Question 1 (4 points)

Consider the following MIPS code

$51 \rightarrow 52$ $S_{2 \rightarrow 14}$ $2 \rightarrow 5$ $2 \rightarrow 5$
 $$
2 \rightarrow 7
$$

Si LOAD
R1, 84(R2)
S2 ADD
R8, R1, \#24
R2, R4, R1
R6, R8, R7
St OR
S5 ADD
S6 XOR
ST STORE
R2, R7, R9
0(R8), R2
S3 SUB

Identify each dependence by type; put your answer in the form $\mathrm{Si} \rightarrow \mathrm{Sj}$ (type) meaning Sj depends on Si and the type is (type)

Question 2 (4 points)
Assume that a program running on a processor A with a clock speed of 1.2 MHz and it takes 64 seconds to complete.
In order to speedup the execution time, a coprocessor for FP operations is used. Assume that it takes 2 cycles to send data to the coprocessor, and two cycles to get back the results. Following is the number of cycles required to do FP operations on the processor and the coprocessor, and the percentage of time (when the FP operations are done on the processor) that the CPU spends in the different FP operations

OP	Processor	Coprocessor	\% of time
FP ADD	20	2	10
FP MUL	50	6	20
FP DIV	80	10	25

What is the time to execute the program using a coprocessor?
ADD an coprocessor MOL $6+2+2=10$

$$
2+2+2=6 \quad S_{D_{1}}=\frac{20}{6}
$$

$$
\text { DIV } \quad 10+2+2=14
$$

$$
s_{p 2}=\frac{50}{10}=5
$$

$$
S P 3=\frac{80}{14}
$$

Total Speedup =

$$
\frac{0.11}{5 P 1}+\frac{0.2}{3 P 2}+\frac{0.35}{3 p 3}+(0.45)
$$

new Time $=\frac{64}{\text { Total speed up }}$

Question 3 (4 points)
Consider a system with 2 level cache,
L1 Hit time = 1 cycle

Hit rate $=95 \%$
L2
Hit time $=4$ cycles Hit rate $=70 \%$
Main memory
Block transfer time $=40$ cycles.
What is the average memory access time considering two alternatives?
a) L1 and L2 are accessed in parallel
b) L1 and L2 are accessed in sequence
c) What are the advantages and disadvantages of the above two cases?
in (a) restart accessing $L 2$ with $L 1$, if miss in 11 , we saved one cycle
(a) Accesstive $=0.95+0.05(1+0.3 \times 3+0.7 \times 4$ 4 for part b (3) is faster but more Energy.

Question 4 (6 points)

A CPU with a CPI of 2 with a perfect cache, and 1 nsec. cycle time. The specification for the cache and main memory is as follows.

Cache

64KB 2-way set associative write back cache with a hit time of 1 cycle, and a miss rate of 5%. On the average, 30% of the blocks in the cache are dirty. The block size is 32 bytes.

Memory

In order to access the memory, it takes 4 cycles to send the address, then 4 cycles to read/write data. The memory is 2-interleaved with 128-bit bus to the cache.
Assume there are 1.3 memory accesses per instruction; what is the CPI of the machine taking the memory access into consideration.
memory access time for a block (32 bytes)
$4+(4+4)=12$ cycles.
write back
nemeny acerotive $=1+0.05(12+0.3 \times 12)$

Question 5 (8 points)

Loop:

L.D	F0,0(R1)
ADD.D	F4,F0,F2
S.D	F4,0(R1)
DADDUI	R1,R1,\#8
BNE	R1,R2,Loop

;get an array element
;Add a constant to the array element
Store back the result
;increment the index ;end of array?

Consider a 2-issue superscalar using Tomasulo’s algorithm without speculation.
Show at what time each instruction is issued, starts execution, finishes execution, uses memory (1 cycle) and writes back the results on the CDB.
For the memory, assume that the load store unit has its own integer ALU for effective address calculation, which takes one cycle, and the memory access takes one cycle. For the rest of the functional units

Integer	1 cycle
FP add	3 cycles
Memory access	1 cycle

Assume there is only one reservation station at each functional unit.

Question 6 (6 points)

Consider a 1 KB cache, 4-way set associative, with a block size of 16 bytes, and an address space of 20 bytes.
Show the number of bits in the offset, index, and tag parts of the address
Consider the following access pattern
Use LRU replacement policy
ABCDC
ABCD9

910D2
ABD 92
91228
956D1
956D6

1. How many misses?
2. How many blocks are in the cache after the above access pattern?

You do not need to show the contents of the cache, but it will help you get partial points if you make a simple calculation mistake

Question 7 (4 points)

Consider a distributed memory system with a write invalidate snooping cache protocol. Consider also the following sequence of memory references.
P1 reads block x
P3 reads block y
P1 writes block y
P5 reads block y
P1 reads block x
P4 writes block x

After the end of the sequence.
What is the state of blocks x and y ?
Which caches contain block x and/or y ?

Question 8 (4 Points)

Consider a paged virtual memory with 16KB page size, and a 32-bit address space.
How many page faults after the following memory references. Assume that we started with all pages on disk.

