
CSE3403 Fall 2008  
Project #1:  

Due: November 19,24,26, 2008   

Weight 30%  

mplexity of the .NET 

latform Library vs. the complexity of the Java platform Library. 

1

xity metric as the degree of how difficult a 

ibrary is to comprehend and work with.  

                                                

 
In this project you are invited to evaluate and compare the co

p

 

Background 

In general, when developing software (s/w), a main issue is to measure the complexity of 

the resulting s/w product. This is useful especially during the maintenance part of the s/w 

lifecycle. The maintenance part of the s/w lifecycle is the most long-lived part of every 

s/w product. A major s/w product can take a year or two (or more) to build, but it is 

expected to be used for many years (in some cases, decades). During these many years 

the s/w usually undergoes changes, enhancements, corrections, etc. This is what we call 

“the maintenance” phase of the s/w lifecycle. Obviously, if the s/w is initially easy to 

understand, it will be easier to maintain it during the maintenance phase. Therefore, the 

notion of complexity of s/w has been established. In short, s/w complexity is the degree of 

how difficult a program is to comprehend and work with . Over the years, computer 

scientists have developed many ways to measure (and predict) s/w complexity. These 

ways are called metrics.  A metric is basically a number that indicates how complex a s/w 

artifact may be. For example, if s/w artifacts S1 and S2 have metrics m1 and m2 and m1 

> m2 then S1 is more complex than S2. Similar to program complexity, people have 

devised metrics for structure complexity of XML schemas (reference [1]) and UML 

models (reference [2]). This type of metrics is typically referred to as structure metrics. 

For this project you will devise Library complexity metrics. Similar to s/w program 

metrics, we can define a Library comple

L

 
1 Note, this notion of complexity is different from the one typically used in algorithms. In algorithms, the 
term complexity refers to how fast an algorithm is (time complexity), or how much space it takes to execute 
(space complexity). 

 Page 1 of 8



 

Potentia

2.  your understanding and appreciation of the complexity of a platform’s 

3. ulties involved in evaluating s/w and 

4. urprising” – e.g., that one library is much more 

complex than the other library.  

evant 

terature of similar works. The following four references are a good starting point.  

[1] EE 

[2] 

, vol. 14, no. 

[3] 

ww.di.uminho.pt/~joostvisser/publications/StructureMetricsForXMLSchema.pd

l benefits that you will have by doing this project. 

1. Become familiar with the libraries of the .NET and Java platforms.  

Increase

library. 

Become familiar with the issues and diffic

specifically platform-grade s/w products.  

(May be) discover something “s

 

Discussion. 

In devising your collection of metrics, you should become familiar with rel

li

 

Harrison, Warren, “An Entropy-Based Measure of Software Complexity”, IE

Transactions on Software Engineering, vol. 18, no. 11, 1992, pp. 1025-1029.  

John Stephen Davis and Richard J. LeBlanc, “A study of the Applicability of 

Complexity Measures”, IEEE Transactions on Software Engineering

9, 1988, pp. 1366-1372. 

Joost Visser, “Structure Metrics for XML Schema”, available at 

w

f 

Hyoseob Kim1 and Cornelia Boldyreff, “D[4] re Metrics 

s.inf-

eveloping Softwa

Applicable to UML Models”, available at http://alarco

cr.uclm.es/qaoose2002/docs/QAOOSE-Kim-Bol.pdf 

rces). You can 

btain references [3] and [4] from the URLs listed with the references.  

 

You can obtain references [1] and [2] from the York U. libraries (e-resou

o

 

Several metrics are described in the above references. Especially relevant to this project 

are probably the metrics mentioned in [3] and [4]. Note, not all metrics described in the 

 Page 2 of 8

http://www.di.uminho.pt/~joostvisser/publications/StructureMetricsForXMLSchema.pdf
http://www.di.uminho.pt/~joostvisser/publications/StructureMetricsForXMLSchema.pdf
http://alarcos.inf-cr.uclm.es/qaoose2002/docs/QAOOSE-Kim-Bol.pdf
http://alarcos.inf-cr.uclm.es/qaoose2002/docs/QAOOSE-Kim-Bol.pdf


references may be applicable to this project. It is your task (as part of this project) to read

the references (as well as other articles as you become mo

 

re familiar with the topic) and 

en decide what to use and not use from what you read.  

is 

 also 

evise more metrics, but the use the Entropy metric is a minimum requirement). 

 this metric can possibly be adapted and used 

r comparing the .NET and Java libraries.  

Figure 1: General Structur va, the term “Package” is 

used for “Namespace” of .NET). 

th

 

One of the metrics mentioned in [1], [2], and [3] is an Entropy-based metric. As you will 

read, the use of this metric for s/w vs. XML schema is somewhat different, but the idea 

the same. You should adapt and use the Entropy metric in this project (you should

d

 

Below, is an idea (to get you started) of how

fo

 

Both the .NET and Java libraries have the following structure.  

<Namespace>  

<Namespace>  

<Class>  

<Subclass>  

<Method>

<Method>  

<Me

<Method>  

<Subclass>  

<Class>  

  

thod>  

 
e of .NET (and Java) library (in Ja

 

 Page 3 of 8



For using the entropy me lexity of .NET from a graph like the one 

shown in Figure 1, you calculate  

lg
N

H P P= − ⋅∑

where  

tric to judge the comp

1
i i

i=
  (1)  

( ) number nodes of class iCof
total number of nodes in the graph

N = total number of classes iC , i.e., total number of i s. 

iC : Equivalency class. This is the set of all nodes such t t any two nodes iN  and 

i iP P C= = , 

 P

ha jN  of 

 have indegree( iN ) = indegree(the above ph gra jN ) and tdegree( iN ) = oou utdegree( jN ). 

(indegree( iN ) = the number of edges coming into node iN  in the graph; outdegree( iN ) = 

s going out of node iN  in the graph). 

 

xample

the number of edge

Lg is log base 2, in expression (1).  

 

E : if a class C3 has 4 elements (4 nodes) and there are 10 nodes in the graph, then 

(1). (The same applies for the Java library). If you want to calculate 

e H of only a part of .NET, then you should do similar for the graph corresponding to 

le below illustrates how to calculate H for a general directed graph. 

Example:  

Consider the directed graph shown in figure 2.  

P(C3) = 4/10.  

 

In order to calculate the Entropy H of the .NET library, you should calculate the 

equivalency classes of the directed graph corresponding to the .NET library and then use 

the above expression 

th

that part, and so on.  

 

The examp

 

 Page 4 of 8



 
Figure 2: A sample directed graph 

T1 T2 

T3 
T5 

T6 
T4 

 

Node  Indegree Outdegree Equivalency Class 

T1 - 2 C1 <0,2> 

T2 1 1 C2 <1,1> 

T3 2 2 C3 <2,2> 

T4 1 1 C2 <1,1> 

T5 3 - C4 <3,0> 

T6 - 1 C5 <0,1> 

 

Equivalency classes (5 equivalency classes)  

 

iC  ( )iP C  

C1 <0,2> = {T1} 1/6 

C2 <1,1> = {T2, T4} 2/6 

C3 <2,2> = {T3} 1/6 

C4 <3,0> = {T5} 1/6 

C5 <0,1> = {T6} 1/6 

 

 Page 5 of 8



Entropy:  = 2.252. ( ) ( )(
5

1
lgi

i
H P C P C

=

= − ⋅∑ )i

 

Notes: 

o How to generate the .NET and Java library graph? It is up to you (you can write a 

C# program to do it automatically by traversing the .NET documentation, or do it 

semi-automatically, in some other way). 

o How to calculate H? Up to you. (You can write a C# program to calculate H from 

the generated graph, or do it semi-automatically – e.g. with Excel). 

 

How your project is expected to look like. 

o Provide your list of metrics that you devised and use in your evaluation. 

o For each metric, explain why you choose the metric and what the intuition of this 

metric is. That is, why the metric provides a meaningful estimate of the 

complexity of the .NET and/or Java libraries. (for example, if your metric is 

“number of classes”, then the intuition could be that “the more the number of 

classes in a library, the more difficult is to comprehend and work with this 

library”. 

o Provide a description of how the metric is calculated, applied, and/or used (for 

example, similar to the description for the entropy metric give above). 

o Provide statistics from the results of applying your metric to the .NET and Java 

libraries (e.g. the number of classes, number of subclasses, H of the .NET graph, 

etc). 

o Can you identify parts if the .NET library graph with higher complexity and/or 

parts with lower complexity? 

o This is an open-ended project, in the sense that there is no fixed amount of detail 

that you have to achieve. At the minimum, you are expected to evaluate the two 

platforms using the Entropy metric, but you are expected to do more than that. 

Also, the amount of detail you can go even with the Entropy metric alone, varies. 

For example, do you apply metrics for classes only? … Or for methods of classes 

 Page 6 of 8



as well? … Or for parts of the .NET as well? … in addition to the entire library? 

And so on.  

o At the end, you are expected to hand in the following: 

o Implementation files of your work. Include some documentation in your 

code so it is feasible to understand what you are doing.  

o A presentation of your work (in my office, as will be scheduled toward rge 

end of the course. Tentative dates for presentations are November 19, 24, 

26 toward the end of the course. (There will be presentations during those 

times, instead of class).  

o A written report that describes and presents your work.  Include also a 

“user’s manual” so it is feasible to understand how to compile and run 

your code. You can hand in your written report after your presentation, by 

December 1 at the latest. 

 

How you can work. 

You can do this project in groups of up to 5 (five) students per group. In case that you 

work in a group, you should also provide an individual report that describes – in your 

opinion, the amount of work done by each of the group members, including yourself. 

This report will also be used in assessing the work of each student individually, within 

your group.  

 

Evaluation. 

The evaluation of your project will be done on the basis of: 

o The detail of the work you did. 

o The comprehensiveness of your work. 

o The quality of your written report. 

o The overall quality of your work. 

o As stated in class and in the course web site, evaluation will also be relative to all 

other projects.  

 

Possible risks.  

 Page 7 of 8



 Page 8 of 8

o If one or more members of your group happen to drop the course, the remaining 

members of the group are responsible for completing the project. 

o Once a group is formed, members of a group cannot move to another group, 

unless there is agreement in doing so by all involved (i.e., all members of the 

group that will lose a member and all members of the group that will gain a 

member). 

o Exchanging ideas between different groups is OK, but be reminded that 

evaluation is relative. (Your communicated ideas may give a better advantage to 

someone else). 

o Copying code from one group to another is not allowed.  

o Copying (non-copyrighted or copyrighted-but-allowed-to-use) code from the web 

is allowed, provided that you supply the reference (web address) from where you 

copied, give credit to the original author of the code, and specify clearly the parts 

of your code that have been copied.  

o Copying chunks of text from articles/books/web and pasting it into your written 

report is not allowed, in general. If you need to do so, you should clearly indicate 

that this is copied text, by surrounding it with quotes and also by providing 

reference to the source from where you copied, including the exact page of the 

article where the copied text is found.  

 


