
CSE 3401, Functional and Logic Programming, Fall 2008. A. Belov 1

Lecture 6 (Sep 23)

Lecture outline:

• example for conversion of predicate logic formulas to CNF

• substitutions

• unification

• Robinson’s unification algorithm

In the last lecture, we started to talk about the conversion of predicate formulas to logic
programing clauses. The first two steps of the conversion are

1. Move all quantifiers outside. This gives a formula in prenex normal form.

2. Eliminate the existential quantifiers using Skolemization.

After these steps the formula is in prenex normal form with only universal quantifiers, so
the last step is

3. Drop the universal quantifiers, and convert the resulting formula to logic
programming clauses, as if it was a propositional formula.

Example 1. (From the Sep 18 exercise) Convert the following formula to logic
programming clauses

(∃X∀Y p(X, Y )) ∨ ¬∃Y (q(Y )→ ∀Zr(Z))

Ok, there we go:

(∃X∀Y p(X, Y )) ∨ ¬∃Y (q(Y )→ ∀Zr(Z))

(∃X∀Y p(X, Y )) ∨ ¬∃Y (¬q(Y ) ∨ ∀Zr(Z)) (replaced →)

(∃X∀Y p(X, Y )) ∨ ∀Y (q(Y ) ∧ ∃Z¬r(Z)) (moved ¬ inwards)

∃X[(∀Y p(X, Y )) ∨ ∀Y (q(Y ) ∧ ∃Z¬r(Z))] (moved ∃X out)

∃X∀T [p(X, T ) ∨ ∀Y (q(Y ) ∧ ∃Z¬r(Z))] (moved the first ∀Y , had to rename Y with T )

∃X∀T∀Y [p(X, T ) ∨ (q(Y ) ∧ ∃Z¬r(Z))] (moved ∀Y )

∃X∀T∀Y ∃Z[p(X, T ) ∨ (q(Y ) ∧ ¬r(Z))] (moved ∃Z)

∀T∀Y ∃Z[p(c, T ) ∨ (q(Y ) ∧ ¬r(Z))] (eliminated ∃X)

∀T∀Y [p(c, T ) ∨ (q(Y ) ∧ ¬r(f(T, Y )))] (eliminated ∃Z)

p(c, T ) ∨ (q(Y ) ∧ ¬r(f(T, Y ))) (dropped all universal quantifiers)

(p(c, T ) ∨ q(Y )) ∧ (p(c, T ) ∨ ¬r(f(T, Y ))) (distributive law)

Now we have CNF, which gives us the following two logic programming clauses:

p(c, T ), q(Y ) :−

p(c, T ) :− r(f(T, Y ))



CSE 3401, Functional and Logic Programming, Fall 2008. A. Belov 2

Unification

Unification is an extra step needed for resolution for predicate logic. Take for example two
formulas ∀Xf(X) and ∀Y ¬f(Y ), which give two logic programming clauses f(X) :− and
:− f(Y ). Using propositional resolution rule we cannot resolve these, but, intuitively we
should be able to, because we can just replace X by Y in the first clause. Intuitively,
unification is the process of “making terms look the same” so the resolution rule can be
applied. In order to formalize this notion we need a few concepts.

Definition 2. A substitution is a function from variables to terms. Substitutions are

denoted in the following way: if a substitution θ maps variables V1, . . . , Vn
to terms

t1, . . . , tn, we write

θ = [V1/t1, . . . , Vn
/t

n
]

The result of the application of the substitution θ to a term t, denoted as θ(t), is a term

obtained by the simultaneous replacement of each occurrence in t of a variable from

Dom(θ) with a corresponding term from Range(θ).

Example 3. Let θ1 = [X/2, Y/h(Z)], and t = f(X, g(Y, a)), then

θ1(t) = f(2, g(h(Z), a)).

For θ2 = [X/2, Y/h(X)], we have

θ2(t) = f(2, g(h(X), a)),

and not f(2, g(h(2), a)).

Definition 4. Let θ and δ be two substitutions. The composition of θ and δ, denoted as

θ ◦ δ, is a substitution which maps every term t to a term δ(θ(t)).

Example 5. Let t = g(X, f(T )), and

θ = [X/f(Y ), Y/g(2, Z)]

δ = [Y/h(2), Z/3, T/h(a, Z)]

Then,

θ ◦ δ(t) =

δ(θ(t)) =

δ(g(f(Y ), f(T )) =

g(f(h(2)), f(h(a, Z))),

and

θ ◦ δ = [X/h(2), Y/g(2, 3), Z/3, T/h(a, Z)]



CSE 3401, Functional and Logic Programming, Fall 2008. A. Belov 3

Definition 6. Let U = {t1, t2, . . . , tn} be a set of terms. A substitution θ is called a unifier

of U if

θ(t1) = θ(t2) = · · · = θ(t
n
)

If U has a unifier, U is called unifiable, otherwise not unifiable.

Example 7. The set U1 = {f(X, 2), f(h(Y ), 2)} is unifiable - the substitution
θ = [X/h(Y )] is a unifier for U1.

Example 8. The set U2 = {f(X, 2), f(h(Y ), Y )} is unifiable - the substitution
θ = [X/h(2), Y/2] is a unifier for U2.

Example 9. The set U3 = {f(X, 2), f(h(X), 2)} is not unifiable.

Note that in the Example 7 we could have chosen a different unifier. For example,
θ′ = [X/h(23), Y/23] is also a unifier for U1, and so are infinitely many other ones.
Intuitively, we want a “simplest” possible unifier, i.e. the one that does the smallest
amount of changes. This is captured by the following concept:

Definition 10. A unifier θ of a set of terms U is most general unifier (m.g.u) if and only

if for every unifier ε of U there exists a substitution δ such that ε = θ ◦ δ.

Example 11. The unifier θ = [X/h(Y )] in Example 7 is m.g.u. of the set
U1 = {f(X, 2), f(h(Y ), 2)}. For example, a unifier θ′ = [X/h(23), Y/23] can be obtained
from θ using the substitution [Y/23]:

[X/h(23), Y/23] = [X/h(Y )] ◦ [Y/23]

Intuition1: an m.g.u. is sort-of a “generator” for all other unifiers – every other unifier can
be obtained from it via some substitution.

Unification Algorithm

The algorithm presented below is due to Alan Robinson, and allows to find an m.g.u. of
two terms, if they are unifiable. Note that there is a slightly more complicated but more
efficient version of unification algorithm, used in Prolog.
The condition checked on line 10 is called the occurs check. It is designed to handle cases
similar to what we saw in Example 9.
Note that the operator = in Prolog stands for “unifiable”, i.e. in Prolog t1 = t2 is true if
and only if t1 and t2 are unifiable. Note also, that Prolog omits the occurs check, and so,
for example, X = f(X) is true in Prolog.

1
I think now it does makes sense



CSE 3401, Functional and Logic Programming, Fall 2008. A. Belov 4

Algorithm 1 Unify([in] t1, [in] t2)

Input: t1, t2 – two terms.
Output: An m.g.u. of t1 and t2 if the set {t1, t2} is unifiable; NOT-UNIFIABLE otherwise.
1: θ ← identity substitution (i.e. θ(V ) = V for all V )
2: p1 ← pointer to the first symbol of t1
3: p2 ← pointer to the first symbol of t2
4: while t1 6= t2 do
5: Advance p1 and p2 simultaneously until a pair of different symbols is found
6: if neither p1 nor p2 point to a variable then
7: return NON-UNIFIABLE
8: end if
9: Let X be the variable, and t be the term (may be a variable) pointed by p1 and p2

10: if X occurs in t then ⊲ occurs check
11: return NON-UNIFIABLE
12: end if
13: t1 = [X/t](t1)
14: t2 = [X/t](t2)
15: θ = θ ◦ [X/t]
16: end while
17: return θ


