
Fall 08 CSE4201

COSC4201
Hardware Speculation and More ILP

Prof. Mokhtar Aboelaze

Parts of these slides are taken from Notes by
Prof. David Patterson (UCB)

Fall 08 CSE4201

Outline

° Data dependence and hazards
° Exposing parallelism (loop unrolling and

scheduling)
° Reducing branch costs (prediction)
° Dynamic scheduling
° Speculation
° Multiple issue and static scheduling
° Advanced techniques
° Example

Fall 08 CSE4201

Introduction
° Loads or a stores can safely be done in any order,

provided they access different addresses.
° If a load and a store access the same address, then

• Either load is before store in program order,
interchanging them results in WAR hazard.

• The store is before the load in program order,
interchanging them result in a RAW Hazard

• Interchanging 2 stores, result in a WAW hazard.

° To proceed with a load, processor must check
whether any uncompleted store that precedes the
load in program order share the same data memory
address as the load.

° Similarly, a store must check loads and stores.
° A not very efficient way, is to guarantee that

address calculation are done in program order.

Fall 08 CSE4201

Speculation

° In dynamic scheduling, we wait before executing an
instruction after a branch until the branch is
resolved (integer operations may go ahead beyond
branches).

° 3 components of HW-based speculation:
1.Dynamic branch prediction to choose which

instructions to execute
2.Speculation to allow execution of instructions

before control dependences are resolved
+ ability to undo effects of incorrectly speculated sequence

3.Dynamic scheduling to deal with scheduling of
different combinations of basic blocks

Fall 08 CSE4201

Speculation

° Must separate execution from allowing instruction
to finish or “commit”

° This additional step called instruction commit
° When an instruction is no longer speculative, allow

it to update the register file or memory
° Requires additional set of buffers to hold results of

instructions that have finished execution but have
not committed

° This reorder buffer (ROB) is also used to pass
results among instructions that may be speculated

Fall 08 CSE4201

Speculation

° In Tomasulo’s algorithm, once an instruction writes
its result, any subsequently issued instructions will
find result in the register file

° With speculation, the register file is not updated
until the instruction commits

• (we know definitively that the instruction should execute)

° Thus, the ROB supplies operands in interval
between completion of instruction execution and
instruction commit

• ROB is a source of operands for instructions, just as
reservation stations (RS) provide operands in Tomasulo’s
algorithm

• ROB extends architecture registers like RS

° ROB holds the results between the operation
associated with the instruction completes, and
commit

Fall 08 CSE4201

ROB

° Each entry in the ROB contains four fields:
1.Instruction type

• a branch (has no destination result), a store (has a
memory address destination), or a register operation
(ALU operation or load, which has register destinations)

2.Destination
• Register number (for loads and ALU operations) or

memory address (for stores)
where the instruction result should be written

3.Value
• Value of instruction result until the instruction commits

4.Ready
• Indicates that instruction has completed execution, and

the value is ready

Fall 08 CSE4201

ROB

• Holds instructions in FIFO order, exactly as issued

• When instructions complete, results placed into ROB
– Supplies operands to other instruction between execution

complete & commit ⇒ more registers like RS

– Tag results with ROB buffer number instead of reservation station

• Instructions commit ⇒values at head of ROB placed in registers

• As a result, easy to undo
speculated instructions
on mispredicted branches
or on exceptions

Reorder
BufferFP

Op
Queue

FP Adder FP Adder
Res Stations Res Stations

FP Regs

Commit path

Fall 08 CSE4201

Steps
1. Issue—get instruction from FP Op Queue

If reservation station and reorder buffer slot free, issue
instr & send operands & reorder buffer no. for destination
(this stage sometimes called “dispatch”), OR stall

2. Execution—operate on operands (EX)
When both operands ready then execute; if not ready,
watch CDB for result; when both in reservation station,
execute; checks RAW (sometimes called “issue”)

3. Write result—finish execution (WB)
Write on Common Data Bus to all awaiting FUs (ROB tag)
& reorder buffer; mark reservation station available.

4. Commit—update register with reorder result
When instr. at head of reorder buffer & result present,
update register with result (or store to memory) and
remove instr from reorder buffer. Mispredicted branch
flushes reorder buffer (sometimes called “graduation”)

Fall 08 CSE4201

Example

Loop LD F0,10(R2)

ADDD F10,F4,F0

DIVD F2,F10,F6

DADD R1,R1,-8

BNE R1,R2,Loop

Fall 08 CSE4201

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1F0F0 LD F0,10(R2)LD F0,10(R2) NN

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

Fall 08 CSE4201

2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1
F10F10

F0F0
ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)
NN

NN

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

Fall 08 CSE4201

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

Fall 08 CSE4201

Outline

° Data dependence and hazards
° Exposing parallelism (loop unrolling and

scheduling)
° Reducing branch costs (prediction)
° Dynamic scheduling
° Speculation
° Multiple issue and static scheduling
° Advanced techniques
° Example

Fall 08 CSE4201

VLIW

° Each “instruction” has explicit coding for multiple
operations

• In IA-64, grouping called a “packet”
• In Transmeta, grouping called a “molecule” (with “atoms”

as ops)
° Tradeoff instruction space for simple decoding

• The long instruction word has room for many operations
• By definition, all the operations the compiler puts in the

long instruction word are independent => execute in
parallel

• E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1
branch

- 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits
wide

• Need compiling technique that schedules across several
branches

Fall 08 CSE4201

VLIW -- Example
Source instruction Instruction using result Latency

FP ALU OP FP ALU OP 3

FP ALU OP Store double 2

Load double FP ALU OP 1

Load Double Store double 0

For (I=1000;I>0;I++)

x[I]=x[I]+s;

Loop: L.D F0,0(R1)
ADD.D F4,F0,F2
S.D 0(R1),F4
DADDUI R1,R1,#-8
BNE R 1,R2,Loop

Fall 08 CSE4201

VLIW -- Example

° Assume that w can schedule 2 memory
operations, 2 FP operations, and one
integer or branch

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch
LD F0,0(R1) LD F6,-8(R1) 1

LD F10,-16(R1) LD F14,-24(R1) 2

LD F18,-32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2 3

LD F26,-48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2 4

ADDD F20,F18,F2 ADDD F24,F22,F2 5

SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2 6

SD -16(R1),F12 SD -24(R1),F16 DADD R1,R1,#-56 7

SD 24(R1),F20 SD 16(R1),F24 8

SD 8(R1),F28 BNEZ R1,LOOP 9
7 iterations in 9
cycles = 1.29 c/I

Fall 08 CSE4201

Advanced Dynamic Scheduling

° Dynamic Scheduling with multiple issue and
speculation.

° Two different approaches
• Issuing the instruction in half a cycle
• Building the logic to issue 2 instructions

simultaneously including detecting dependence

° Must be able to commit more than one
instruction at the same time.

Fall 08 CSE4201

Advanced Dynamic Scheduling

Loop: LD R2,0(R1)

ADD R2,R2,#1

SD R2,0(R1)

ADD R1,R1,#8

BNE R2,R3,Loop

Fall 08 CSE4201

Answer: Without Speculation

Fall 08 CSE4201

Answer: 2-way Superscalar Tomasulo With Speculation

Branches Still Single Issue

Fall 08 CSE4201

Loop Level Parallelism LLP

° Loop-Level Parallelism (LLP) analysis focuses on
whether data accesses in later iterations of a
loop are data dependent on data values produced
in earlier iterations and possibly making loop
iterations independent.

° e.g. in for (i=1; i<=1000; i++)
x[i] = x[i] + s;

the computation in each iteration is independent of
the previous iterations and the
loop is thus parallel. The use of X[i] twice is within
a single iteration.

⇒ Thus loop iterations are parallel (or independent from
each other).

Fall 08 CSE4201

Loop Level Parallelism LLP
° Loop-carried Dependence: A data dependence between

different loop iterations (data produced in earlier iteration
used in a later one).

° LLP analysis is important in software optimizations such
as loop unrolling since it usually requires loop iterations
to be independent.

° LLP analysis is normally done at the source code level or
close to it since assembly language and target machine
code generation introduces loop-carried name
dependence in the registers used for addressing and
incrementing.

° Instruction level parallelism (ILP) analysis, on the other
hand, is usually done when instructions are generated by
the compiler

Fall 08 CSE4201

Loop Level Parallelism LLP

• S2 uses the value A[i+1], computed by S1 in the same iteration. This data
dependence is within the same iteration (not a loop-carried dependence).
⇒ does not prevent loop iteration parallelism.

• S1 uses a value computed by S1 in an earlier iteration, since iteration i
computes A[i+1] read in iteration i+1 (loop-carried dependence, prevents
parallelism). The same applies for S2 for B[i] and B[i+1]
⇒ These two dependencies are loop-carried spanning more than one

iteration preventing loop parallelism.

S1

S2

S1

S2

Dependency Graph

Iteration # i i+1

A i+1

B i+1

A i+1 A i+1

Not Loop
Carried
Dependence

Loop-carried Dependence

for (i=1; i<=100; i=i+1) {
A[i+1] = A[i] + C[i]; /* S1 */
B[i+1] = B[i] + A[i+1];} /* S2 */

}

Fall 08 CSE4201

for (i=1; i<=100; i=i+1) {
A[i] = A[i] + B[i]; /* S1 */

B[i+1] = C[i] + D[i]; /* S2 */

}
• S1 uses the value B[i] computed by S2 in the previous iteration

(loop-carried dependence)
• This dependence is not circular:

- S1 depends on S2 but S2 does not depend on S1.

S1

S2

S1

S2

Dependency Graph

Iteration # i i+1

B i+1

Loop-carried Dependence

Fall 08 CSE4201

LLP Analysis Example 2LLP Analysis Example 2

A[1] = A[1] + B[1];
for (i=1; i<=99; i=i+1) {

B[i+1] = C[i] + D[i];
A[i+1] = A[i+1] + B[i+1];

}
B[101] = C[100] + D[100];

Fall 08 CSE4201

LLP Analysis Example 2LLP Analysis Example 2

Original Loop:

A[100] = A[100] + B[100];

B[101] = C[100] + D[100];

A[1] = A[1] + B[1];

B[2] = C[1] + D[1];

A[2] = A[2] + B[2];

B[3] = C[2] + D[2];

A[99] = A[99] + B[99];

B[100] = C[99] + D[99];

A[100] = A[100] + B[100];

B[101] = C[100] + D[100];

A[1] = A[1] + B[1];

B[2] = C[1] + D[1];

A[2] = A[2] + B[2];

B[3] = C[2] + D[2];

A[99] = A[99] + B[99];

B[100] = C[99] + D[99];

for (i=1; i<=100; i=i+1) {
A[i] = A[i] + B[i]; /* S1 */
B[i+1] = C[i] + D[i]; /* S2 */

}

A[1] = A[1] + B[1];
for (i=1; i<=99; i=i+1) {

B[i+1] = C[i] + D[i];
A[i+1] = A[i+1] + B[i+1];

}
B[101] = C[100] + D[100];

Modified Parallel Loop:

Iteration 1 Iteration 2 Iteration 100Iteration 99

Loop-carried
Dependence

Loop Start-up code

Loop Completion code

Iteration 1
Iteration 98 Iteration 99

Not Loop
Carried
Dependence

.

.

. . . .

S1

S2

Fall 08 CSE4201

LLP

for(i=2;i<=100;i++) {
y[i]=y[i-1]+y[i]
}

for(i=2;i<=100;i++) {
y[i]=y[i-5]+y[i]
}

Fall 08 CSE4201

Finding Dependences

° Finding dependences in the program is very
important for renaming and executing instructions in
parallel.

° Arrays and pointers makes finding dependences
very difficult.

° Assume array indices are affine, which means on the
form where and are constant.

° GCD test can be used to detect dependences.
babia +×

Fall 08 CSE4201

GCD Test

° Assume we stored an array with index
value of and loaded an array with an
index value of

° Are they pointing to the same location?
° Assume the loop limit is m,n
° Are there

bia +×
dic +×

dkcbjankjmkj +×=+×≤≤ such that ,,

Fall 08 CSE4201

GCD Test

° A simple and sufficient test for absence can
be found.

° If a loop dependence exists, then

° If that test fails, there is no guarantee there
is dependence (loop bound)

)(dividesmust),(bdacGCD −

Fall 08 CSE4201

GCD Test

for(i=1; i<=100; i=i+1) {
x[2*i+3] = x[2*i] * 5.0;

}
a = 2 b = 3 c = 2 d = 0

GCD(a, c) = 2
d - b = -3

2 does not divide -3 ⇒⇒ No
dependence is not possible.

5,7,9,11,13,15,17,19,21,23,….

4,6,8,10,12,14,16,18,20,22,…..

Fall 08 CSE4201

Dependence Analysis -- Difficulties

° Dependence analysis is a very important tool for
exploiting LLP, it can not be used in these
situations

° Objects are referenced using pointers
° Array indexing using another array A[b[I]]
° Dependence may exist for some values of input,

but in reality the input never takes these values.
° When we want to more than the possibility of

dependence (which write causes it?)
° Dependence analysis across procedure boundaries

Fall 08 CSE4201

Dependence Analysis -- Difficulties

° Sometimes, points-to analysis might help.
° We might be able to answer simpler

questions, or get some hints.
° Do 2 pointers point to the same list?
° Type information
° Information derived when the object was

allocated
° Pointer assignments

Fall 08 CSE4201

Software Pipelinine

Fall 08 CSE4201

Software pipeline

Before: Unrolled 3 times
1 L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D F4,0(R1)
4 L.D F0,-8(R1)
5 ADD.D F4,F0,F2
6 S.D F4,-8(R1)
7 L.D F0,-16(R1)
8 ADD.D F4,F0,F2
9 S.D F4,-16(R1)
10 DADDUI R1,R1,#-24
11 BNE R1,R2,LOOP

After: Software Pipelined Version
L.D F0,0(R1)
ADD.D F4,F0,F2
L.D F0,-8(R1)

1 S.D F4,0(R1) ;Stores M[i]
2 ADD.D F4,F0,F2 ;Adds to M[i-1]
3 L.D F0,-16(R1);Loads M[i-2]
4 DADDUI R1,R1,#-8
5 BNE R1,R2,LOOP

S.D F4, 0(R1)
ADDD F4,F0,F2
S.D F4,-8(R1)

Loop: L.D F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)
DADDUI R1,R1,#-8
BNE R1,R2,LOOP

Fall 08 CSE4201

Software pipeline

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

4 Software Pipelined loop iterations (2 iterations fewer)

1 2 3 4 5 6

1 2 3 4
finish
code

start-up
code

Loop Body of software Pipelined Version

