Instr. Trace  cache, 
256KB L2 cache
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Disks:
• Seagate 373453, 2003
• 15000 RPM (4X)
• 73.4 GBytes (2500X)
• Tracks/Inch: 64000 (80X)
• Bits/Inch: 533,000 (60X)
• Four 2.5” platters 

(in 3.5” form factor)
• Bandwidth: 

86 MBytes/sec (140X)
• Latency:  5.7 ms (8X)
• Cache: 8 MBytes

• CDC Wren I, 1983
• 3600 RPM
• 0.03 GBytes capacity
• Tracks/Inch: 800
• Bits/Inch: 9550
• Three 5.25” platters

• Bandwidth: 
0.6 MBytes/sec

• Latency: 48.3 ms
• Cache: none
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Memory:
• 1980 DRAM

(asynchronous)

• 0.06 Mbits/chip
• 64,000 xtors, 35 mm2

• 16-bit data bus per 
module, 16 pins/chip

• 13 Mbytes/sec
• Latency: 225 ns
• (no block transfer)

• 2000 Double Data Rate 
Synchr. 
(clocked) DRAM

• 256.00 Mbits/chip (4000X)
• 256,000,000 xtors, 204 mm2

• 64-bit data bus per 
DIMM, 66 pins/chip (4X)

• 1600 Mbytes/sec (120X)
• Latency: 52 ns (4X)
• Block transfers (page mode)
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LANs

• Ethernet 802.3
• Year of Standard: 1978
• 10 Mbits/s 

link speed 
• Latency: 3000 μsec
• Shared media
• Coaxial cable

• Ethernet 802.3ae
• Year of Standard: 2003
• 10,000 Mbits/s (1000X)

link speed 
• Latency: 190 μsec (15X)
• Switched media
• Category 5 copper wire

Coaxial Cable:

Copper core
Insulator

Braided outer conductor
Plastic Covering

Copper, 1mm thick, 
twisted to avoid antenna effect

Twisted Pair:
"Cat 5" is 4 twisted pairs in bundle
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Two notions of “performance”

Plane

Boeing 
747

BAC/Sud
Concorde

Top
Speed

610 
mph

1350 
mph

DC to 
Paris
6.5 

hours

3 
hours

Passen-
gers

470

132

Throughput 
(p-mph)

286,700

178,200

•Which has higher performance?
•Time to deliver 1 passenger?
•Time to deliver 400 passengers?
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Response Time v. Throughput
• Time of Concorde vs. Boeing 747?

• Concord is 6.5 hours / 3 hours 
= 2.2 times as fast

• Throughput of Boeing vs. Concorde?
• Boeing 747: 286,700 p-mph / 178,200 

p-mph = 1.6 times as fast
• Boeing is 1.6 times (160%) as fast in 

terms of throughput
• Concord is 2.2 times (220%) as fast in 

terms of flying time (response time)
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Computer Performance
• Response Time = Execution Time = 

Latency Time in a computer:
– Time for 1 job (Interest to the user)

• Throughput = Bandwidth in a computer :
– Jobs per unit time (interest to the system 

administrator)
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• "X is n times as fast as Y" means

• Performancex = n X Performancey

• Example, A completes job in 10 sec, B in 15, 
A is 50% faster than B

Performance

100
1 n

T
T

x

y +=

Fall 08 CSE4201

Making the Common Case 
Faster

• Usually, we have a limited amount of 
resources, how to allocate them?

• Investing a lot of resources in improving 
a rare situation is not likely to improve 
the performance

• EX: Make division faster on the expense 
of overflow or divide by zero which is not 
likely to happen frequently anyway
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Amdahl’s law
• If α is the fraction of the computations 

that could be enhanced by a factor of S, 
then

⎟
⎠
⎞

⎜
⎝
⎛ +−=

S
TT oldnew

αα )1(

s

Speedup αα +−
=

)1(

1

  

Input 30% execute 40% Output 30%

10 times faster 
1000% 
improvement

0.3 0.30.04 =0.64; S=1.56
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Amdahl’s Law
• Consider a computer system that uses the 

CPU 50% of the time, and the I/O 50% of the 
time, consider two cases CPU costs 1/3 of 
system

• Improve the CPU by a factor of 5

• The cost is 2/3 + 1/3 * 5=2.33
• Improve CPU by a factor of 2

• Cost = 2/3 + 1/3 * 2=1.33 (better investment)

667.1

5
5.05.0

1
=

+
=speedup

33.1

2
5.05.0

1
=

+
=Speedup
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Locality of Reference
• For programs, the rule of thumb is any 

program spends 90% of the time in 10% of 
the code

• Temporal Locality: Recently accessed items 
are likely to be accessed again in the near 
future

• Spatial Locality: Items whose addresses are 
near one another tends to be referenced close 
together in time
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Locality of reference
• Calculate the speedup if we put a cache 

of 500KB in a system that runs a 5MB 
(10MB) program, assume 90%,10% rule 
of thumb and assume that cache is 5 
times faster than RAM

• Case 1

• Case 2 5625.1

5
45.055.0

1
=

+
=speedup

57.3

5
9.01.0

1
=

+
=speedup
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Performance
• CPUtime=Tc*IC * CPI
• Where, Tc is the clock cycle and IC is the instruction count
• CPI=(Number of clock cycles)/IC
• CPUtime=IC * CPI * Tc

• Clcok rate depends on organization and technology
• CPI depends on compiler, Inst. Set, and organization
• IC depends on program, compiler, and Inst. set
• The average CPI could be expressed as 

IC

ICPI
CPI

i

n

i
i

av

*
1
∑
==
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Example
Question:
A program runs on a 400 MHz computer in 10 secs. We like 

the program to run in 6 secs by designing a faster CPU. 
Assume that increasing clock rate would mean the program 
needs 20% more clock cycles. What clock rate should the 
designer target?

Answer:
The number of clock cycles for the program on the present computer = 10 

X 400 X 106 = 4000 X 106

With 20% increase, the new computer should take 1.2 X 4000 X 106 = 
4800 X 106 cycles

Required execution time = 6 seconds
Then the required clock rate = 4800/6 X 106 cycles/sec = 800 MHz
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Example
•

• Increasing cycle by 15% load = 1 cycle
• Old CPI = 0.43+2*0.21+2*0.12+2*0.24=1.57
• New CPI= 0.43+0.21+2*0.12+2*0.24=1.36
• Speedup=IC*1.57*TC/IC*1.36*1.15TC=1.003
• Barely, if more than 15%, NO WAY

224%Branch
212%Store
221%Load
143%ALU
CyclesFrequencyOP
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Example
• Consider the previous example. If 25% ALU 

operations use a loaded operand that is not 
used again 

• CPI=0.43+2*0.21+2*0.12+2*0.43=1.57
• Time = IC * 1.57 * Tc=1.57IC*Tc
• If we use another design that supports 

reg/mem instructions in 2 cycles and 
increases branching by 1 cycle.

• In this case, the 25% of loads are replaced by 
reg/mem instructions

Fall 08 CSE4201

Example ‘cont.

324%branches
212%Store
210.25%Loads
210.75%ALU reg/m
143%ALU (LS)

908.1
43.0*25.01

43.012.01025.01075.0(*23225.0
=

−
++++

=CPI

cctime TICTICCPU *703.1*)43.0*25.01(*908.1 =−=

Bad Idea
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Example
• Consider 2 CPU’s
• The first, sets a condition code by a compare followed 

by a branch, 20% are branches (another 20% are 
compare)

• The seconds, compares in the branch instruction and 
25% slower

• For A, CPI = 0.2*2 + 0.8 = 1.2
• Time = IC*1.2*Tc

• For B CPI = 0.25*2 + 0.75=1.25 (now branches are 20 
out of 80)

• Time = 0.8IC*1.25*1.25Tc=1.25 IC*Tc slower
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EXAMPLE
A program executed in machine A with a 1ns clock gives 

a CPI of 2.0. The same program with machine B 
having same ISA and a 2ns clock gives a CPI of 1.2. 
Which machine is faster and by how much?

Answer: Let I be the instruction count.
CPU clock cycles for A = I x 2.0
Execution time on A = 2 x I ns
CPU clock cycles for B = I x 1.2 
Execution time on B = I x 1.2 x 2 ns = 2.4 I ns
=> CPU A is faster by 1.2 times.
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Example (RISC processor)

Typical Mix

Base Machine (Reg / Reg)
Op Freq Cycles CPI(i) % Time
ALU 50% 1 .5 23%
Load 20% 5 1.0 45%
Store 10% 3 .3 14%
Branch 20% 2 .4 18%

2.2

How much faster would the machine be if a better data cache
reduced the average load time to 2 cycles?   (1.6)

How does this compare with using branch prediction to shave a 
cycle off the branch time?     (2.0)

What if two ALU instructions could be executed at once?
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Example
Add register / memory operations

– One source operand in memory
– One source operand in register
– Cycle count of 2

Branch cycle count increased to 3

What fraction of the loads must be eliminated for this to pay off?
Base Machine (Reg / Reg)
Op Fi CPIi
ALU 50% 1
Load 20% 2
Store 10% 2
Branch 20% 2
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Example
Exec Time = Instr Cnt x CPI x Clock

Op Fi CPIi Ii CPIi
ALU .50 1 .5 .5 – X 1 .5 – X
Load .20 2 .4 .2 – X 2 .4 – 2X
Store .10 2 .2 .1 2 .2
Branch .20 2 .4 .2 3 .6
Reg/Mem X 2 2X

Instr CntOld x CPIOld x ClockOld = Instr CntNew x CPINew x ClockNew

1.00       x  1.5                      =     (1 – X)      x (1.7 – X)/(1 – X)
1.00 1.5 1 – X (1.7 – X)/(1 – X)

1.5                      =              1.7 – X
0.2                      =              X

ALL loads must be eliminated for this to be a win!
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Power
• For CMOS chips, traditional dominant energy consumption has been in 

switching transistors, called dynamic power

• For mobile devices, energy better metric

• For a fixed task, slowing clock rate (frequency switched) reduces power, but 
not energy

• Capacitive load a function of number of transistors connected to output and 
technology, which determines capacitance of wires and transistors

• Dropping voltage helps both
• To save energy & dynamic power, most CPUs now turn off clock of inactive 

modules (e.g. Fl. Pt. Unit)

fVCP Ldynamic ∗∗∗= 25.0

2VCP Ldynamic ∗=
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Power

• Suppose 15% reduction in voltage results 
in a 15% reduction in frequency. What is 
impact on dynamic power?

dynamic

dynamic

dynamic

OldPower
OldPower

witchedFrequencySVoltageLoadCapacitive
witchedFrequencySVoltageLoadCapacitivePower

×

×

×

×××

≈
=

××××=

=

6.0
)85(.

85.0)85(.2/1
2/1

3

2

2
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Power
• Because leakage current flows even when a 

transistor is off. Now static power is important too

• Leakage current increases in processors with 
smaller transistor sizes

• Increasing the number of transistors increases 
power even if they are turned off

• In 2006, goal for leakage is 25% of total power 
consumption; high performance designs at 40%

• Very low power systems even gate voltage to 
inactive modules to control loss due to leakage

VoltageCurrentPower staticstatic ×=
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Dependability
• How decide when a system is operating properly? 
• Infrastructure providers now offer Service Level 

Agreements (SLA) to guarantee that their networking or 
power service would be dependable

• Systems alternate between 2 states of service with 
respect to an SLA:

1. Service accomplishment, where the service is delivered 
as specified in SLA

2. Service interruption, where the delivered service is 
different from the SLA

• Failure = transition from state 1 to state 2
• Restoration = transition from state 2 to state 1
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Dependability
• Module reliability = measure of continuous service 

accomplishment (or time to failure).
2 metrics

1. Mean Time To Failure (MTTF) measures Reliability
2. Failures In Time (FIT) = 1/MTTF, the rate of failures 

• Traditionally reported as failures per billion hours of operation
• Mean Time To Repair (MTTR) measures Service 

Interruption
– Mean Time Between Failures (MTBF) = MTTF+MTTR

• Module availability measures service as alternate 
between the 2 states of accomplishment and interruption 
(number between 0 and 1, e.g. 0.9)

• Module availability = MTTF / ( MTTF + MTTR)

Fall 08 CSE4201

Dependability
• If modules have exponentially distributed lifetimes (age of  

module does not affect probability of failure), overall failure rate 
is the sum of failure rates of the modules

• Calculate FIT and MTTF for 10 disks (1M hour MTTF per disk), 
1 disk controller (0.5M hour MTTF), and 1 power supply (0.2M 
hour MTTF):

hours
MTTF

FIT

eFailureRat

000,59
000,17/000,000,000,1

000,17
000,000,1/17

000,000,1/5210
000,200/1000,500/1)000,000,1/1(10

≈
=
=
=

++=
++×=
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MIPS
• MIPS: Million Instructions Per Second
• MIPS=IC/(T*106)=#of cycles/(CPI*T*106)
• MIPS= (Clock rate)/(CPI*106)
• The difficulty of choosing such a 

measure is it doesn’t define what is an 
instruction (xor or div)

• Any optimizing compiler that tends to 
reduce the number of instructions 
resulting in saving execution time 
reduces the MIPS rating of the machine.
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MIPS
• One way to overcome this difficulty is to 
use the relative MIPS

• Relative MIPS = Tr/T * MIPSr
• Where

–Tr is the execution time on a standard 
machine

–T is the execution time of the machine to be 
rated

–MIPSr is the MIPS rating of the standard 
machine

• The main problem is, what exactly is the 
reference machine
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MFLOPS
• MFLOPS=Million Floating Point 

Operation per Second
• Still, what is a FP instruction
• Programs like compilers, almost has no 

FP operations at all
• Normalized MFLOPS gives weight to 

different FP operations (1 for add, 2 for 
multiply, 4 for divide, 8 for sqrt, …)
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Measuring Performance
• Real Programs: we run the actual program and 

measure the time, the difficulty is which program?
• Kernels: Extract small pieces of real programs and use 

tem to evaluate performance (livermoore loops and 
linpack)

• Toy Benchmarks: small programs that produces results 
already known (quicksort, puzzle, …)

• Synthetic Benchmarks: Similar to kernels, specifically 
created to match the average frequency of different 
operations (whettstone and Dhrystone)
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What Programs Measure for 
Comparison?

• User reality: CPI varies with program, workload mix, OS, 
compiler, etc.

• Ideally would run typical programs with typical input before 
purchase

• Called a “workload”; For example: 
–Engineer uses compiler, spreadsheet
–Author uses word processor, drawing program, 

compression software

• In some situations its hard to do
–Don’t have access to machine to “benchmark” before 

purchase
–Don’t know workload in future
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Basis of Evaluation

Actual Target Workload

Full Application Benchmarks

Small “Kernel”
Benchmarks

Microbenchmarks

Pros Cons

• representative
• very specific
• non-portable
• difficult to run, or
measure
• hard to identify cause

• portable
• widely used
• improvements 
useful in reality

• easy to run, early in 
design cycle

• identify peak 
capability and 
potential bottlenecks

•less representative

• easy to “fool”

• “peak” may be a long 
way from application 
performance
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Examples
• Workstations: Standard Performance Evaluation 

Corporation (SPEC)
– SPEC95: 8 integer (gcc, compress, li, ijpeg, perl, ...) & 

10 floating-point programs (hydro2d, mgrid, applu, 
turbo3d, ...)

– http://www.spec.org

– Separate average for integer (CINT95) and FP 
(CFP95) relative to base machine 

– Benchmarks distributed in source code
– Company representatives select workload
– Compiler, machine designers target benchmarks so 

try to change every 3 years
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SPEC95 Benchmarks
• Integer

– go a game of go
– m88ksim simulates Motorola 88000 

CPU
– gcc
– compress
– Li Lisp interpreter
– jpeg
– perl perl script interpreter
– vortex OO database system
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SPEC95 Benchmarks
• Floating Point

– tomcatvVectorized mesh generator
– swim shallow water model (finite 

difference)
– su2cor quantum physics
– hydro2d galactic jets
– mgrid multigrid solver for 3-d field
– applu PDF
– apsi temp. and wind velocity
– fpppp quantum chemsitry
– wave5 -n-body maxwell’s
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Kernel Example
1. X=1.0
2. Y=1.0
3. Z=1.0
4. Do I=1,N8

1. CALL P3(X,Y,Z)

SUBROUTINE P3(X,Y,Z)
X1=1
Y1=1
Z1=1
X1=T*(X1-Y1)
Y1=(T*(X1+Y1)
Z=(X1+Y1)/T
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Reporting Performance
• If Ti is the time to run program I
• Arithmetic mean 
• Weighted arithmetic
• Harmonic mean
• Weighted harmonic mean
• Geometric mean 

Where Tri is the execution time of program 
I normalized to a ref. machine
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Example

•

w3w2w1CBA

2010.092Arithmetic 
mean w3

2018.1891.8Arithmetic 
mean w2

2055500.
5

Arithmetic 
mean w1

0.0010.0910.5201001000P2

0.9990.9090.520101P1
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Example

•

1.58        11.580.63110.6311Geo

2.75        125.0
3

1.115.0510.015.051Arith

5             1500.21100.020.11P2

0.5          10.052.010.120101p1

B            CACBACBA

CBTo Alizednroma
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Example (cont)
• Notice that the geometric mean does not 

represent the relative execution times, 
for example in the first case, it said that  
A and B are equal

• The geometric mean is consistent 
independent of the normalization, A and 
B are the same and independent of C


