Exercises

Exercise 1. We'll add a little bit to the car example we saw in the class: first, define the following additional variables:

 c_{moves} – true if the car moves t_{ok} – true if the transmission is in working condition.

Now, consider the following problem description P:

 $b_{ok} \wedge s_{on} \wedge e_{ok} \rightarrow e_{works}$ – if battery ok and switch on and engine ok, then engine works $e_{works} \wedge t_{ok} \rightarrow c_{moves}$ – if engine works and transmission is ok, then car moves $s_{on} \wedge \neg c_{moves}$ – the switch is on but car doesn't move

And the following goal g:

 $(b_{ok} \wedge e_{ok}) \rightarrow \neg t_{ok}$ – if battery and engine are ok, then transmission must be broken

Show that $P \to g$ using resolution.

Exercise 2. For each of the following formulas, first convert the formula to prenex normal form, then eliminate all existential quantifiers via skolemization:

- (a) $\forall Y((\forall Xp(X,Y)) \rightarrow \exists Zq(X,Z))$
- (b) $(\exists X \forall Y p(X, Y)) \lor \neg \exists Y (q(Y) \to \forall Z r(Z))$

Exercise 3. How many different clauses can be constructed out of n propositional variables ? Assume that the same variable may not appear twice in a clause (neither with the same, nor with opposite polarity). For example for n = 2 all possible clauses are: :-, p_1 , $\neg p_1$, p_2 , $\neg p_2$, $p_1 \lor p_2$, $\neg p_1 \lor p_2$, $\neg p_1 \lor p_2$, and the answer is 9.

Solutions are on the next page

Solutions

Exercise 1 The clause set for resolution is

$$e_{works} := b_{ok}, s_{on}, e_{ok}$$

$$c_{moves} := e_{works}, t_{ok}$$

$$s_{on} :=$$

$$:= c_{moves}$$

$$b_{ok} :=$$

$$e_{ok} :=$$

$$t_{ok} :=$$

There are many different resolution refutations – if you get an empty clause at the end, then its correct ;-) If in doubt – email it to me, I will check it. Try to come up with the linear refutation (i.e. start with :– c_{moves}).

Exercise 2

(a) Prenex normal form:

$$\forall Y \exists T \exists Z (\neg p(T, Y) \lor q(X, Z)).$$

Note that you may have a different variable instead of T. After skolemization:

 $\forall Y(\neg p(f(Y), Y) \lor q(X, h(Y))).$

Again, you may have used other symbols instead of f and h.

```
(b) Prenex normal form:
```

$$\exists X \forall T \forall Y \exists Z (p(X,T) \lor (q(Y) \land \neg r(Z))).$$

After skolemization:

$$\forall T \forall Y(p(c,T) \lor (q(Y) \land \neg r(f(T,Y))).$$

Again, you may have used different symbols in the above formulas.

Exercise 3

Send me your answer by email.