
CSE 4201 1

COSC4201

Distributed Shared Memory Architecture

Prof. Mokhtar Aboelaze

York University

CSE 4201 2

DSM
° Memory is distributed among the

processors.
° An interconnection network is used to

communicate
° Earlier attempts ignored cache

coherence. Shared data are marked as
uncachable.

° Still, shared data could be cached by
S/W, but consistency should be
maintained by the software.

° A software based approach must be
conservative, every block that is might
be shared, is considered shared.

CSE 4201 3

DSM

°Also, for a small number of processors, a
single bus is O.K. For large number, bus
B.W. is not enough.

°For a snooping protocol, the assumption
is every transaction is broadcast on the
bus for every processor to hear.

°That generate a lot of traffic, and is not
easily implemented in a non-bus
architecture.

CSE 4201 4

Directory-Based Cache Coherence
Protocols

Memory

Directory

P + $

I/O Memory

Directory

P + $

I/O Memory

Directory

P + $

I/O

P + $

Memory

Directory

I/O

Interconnection Network

. . .

CSE 4201 5

Directory Based Cache Coherence
Protocols
°A block can be in one of three states

• Shared: One or more processor have the
block cached. The value in the memory is
up to date

• Uncached: No processor has a copy of the
block

• Exclusive : Exactly one processor has a
copy of the block, and it has written the
block. The memory copy is out of date. The
processor is called the owner of the block

CSE 4201 6

Directory Based Cache Coherence
Protocols
° We must track the state of every memory block,

as well as the owner of any exclusive block, or
the processors who have copies of a shared
block

° A bit vector can be used for that.

° Write to a non exclusive block always result in
a write miss.

° The interconnect is no more a single point of
arbitration.

° Local node is the node where the request
originates, the home node is the node where
the memory location and the directory entry of
an address reside, remote node is a node that
have a copy of the block.

CSE 4201 7

Directory Based Cache Coherence
Protocols
°A simple type of memory consistency is
assumed.

°We assume that the messages are
received and acted upon at the same
order they are sent.

°That is a very difficult thing to do in
practice (some times it is not possible to
do at all).

°A single address space, the high order
bits of the address can be used to
determine the node number, the rest of
the bits determine the offset in that
memory.

CSE 4201 8

Directory Protocol Messages
Message type Source Destination Msg Content
Read miss Local cache Home directory P, A

• Processor P reads data at address A;
make P a read share and request data

Write miss Local cache Home directory P, A
• Processor P has a write miss at address A;

make P the exclusive owner and request data
Invalidate Home directory Remote caches A

• Invalidate a shared copy at address A
Fetch Home directory Remote cache A

• Fetch the block at address A and send it to its home directory;
change the state of A in the remote cache to shared

Fetch/Invalidate Home directory Remote cache A
• Fetch the block at address A and send it to its home directory;

invalidate the block in the cache
Data value reply Home directory Local cache Data

• Return a data value from the home memory (read miss response)
Data write back Remote cache Home directory A, Data

• Write back a data value for address A (invalidate response)

CSE 4201 9

Directory State machine

°State machine
for Directory
requests for each
memory block

°Uncached state
if in memory

Data Write Back:
Sharers = {}

(Write back block)

Uncached
Shared

(read only)

Exclusive
(read/write

)

Read miss:
Sharers = {P}
send Data Value
Reply

Write Miss:
send Invalidate
to Sharers;
then Sharers = {P};
send Data Value
Reply msg

Write Miss:
Sharers = {P};
send Data
Value Reply
msg

Read miss:
Sharers += {P};
send Fetch;
send Data Value Reply
msg to remote cache
(Write back block)

Read miss:
Sharers += {P};
send Data Value Reply

Write Miss:
Sharers = {P};
send Fetch/Invalidate;
send Data Value Reply
msg to remote cache

CSE 4201 10

Cache State Machine

°State machine
for CPU requests
for each
memory block

°Invalid state
if in
memory

Fetch/Invalidate
or Miss due to

address conflict:
send Data Write Back message

to home directory

Invalidate
or Miss due to

address conflict:
Invalid

Shared
(read/only)

Exclusive
(read/write

)

CPU Read

CPU Read hit

Send Read Miss
message

CPU Write:
Send Write Miss
msg to h.d.

CPU Write:
Send
Write Miss message
to home directory

CPU read hit
CPU write hit

Fetch: send
Data Write Back message
to home directory

CSE 4201 11

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

CSE 4201 12

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

CSE 4201 13

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

CSE 4201 14

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

10
10

P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

A1

Write BackWrite Back

CSE 4201 15

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

A1

CSE 4201 16

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 WrMs P2 A2 A2 Excl. {P2} 0

WrBk P2 A1 20 A1 Unca. {} 20
Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

Processor 1 Processor 2 Interconnect MemoryDirectory

A1

CSE 4201 17

Synchronization

°Typically built with user-level routines that
rely on hardware-supplied
synchronization instructions.

°Hardware should be capable of
supporting un-interruptible instruction or
instruction sequence that can atomically
retrieve and change a value.

°In a large scale multiprocessor (high
contention) synchronization could be a
bottleneck.

°Some hardware supported
synchronization primitives can reduce
contention and latency.

CSE 4201 18

Basic Hardware Primitives

°The key ability to implement
synchronization is a set of hardware
primitives that can atomically read and
modify a memory location.

°Generally users do not use these
primitives, but rather system
programmers use them to implement
synchronization routine to be used by the
user.

°A typical operation is an atomic
exchange that can exchange a value in a
register with a value in the memory, how
can you use this to implement a lock?

CSE 4201 19

Basic Hardware Primitives

°A pair of instruction could be used to
implement synchronization.

°These two instructions are used in
sequence (not aomically)

°Known as load linked or load locked, and
store conditional.

CSE 4201 20

Basic Hardware Primitives

°The load linked is LL R2,0(R1), reads the
0(R1) and stores it in R2.

°The hardware keep track of the address
specified in LL and store it in a link
register

°If an interrupt happened, or a write to the
location specified in the link register, the
link register is invalidated (cleared).

°Sore conditional checks to see if its
address matches that in the link register,
if yes, store and return 1, else do not
store and return 0.

CSE 4201 21

Basic Hardware Primitives

try: mov R3,R4 ; mov exchange value
ll R2,0(R1) ; load linked
sc R3,0(R1) ; store conditional
beqz R3,try ; branch store fails (R3 = 0)
mov R4,R2 ; put load value in R4

try: ll R2,0(R1) ; load linked
addi R2,R2,#1 ; increment (OK if reg–reg)
sc R2,0(R1) ; store conditional
beqz R2,try ; branch store fails (R2 = 0)

Implementing fetch and increment using LL and
SC

