Exercises

Exercise 1. We'll add a little bit to the car example we saw in the class: first, define the following additional variables:

$$
\begin{aligned}
c_{\text {moves }} & \text { - true if the car moves } \\
t_{o k} & \text { - true if the transmission is in working condition. }
\end{aligned}
$$

Now, consider the following problem description P :

$$
\begin{aligned}
& b_{o k} \wedge s_{o n} \wedge e_{o k} \rightarrow e_{\text {works }} \text { - if battery ok and switch on and engine ok, then engine works } \\
& e_{\text {works }} \wedge t_{\text {ok }} \rightarrow c_{\text {moves }} \text { - if engine works and transmission is ok, then car moves } \\
& s_{\text {on }} \wedge \neg c_{\text {moves }} \text { - the switch is on but car doesn't move }
\end{aligned}
$$

And the following goal g :

$$
\left(b_{o k} \wedge e_{o k}\right) \rightarrow \neg t_{o k} \text { - if battery and engine are ok, then transmission must be broken }
$$

Show that $P \rightarrow g$ using resolution.
Exercise 2. For each of the following formulas, first convert the formula to prenex normal form, then eliminate all existential quantifiers via skolemization:
(a) $\forall Y((\forall X p(X, Y)) \rightarrow \exists Z q(X, Z))$
(b) $(\exists X \forall Y p(X, Y)) \vee \neg \exists Y(q(Y) \rightarrow \forall Z r(Z))$

Exercise 3. How many different clauses can be constructed out of n propositional variables ? Assume that the same variable may not appear twice in a clause (neither with the same, nor with opposite polarity). For example for $n=2$ all possible clauses are: :-, $p_{1}, \neg p_{1}, p_{2}$, $\neg p_{2}, p_{1} \vee p_{2}, p_{1} \vee \neg p_{2}, \neg p_{1} \vee p_{2}, \neg p_{1} \vee \neg p_{2}$, and the answer is 9 .

Solutions

Exercise 1 The clause set for resolution is

$$
\begin{aligned}
e_{\text {works }} & :-b_{o k}, s_{o n}, e_{o k} \\
c_{\text {moves }} & :-e_{\text {works }}, t_{o k} \\
s_{o n} & :- \\
& :-c_{\text {moves }} \\
b_{o k} & :- \\
e_{o k} & :- \\
t_{o k} & :-
\end{aligned}
$$

There are many different resolution refutations - if you get an empty clause at the end, then its correct ;-) If in doubt - email it to me, I will check it. Try to come up with the linear refutation (i.e. start with :- $c_{\text {moves }}$).

Exercise 2

(a) Prenex normal form:

$$
\forall Y \exists T \exists Z(\neg p(T, Y) \vee q(X, Z))
$$

Note that you may have a different variable instead of T. After skolemization:

$$
\forall Y(\neg p(f(Y), Y) \vee q(X, h(Y)))
$$

Again, you may have used other symbols instead of f and h.
(b) Prenex normal form:

$$
\exists X \forall T \forall Y \exists Z(p(X, T) \vee(q(Y) \wedge \neg r(Z))) .
$$

After skolemization:

$$
\forall T \forall Y(p(c, T) \vee(q(Y) \wedge \neg r(f(T, Y)))
$$

Again, you may have used different symbols in the above formulas.

Exercise 3

Send me your answer by email.

