
1

Fall 08 CSE4201

CSE 4201
Computer Architecture

Prof. Mokhtar Aboelaze
Parts of these slides are taken from
Notes by Prof. David Patterson at UCB

Fall 08 CSE4201

CSE4201

• Office hours
• Grading Policy

– HW
– Quizzes
– Midterm
– Final

• Text: Computer Architecture: QA 4th

edition

Fall 08 CSE4201

Syllabus
• Introduction and performance
• Review –MIPS and pipelines
• ILP (Instruction Level Parallelism) and limits of

ILP
• Multiprocessors and thread level parallelism
• Memory
• Storage Systems
• Network processor or Multi-Core systems

(depending on time)
Fall 08 CSE4201

Outline

• Historical prospective and new technology
trends.

• Performance: How to measure it? What
does it mean?

• MIPS 5 stage pipelining and IS

2

Fall 08 CSE4201

Historical Prospective
• Decade of 70’s (Microprocessors)

Programmable Controllers, Single Chip Microprocessors,
Personal Computers

• Decade of 80’s (RISC Architecture)
Instruction Pipelining, Fast Cache Memories, Compiler

Optimizations

• Decade of 90’s (Instruction Level Parallelism)
Superscalar Processors, Aggressive Code Scheduling, Low

Cost Supercomputing, Out of Order Execution

• Decade of 00
 Thread level parallelism, Data level parallelism, multicore, SoC

Fall 08 CSE4201

Computer Architecture

• Computer architecture now is >> ISA
• What matters is how the complete system

performs
• Time spent on IS this year is les than

previous offering of the course More on

ILP, TLP, multiprocessing, and if time
permit non conventional computing.

Fall 08 CSE4201

Computer Architecture
“We are dedicating all of our future product

development to multicore designs. … This is
a sea change in computing”

Paul Otellini, President, Intel (2004)

1000+ Level Parallelism, cannot be solved by
just by computer architects and compiler
writers alone, but also cannot be solved
without participation of computer
architects

David Patterson

Fall 08 CSE4201

Technology trends

• Used to be transistors are important,
power is not a problem.

• Now, Power is the problem Transistors
are almost free ?

• New challenges: Power and ILP (adding
hardware helps, but finally the law of
diminishing return kicks in).

3

Fall 08 CSE4201

Number of transistors

http://www.intel.com/technology/mooreslaw/index.htm

Fall 08 CSE4201

CPUs:
• 1982 Intel 80286
• 12.5 MHz
• 2 MIPS (peak)
• Latency 320 ns
• 134,000 xtors, 47 mm2

• 16-bit data bus, 68 pins
• Microcode interpreter,

separate FPU chip
• (no caches)

• 2001 Intel Pentium 4
• 1500 MHz (120X)
• 4500 MIPS (peak) (2250X)
• Latency 15 ns (20X)
• 42,000,000 xtors, 217 mm2

• 64-bit data bus, 423 pins
• 3-way superscalar,

Dynamic translate to RISC,
Superpipelined (22 stage),
Out-of-Order execution

• On-chip 8KB Data caches,
96KB Instr. Trace cache,
256KB L2 cache

Fall 08 CSE4201

Disks:
• Seagate 373453, 2003
• 15000 RPM (4X)
• 73.4 GBytes (2500X)
• Tracks/Inch: 64000 (80X)
• Bits/Inch: 533,000 (60X)
• Four 2.5” platters

(in 3.5” form factor)
• Bandwidth:

86 MBytes/sec (140X)
• Latency: 5.7 ms (8X)
• Cache: 8 MBytes

• CDC Wren I, 1983
• 3600 RPM
• 0.03 GBytes capacity
• Tracks/Inch: 800
• Bits/Inch: 9550
• Three 5.25” platters

• Bandwidth:
0.6 MBytes/sec

• Latency: 48.3 ms
• Cache: none

Fall 08 CSE4201

Memory:
• 1980 DRAM

(asynchronous)

• 0.06 Mbits/chip
• 64,000 xtors, 35 mm2

• 16-bit data bus per
module, 16 pins/chip

• 13 Mbytes/sec
• Latency: 225 ns
• (no block transfer)

• 2000 Double Data Rate
Synchr.
(clocked) DRAM

• 256.00 Mbits/chip (4000X)
• 256,000,000 xtors, 204 mm2

• 64-bit data bus per
DIMM, 66 pins/chip (4X)

• 1600 Mbytes/sec (120X)
• Latency: 52 ns (4X)
• Block transfers (page mode)

4

Fall 08 CSE4201

LANs

• Ethernet 802.3
• Year of Standard: 1978
• 10 Mbits/s

link speed
• Latency: 3000 μsec
• Shared media
• Coaxial cable

• Ethernet 802.3ae
• Year of Standard: 2003
• 10,000 Mbits/s (1000X)

link speed
• Latency: 190 μsec (15X)
• Switched media
• Category 5 copper wire

Coaxial Cable:

Copper core
Insulator

Braided outer conductor
Plastic Covering

Copper, 1mm thick,
twisted to avoid antenna effect

Twisted Pair:
"Cat 5" is 4 twisted pairs in bundle

Fall 08 CSE4201

Two notions of “performance”

Plane

Boeing
747

BAC/Sud
Concorde

Top
Speed

610
mph

1350
mph

DC to
Paris
6.5

hours

3
hours

Passen-
gers

470

132

Throughput
(p-mph)

286,700

178,200

•Which has higher performance?
•Time to deliver 1 passenger?
•Time to deliver 400 passengers?

Fall 08 CSE4201

Response Time v. Throughput
• Time of Concorde vs. Boeing 747?

• Concord is 6.5 hours / 3 hours
= 2.2 times as fast

• Throughput of Boeing vs. Concorde?
• Boeing 747: 286,700 p-mph / 178,200

p-mph = 1.6 times as fast
• Boeing is 1.6 times (160%) as fast in

terms of throughput
• Concord is 2.2 times (220%) as fast in

terms of flying time (response time)
Fall 08 CSE4201

Computer Performance
• Response Time = Execution Time =

Latency Time in a computer:
– Time for 1 job (Interest to the user)

• Throughput = Bandwidth in a computer :
– Jobs per unit time (interest to the system

administrator)

5

Fall 08 CSE4201

• "X is n times as fast as Y" means

• Performancex = n X Performancey

• Example, A completes job in 10 sec, B in 15,
A is 50% faster than B

Performance

100
1 n

T
T

x

y +=

Fall 08 CSE4201

Making the Common Case
Faster

• Usually, we have a limited amount of
resources, how to allocate them?

• Investing a lot of resources in improving
a rare situation is not likely to improve
the performance

• EX: Make division faster on the expense
of overflow or divide by zero which is not
likely to happen frequently anyway

Fall 08 CSE4201

Amdahl’s law
• If α is the fraction of the computations

that could be enhanced by a factor of S,
then

⎟
⎠
⎞

⎜
⎝
⎛ +−=

S
TT oldnew

αα)1(

s

Speedup αα +−
=

)1(

1

Input 30% execute 40% Output 30%

10 times faster
1000%
improvement

0.3 0.30.04 =0.64; S=1.56

Fall 08 CSE4201

Amdahl’s Law
• Consider a computer system that uses the

CPU 50% of the time, and the I/O 50% of the
time, consider two cases CPU costs 1/3 of
system

• Improve the CPU by a factor of 5

• The cost is 2/3 + 1/3 * 5=2.33
• Improve CPU by a factor of 2

• Cost = 2/3 + 1/3 * 2=1.33 (better investment)

667.1

5
5.05.0

1
=

+
=speedup

33.1

2
5.05.0

1
=

+
=Speedup

6

Fall 08 CSE4201

Locality of Reference
• For programs, the rule of thumb is any

program spends 90% of the time in 10% of
the code

• Temporal Locality: Recently accessed items
are likely to be accessed again in the near
future

• Spatial Locality: Items whose addresses are
near one another tends to be referenced close
together in time

Fall 08 CSE4201

Locality of reference
• Calculate the speedup if we put a cache

of 500KB in a system that runs a 5MB
(10MB) program, assume 90%,10% rule
of thumb and assume that cache is 5
times faster than RAM

• Case 1

• Case 2 5625.1

5
45.055.0

1
=

+
=speedup

57.3

5
9.01.0

1
=

+
=speedup

Fall 08 CSE4201

Performance
• CPUtime=Tc*IC * CPI
• Where, Tc is the clock cycle and IC is the instruction count
• CPI=(Number of clock cycles)/IC
• CPUtime=IC * CPI * Tc

• Clcok rate depends on organization and technology
• CPI depends on compiler, Inst. Set, and organization
• IC depends on program, compiler, and Inst. set
• The average CPI could be expressed as

IC

ICPI
CPI

i

n

i
i

av

*
1
∑
==

Fall 08 CSE4201

Example
Question:
A program runs on a 400 MHz computer in 10 secs. We like

the program to run in 6 secs by designing a faster CPU.
Assume that increasing clock rate would mean the program
needs 20% more clock cycles. What clock rate should the
designer target?

Answer:
The number of clock cycles for the program on the present computer = 10

X 400 X 106 = 4000 X 106

With 20% increase, the new computer should take 1.2 X 4000 X 106 =
4800 X 106 cycles

Required execution time = 6 seconds
Then the required clock rate = 4800/6 X 106 cycles/sec = 800 MHz

7

Fall 08 CSE4201

Example
•

• Increasing cycle by 15% load = 1 cycle
• Old CPI = 0.43+2*0.21+2*0.12+2*0.24=1.57
• New CPI= 0.43+0.21+2*0.12+2*0.24=1.36
• Speedup=IC*1.57*TC/IC*1.36*1.15TC=1.003
• Barely, if more than 15%, NO WAY

224%Branch
212%Store
221%Load
143%ALU
CyclesFrequencyOP

Fall 08 CSE4201

Example
• Consider the previous example. If 25% ALU

operations use a loaded operand that is not
used again

• CPI=0.43+2*0.21+2*0.12+2*0.43=1.57
• Time = IC * 1.57 * Tc=1.57IC*Tc
• If we use another design that supports

reg/mem instructions in 2 cycles and
increases branching by 1 cycle.

• In this case, the 25% of loads are replaced by
reg/mem instructions

Fall 08 CSE4201

Example ‘cont.

324%branches
212%Store
210.25%Loads
210.75%ALU reg/m
143%ALU (LS)

908.1
43.0*25.01

43.012.01025.01075.0(*23225.0
=

−
++++

=CPI

cctime TICTICCPU *703.1*)43.0*25.01(*908.1 =−=

Bad Idea

Fall 08 CSE4201

Example
• Consider 2 CPU’s
• The first, sets a condition code by a compare followed

by a branch, 20% are branches (another 20% are
compare)

• The seconds, compares in the branch instruction and
25% slower

• For A, CPI = 0.2*2 + 0.8 = 1.2
• Time = IC*1.2*Tc

• For B CPI = 0.25*2 + 0.75=1.25 (now branches are 20
out of 80)

• Time = 0.8IC*1.25*1.25Tc=1.25 IC*Tc slower

8

Fall 08 CSE4201

EXAMPLE
A program executed in machine A with a 1ns clock gives

a CPI of 2.0. The same program with machine B
having same ISA and a 2ns clock gives a CPI of 1.2.
Which machine is faster and by how much?

Answer: Let I be the instruction count.
CPU clock cycles for A = I x 2.0
Execution time on A = 2 x I ns
CPU clock cycles for B = I x 1.2
Execution time on B = I x 1.2 x 2 ns = 2.4 I ns
=> CPU A is faster by 1.2 times.

Fall 08 CSE4201

Example (RISC processor)

Typical Mix

Base Machine (Reg / Reg)
Op Freq Cycles CPI(i) % Time
ALU 50% 1 .5 23%
Load 20% 5 1.0 45%
Store 10% 3 .3 14%
Branch 20% 2 .4 18%

2.2

How much faster would the machine be if a better data cache
reduced the average load time to 2 cycles? (1.6)

How does this compare with using branch prediction to shave a
cycle off the branch time? (2.0)

What if two ALU instructions could be executed at once?

Fall 08 CSE4201

Example
Add register / memory operations

– One source operand in memory
– One source operand in register
– Cycle count of 2

Branch cycle count increased to 3

What fraction of the loads must be eliminated for this to pay off?
Base Machine (Reg / Reg)
Op Fi CPIi
ALU 50% 1
Load 20% 2
Store 10% 2
Branch 20% 2

Fall 08 CSE4201

Example
Exec Time = Instr Cnt x CPI x Clock

Op Fi CPIi Ii CPIi
ALU .50 1 .5 .5 – X 1 .5 – X
Load .20 2 .4 .2 – X 2 .4 – 2X
Store .10 2 .2 .1 2 .2
Branch .20 2 .4 .2 3 .6
Reg/Mem X 2 2X

Instr CntOld x CPIOld x ClockOld = Instr CntNew x CPINew x ClockNew

1.00 x 1.5 = (1 – X) x (1.7 – X)/(1 – X)
1.00 1.5 1 – X (1.7 – X)/(1 – X)

1.5 = 1.7 – X
0.2 = X

ALL loads must be eliminated for this to be a win!

9

Fall 08 CSE4201

Power
• For CMOS chips, traditional dominant energy consumption has been in

switching transistors, called dynamic power

• For mobile devices, energy better metric

• For a fixed task, slowing clock rate (frequency switched) reduces power, but
not energy

• Capacitive load a function of number of transistors connected to output and
technology, which determines capacitance of wires and transistors

• Dropping voltage helps both
• To save energy & dynamic power, most CPUs now turn off clock of inactive

modules (e.g. Fl. Pt. Unit)

fVCP Ldynamic ∗∗∗= 25.0

2VCP Ldynamic ∗=

Fall 08 CSE4201

Power

• Suppose 15% reduction in voltage results
in a 15% reduction in frequency. What is
impact on dynamic power?

dynamic

dynamic

dynamic

OldPower
OldPower

witchedFrequencySVoltageLoadCapacitive
witchedFrequencySVoltageLoadCapacitivePower

×

×

×

×××

≈
=

××××=

=

6.0
)85(.

85.0)85(.2/1
2/1

3

2

2

Fall 08 CSE4201

Power
• Because leakage current flows even when a

transistor is off. Now static power is important too

• Leakage current increases in processors with
smaller transistor sizes

• Increasing the number of transistors increases
power even if they are turned off

• In 2006, goal for leakage is 25% of total power
consumption; high performance designs at 40%

• Very low power systems even gate voltage to
inactive modules to control loss due to leakage

VoltageCurrentPower staticstatic ×=

Fall 08 CSE4201

Dependability
• How decide when a system is operating properly?
• Infrastructure providers now offer Service Level

Agreements (SLA) to guarantee that their networking or
power service would be dependable

• Systems alternate between 2 states of service with
respect to an SLA:

1. Service accomplishment, where the service is delivered
as specified in SLA

2. Service interruption, where the delivered service is
different from the SLA

• Failure = transition from state 1 to state 2
• Restoration = transition from state 2 to state 1

10

Fall 08 CSE4201

Dependability
• Module reliability = measure of continuous service

accomplishment (or time to failure).
2 metrics

1. Mean Time To Failure (MTTF) measures Reliability
2. Failures In Time (FIT) = 1/MTTF, the rate of failures

• Traditionally reported as failures per billion hours of operation
• Mean Time To Repair (MTTR) measures Service

Interruption
– Mean Time Between Failures (MTBF) = MTTF+MTTR

• Module availability measures service as alternate
between the 2 states of accomplishment and interruption
(number between 0 and 1, e.g. 0.9)

• Module availability = MTTF / (MTTF + MTTR)

Fall 08 CSE4201

Dependability
• If modules have exponentially distributed lifetimes (age of

module does not affect probability of failure), overall failure rate
is the sum of failure rates of the modules

• Calculate FIT and MTTF for 10 disks (1M hour MTTF per disk),
1 disk controller (0.5M hour MTTF), and 1 power supply (0.2M
hour MTTF):

hours
MTTF

FIT

eFailureRat

000,59
000,17/000,000,000,1

000,17
000,000,1/17

000,000,1/5210
000,200/1000,500/1)000,000,1/1(10

≈
=
=
=

++=
++×=

Fall 08 CSE4201

MIPS
• MIPS: Million Instructions Per Second
• MIPS=IC/(T*106)=#of cycles/(CPI*T*106)
• MIPS= (Clock rate)/(CPI*106)
• The difficulty of choosing such a

measure is it doesn’t define what is an
instruction (xor or div)

• Any optimizing compiler that tends to
reduce the number of instructions
resulting in saving execution time
reduces the MIPS rating of the machine.

Fall 08 CSE4201

MIPS
• One way to overcome this difficulty is to
use the relative MIPS

• Relative MIPS = Tr/T * MIPSr
• Where

–Tr is the execution time on a standard
machine

–T is the execution time of the machine to be
rated

–MIPSr is the MIPS rating of the standard
machine

• The main problem is, what exactly is the
reference machine

11

Fall 08 CSE4201

MFLOPS
• MFLOPS=Million Floating Point

Operation per Second
• Still, what is a FP instruction
• Programs like compilers, almost has no

FP operations at all
• Normalized MFLOPS gives weight to

different FP operations (1 for add, 2 for
multiply, 4 for divide, 8 for sqrt, …)

Fall 08 CSE4201

Measuring Performance
• Real Programs: we run the actual program and

measure the time, the difficulty is which program?
• Kernels: Extract small pieces of real programs and use

tem to evaluate performance (livermoore loops and
linpack)

• Toy Benchmarks: small programs that produces results
already known (quicksort, puzzle, …)

• Synthetic Benchmarks: Similar to kernels, specifically
created to match the average frequency of different
operations (whettstone and Dhrystone)

Fall 08 CSE4201

What Programs Measure for
Comparison?

• User reality: CPI varies with program, workload mix, OS,
compiler, etc.

• Ideally would run typical programs with typical input before
purchase

• Called a “workload”; For example:
–Engineer uses compiler, spreadsheet
–Author uses word processor, drawing program,

compression software

• In some situations its hard to do
–Don’t have access to machine to “benchmark” before

purchase
–Don’t know workload in future

Fall 08 CSE4201

Basis of Evaluation

Actual Target Workload

Full Application Benchmarks

Small “Kernel”
Benchmarks

Microbenchmarks

Pros Cons

• representative
• very specific
• non-portable
• difficult to run, or
measure
• hard to identify cause

• portable
• widely used
• improvements
useful in reality

• easy to run, early in
design cycle

• identify peak
capability and
potential bottlenecks

•less representative

• easy to “fool”

• “peak” may be a long
way from application
performance

12

Fall 08 CSE4201

Examples
• Workstations: Standard Performance Evaluation

Corporation (SPEC)
– SPEC95: 8 integer (gcc, compress, li, ijpeg, perl, ...) &

10 floating-point programs (hydro2d, mgrid, applu,
turbo3d, ...)

– http://www.spec.org

– Separate average for integer (CINT95) and FP
(CFP95) relative to base machine

– Benchmarks distributed in source code
– Company representatives select workload
– Compiler, machine designers target benchmarks so

try to change every 3 years

Fall 08 CSE4201

SPEC95 Benchmarks
• Integer

– go a game of go
– m88ksim simulates Motorola 88000

CPU
– gcc
– compress
– Li Lisp interpreter
– jpeg
– perl perl script interpreter
– vortex OO database system

Fall 08 CSE4201

SPEC95 Benchmarks
• Floating Point

– tomcatvVectorized mesh generator
– swim shallow water model (finite

difference)
– su2cor quantum physics
– hydro2d galactic jets
– mgrid multigrid solver for 3-d field
– applu PDF
– apsi temp. and wind velocity
– fpppp quantum chemsitry
– wave5 -n-body maxwell’s

Fall 08 CSE4201

Kernel Example
1. X=1.0
2. Y=1.0
3. Z=1.0
4. Do I=1,N8

1. CALL P3(X,Y,Z)

SUBROUTINE P3(X,Y,Z)
X1=1
Y1=1
Z1=1
X1=T*(X1-Y1)
Y1=(T*(X1+Y1)
Z=(X1+Y1)/T

13

Fall 08 CSE4201

Reporting Performance
• If Ti is the time to run program I
• Arithmetic mean
• Weighted arithmetic
• Harmonic mean
• Weighted harmonic mean
• Geometric mean

Where Tri is the execution time of program
I normalized to a ref. machine

∑
=

n

i
i

i

T
n 1

1

)/1(,
1

1

iin

i i

TfRate

Rate

n
=

∑
=

∑
=

n

i
iiTw

1

)/1(,

1

iin

i i

i

TfRate

Rate
w

n
=

∑
=∏

=

n

i
iTR

1

Fall 08 CSE4201

Example

•

w3w2w1CBA

2010.092Arithmetic
mean w3

2018.1891.8Arithmetic
mean w2

2055500.
5

Arithmetic
mean w1

0.0010.0910.5201001000P2

0.9990.9090.520101P1

Fall 08 CSE4201

Example

•

1.58 11.580.63110.6311Geo

2.75 125.0
3

1.115.0510.015.051Arith

5 1500.21100.020.11P2

0.5 10.052.010.120101p1

B CACBACBA

CBTo Alizednroma

Fall 08 CSE4201

Example (cont)
• Notice that the geometric mean does not

represent the relative execution times,
for example in the first case, it said that
A and B are equal

• The geometric mean is consistent
independent of the normalization, A and
B are the same and independent of C

