
Using OCaml on Linux∗

August 18, 2004

The version of the ML programming language that we will be using in CIS 505 this semester is Objective
Caml, also known as OCaml. This handout describes how to run OCaml on the Linux workstations.

In the OCaml programming environment, you will use Emacs to create program files and will load
these files into an interactive OCaml top-level interpreter. Type reconstruction is performed on all OCaml
programs and you cannot test your programs until they pass the type checker. Understanding error messages
from the type checker and using them to pinpoint type errors in your program are important skills that you
will need to hone.

There are two ways to run OCaml on the Linux workstations: within a regular shell window and within
a shell window in Emacs. These approaches are described below in Sections 1 and 2. It is recommended
that you use the Emacs interface, since it simplifies many interactions. Nevertheless, you should still read
all sections as many of the notes still apply to the Emacs interface.

This handout only scratches the surface of OCaml. For more detailed documentation, browse the fol-
lowing web pages:

http://caml.inria.fr/
http://www.ocaml.org/

1 Running OCaml in a Shell

1.1 Launching the OCaml interpreter

The simplest way to run OCaml on the Linux workstations is within a Linux shell window. Within such a
window, executeocaml . This will print a herald on the screen and eventually the ‘#’ prompt of OCaml.
For example:

[ab@ablap fall05]$ ocaml
Objective Caml version 3.07+2

#

You can now evaluate expressions by typing them in followed by two semi-colons and ENTER. The two
semi-colons tell the interpreter that you are done with the expression. This allows you to have expressions
with multiple lines. For example, here is the transcript of a session in which two single line expressions and
one multiple line expressions are evaluated:

1 + 2;;
- : int = 3
let xs = List.map (fun x -> x * 2) [4; 3; 7];;

∗This writeup is adapted from course notes of F. Turbak

1

val xs : int list = [8; 6; 14]
let a = 1 + 2 in

let b = 4 * a in
(a,b);;

- : int * int = (3, 12)

If you forget the semi-colon at the end of an expression, OCaml will think you are continuing the
expression onto the next line. In this case, you can just type the two semi-colons followed by ENTER to
indicate that you are done. For example:

1 + 2
;;

- : int = 3

The OCaml interpreter expects that the unit of evaluation will be a top-level declaration, typically one
of the form

let name = exp ;;

It is common to declare functions using the form

let function-name formal1 ... formaln = exp ;;

This is syntactic sugar for

let function-name = fun formal1 -> ... fun formaln -> exp ;;

Often, the keywordfunction is used instead offun (as in the taped lectures).
If you just enter an expressionExp, the OCaml interpreter treats it as a declaration of the formlet - =

Exp, where- in this context is a special variable that is not actually bound to the result.

1.2 Loading Files

It is tedious to type all declarations directly at the OCaml interpreter. It is especially frustrating to type in a
long declaration only to notice that you made an error near the beginning and you have to type it in all over
again. In order to reduce your frustration level, it is wise to use a text editor (e.g., Emacs) to type in all but
the simplest OCaml declarations. This way, it is easy to correct bugs and to save your declarations between
different sessions with the OCaml interpreter. (Note: the file extension that you should use for OCaml files
is ”.ml”. Using this extension will enable various OCaml features in Emacs).

If filename is the name of a file containing OCaml declarations and expressions, evaluating

#use ‘‘ filename ’’

will evaluate all of the expressions in the file, one by one, as if you had typed them in by hand.#use is
an example of adirective – a function-like entity that can be invoked in the top-level interpreter but isnot
an OCaml function. OCaml has several directives, all of which begin with the symbol#. This symbol is
different from the# that serves as a prompt! For example:

#use "bar.ml";;
val sum_multiples_of_3_or_5 : ’a * ’b -> int = <fun>
val contains_multiple : ’a * ’b -> bool = <fun>
val all_contain_multiple : ’a * ’b -> bool = <fun>

2

val merge : ’a * ’b -> ’c list = <fun>
val alts : ’a -> ’b list = <fun>
val cartesian_product : ’a * ’b -> ’c list = <fun>
val bits : ’a -> ’b list = <fun>
val inserts : ’a * ’b -> ’c list = <fun>
val permutations : ’a -> ’b list = <fun>

Note how OCaml gives the type of each declaration in the file.
The#use directive can be used within a file to load other files. For example, here is the contents of a

file foo.ml that loads two other files:

#use "bar.ml"
#use "bar-test.ml"

The filename given to#use may be either an absolute pathname (such as the absolute pathname
/home/ab/public html/Courses/505/foo/foo.ml) or a pathname relative to the current work-
ing directory. By default, the current working directory for the OCaml interpreter is the current working
directory of the shell in which it was invoked, and by default this is your cislinux home directory (e.g.
/home/faculty/ab). So rather than evaluating

#use ‘‘/home/faculty/ab/public html/Courses/505/fall05/hw/a1.ml’’)

you could instead evaluate

#use ‘‘public html/Courses/505/fall05/hw/a1.ml’’

It is typical to load many files (or the same file many times) from the same directory. Moreover, files
that themselves contain#use (like foo.ml considered above) often have built into them an assumption
that you load them from a particular directory. For these reasons, you need to be able to change the current
working directory within the OCaml interpreter. To do this, evaluate

#cd dirname

wheredirname is the name of the directory which you want to become the new current working directory.
This name can either be an absolute pathname, or relative to the current working directory. For example, if
the current working directory isfall05

#cd ‘‘505/hw1’’

sets the OCaml directory to/home/faculty/ab/public html/Courses/505/fall05/hw1
If this is followed by

#cd "../hw2"

the OCaml directory is now to/home/faculty/ab/public html/Courses/505/fall05/hw2
OCaml doesnot understand the usual Linux abbreviation of for the user’s home directory (such as

/home/faculty/ab), so you have to type the long form for your home directory.

1.3 Exiting OCaml

To terminate your session with the OCaml interpreter, either use the#quit directive, or typeC-d (i.e.,
control D)1.

1It is common in Unix systems forC-d to represent the ”end of input”.

3

2 Running OCaml within an Emacs Shell

First, remember to download and install the OCaml Emacs mode!
You could do all of your OCaml programming in CIS 505 using just the techniques outlined in Section 1

above. However, you will find yourself constantly swapping attention between the Emacs editor (where
you write your code) and the Linux shell running the OCaml interpreter (where you evaluate your code).
Moreover, when logged in remotely, you often do not have the luxury of multiple windows.

You can do all OCaml editing and execution within a single Emacs window. The most straightforward
way to do this is to run the OCaml interpreter within a shell inside of Emacs. You can start a Linux shell
within Emacs viaM-x shell ; this creates a special shell buffer named*shell* . You can then run
OCaml inside this shell as described above. By using Emacs window-splitting techniques2, you can see
both the OCaml interpreter and the file you’re editing on a single screen.

Another advantage to running OCaml under an Emacs shell is that the Emacs commandsM-p andM-n
cycle back and forth through the shell input history. So when testing a program in the OCaml interpreter,
you needn’t retype a test expression typed earlier; instead, typeM-p a few times.

Yet another advantage is that the Emacs shell is a buffer that can easily be saved as a file. So it is easy to
save a transcript of your interactions with OCaml.

2e.g.,C-x 2 splits a window in two, andC-x o moves the cursor between windows.

4

