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Lecture 5 (Sep 18)

Lecture outline:

• propositional resolution example

• refutation tree

• linear refutation

• resolution for predicate logic: conversion of predicate logic formulas to CNF

We start with the example of using resolution refutation.

Example 1. Consider a battery-operated car with engine, battery and on-off switch.
Define the following propositional variables:

bok – true if the battery is charged

eok – true if the engine is in working condition

son – true if the switch is on

eworks – true if the engine is working (i.e. the car is moving)

Let’s say we have the following problem description

P = {bok ∧ son ∧ eok → eworks,

bok ∧ son ∧ ¬eworks}

and we want to show that P → g, where g = ¬eok (that is, the engine is not in working
condition). We proceed by contradiction, in other words, we show that the set P ∪ {¬g} is
inconsistent, using resolution.

First, convert the set P ∪ {¬g} to logic programming clauses. Let

α = bok ∧ son ∧ eok → eworks,

β = bok ∧ son ∧ ¬eworks,

γ = eok.

Then, we have the following set of logic programming clauses S:

eworks :− bok, son, eok

bok :−

son :−

:− eworks

eok :−
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If we can construct resolution refutation of S, then, by Theorem 11 from last lecture
(Robinson’s theorem) S is inconsistent, and so P → g. One of the possible refutations is as
follows:

C1 = eworks :− bok, son, eok (from S)

C2 = bok :− (from S)

C3 = eworks :− son, eok (resolved C1 and C2 on bok)

C4 = son :− (from S)

C5 = eworks :− eok (resolved C3 and C4 on son)

C6 = eok :− (from S)

C7 = eworks :− (resolved C5 and C6 on eok)

C8 =:− eworks (from S)

C9 =:− (resolved C7 and C8 on eworks)

A more convenient way to represent resolution refutations is by means of refutation tree.
For the previous example, the refutation tree looks as follows:

:−

eworks :−

eworks :− eok

eworks :− son, eok

eworks :− bok, son, eok bok :−

son :−

eok :−

:− eworks

The formal definition of the refutation tree is a follows:

Definition 2. A refutation tree of a set S of clauses is a binary tree T such that:

• the root of T is labeled with :−,

• the leafs of T are labeled with clauses from S,

• if N is a node in T and N1, N2 are its children, then N is the resolvent of N1 and N2.
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Note that the resolvent of a goal clause with a fact or a rule clause is always a goal clause:

:− l1, . . . , lk−1, lk+1, . . . ln, α

:− l1, . . . , lk, . . . ln lk :− α

This observation is important: remember, a logic program is a set of fact and rule clauses,
and in logic programming there’s exactly one goal clause. Thus, we can always start the
refutation with the goal clause, pick one of the fact or rule clauses from the logic program,
and as a result obtain another goal clause. This next goal clause can again be resolved with
another clause from the program. This way at least on of the clauses for the resolution is
determined in advance, and so the search space is significantly reduced (although can still
be exponential). This special type of resolution refutation is called linear refutation.

Definition 3. A linear refutation of a set of program (i.e. facts and rules) clauses S with
a goal clause g us a resolution refutation which has the following form:

:−

g2

g1

g cl1 ∈ S

cl2 ∈ S

cli ∈ S

The following theorem basically states that in logic programming setting linear resolution
refutations can be used instead of the “regular” resolution refutations:

Theorem 4. Let P be a logic program (i.e. a finite set of fact and rule clauses), and let g

be a goal clause. Then the set P ∪ {g} is inconsistent if and only if there exists a linear
resolution refutation of this set.

Resolution for Predicate Logic

Just like in propositional case, resolution in predicate logic operates on formulas in
conjunctive normal form (CNF). The transformation of predicate logic formulas into CNF
is done in the following three steps:

Step 1. Move all quantifiers “outside” – the resulting formula is a formula in prenex
normal form, that is

Q1X1 . . . QnXn α,
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where Qi ∈ {∀, ∃}, and α is quantifier-free (i.e. no quantifiers inside it). To perform this
transformation, first get rid of all ↔ and → (just like during conversion to CNF in
propositional case), and then use the following equivalences until all quantifiers are pushed
outside:

¬∀Xα ≡ ∃X¬α

¬∃Xα ≡ ∀X¬α

(∀Xα) ∨ β ≡ ∀X(α ∨ β)

(∃Xα) ∨ β ≡ ∃X(α ∨ β)

(∀Xα) ∧ β ≡ ∀X(α ∧ β)

(∃Xα) ∧ β ≡ ∃X(α ∧ β)

Important: the last four equivalences hold only if X does not occur in β. If it does –
replace X in α and the quantifier with a fresh variable. For example,

(∀Xp(X)) ∨ q(X) ≡

∀Y (p(Y ) ∨ q(X))

Step 2. Eliminate existential quantifiers via skolemization. Skolemization is a repeated
application of the following rule:

Definition 5 (skolemization rule). Replace the formula

∀X1 . . .∀Xn∃Y α,

where all Xi are quantified universally, and α is in prenex normal form, with the formula

∀X1 . . .∀XnαS,

where αS is obtained from α by replacing every occurrence of Y with a fresh function
symbol f(X1, . . . , Xn).

Note that the rule works for n = 0 – in this case the variable is replaced with a fresh
constant symbol (function of 0 arguments is constant). For example, the formula
∃X∀Y p(X, Y ) would be replaced with ∀Y p(c, Y ). Also, note that there are no restrictions
on α, except that its in prenex normal form, and so to eliminate multiple existential
quantifiers we eliminate them one-by-one starting from the outside. For example,

Example 6.

∀X∀Y ∃Z∀T∃M(p(X, Y, Z) ∧ q(Y, M)).

We start with Z. Since the universally quantified variables in front of Z are X and Y , we
will replace Z with a function symbol f(X, Y ). This gives us

∀X∀Y ∀T∃M(p(X, Y, f(X, Y )) ∧ q(Y, M)).
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So, now we take care of M . Again, the universally quantified variables in front of M are
X, Y, T , and so we replace M with a function symbol h(X, Y, T ). Thus, we have

∀X∀Y ∀T (p(X, Y, f(X, Y )) ∧ q(Y, h(X, Y, T ))).

As a result of skolemization we obtain a formula in prenex normal form in which all
quantifiers are universal. Note that the resulting formula is not equivalent to the original
one (we talked in the class as to why this is so). However the resulting formula is consistent
if and only if the original one is consistent, and since in logic programming we only care
about consistency (or, inconsistency), for logic programming skolemization is appropriate.


