
CSE 3401, Functional and Logic Programming, Fall 2008. A. Belov 1

Lecture 3 (Sep 11)

Lecture outline:

• logic programming systems

• proof by contradiction

• conjuctive normal form

• logic programming representation of problems

As you may have already noticed logic programming (LP) systems in general, and Prolog
in particular, operate in the following manner:

• Input: a problem description given as a set P of logical sentences, and a goal g

which is another logical sentence.

• Output: “yes” if g logically follows from P (P |= g), “no” otherwise or if some
problem occured.

Thus, an LP system is in essence an implementation of a logical inference procedure. A
logical inference procedure is a procedure (an algorithm) which given a set of logical
sentences P and another sentence g determines if P |= g.
Resolution is one of such inference procedures, based on the proof by contradiction:

P |= g if and only if the set P ∪ {¬g} is inconsistent .

“Inconsistent” means “contains a contradiction”, but you should already know that.
An example of proof by contradiction:

Example 1. Given P = {∀Nf(N) = 2 ·N}
Lets prove goal g1 = (f(2) = 4) by contradiction. P and the negation of the goal provide
the following assumptions:

∀Nf(N) = 2 ·N, (1)

¬(f(2) = 4). (2)

From (1) using the rules of predicate logic and arithmetic we obtain f(2) = 4 (for N = 2),
which contradicts (2).
Lets prove the goal g2 = ∃M(f(3) = M). P and the negation of the goal provide the
following assumptions:

∀Nf(N) = 2 ·N, (3)



CSE 3401, Functional and Logic Programming, Fall 2008. A. Belov 2

¬∃M(f(3) = M) ≡ ∀M¬(f(3) = M) (4)

From (3) we have f(3) = 6 (for N = 3), from (4) we have ¬f(3) = 6 (for M = 6),
contradiction. Note that during the proof we had to assign the value 6 to M . Thus, g2

could be seen as a query f(3) =? – during the proof we obtain the answer as a “side-effect”
of the proof. You saw some of this in the Prolog examples I showed in the class.

Now, we begin to describe how resolution procedure actually works. We start with
propositional case.
The standard propositional resolution works on formulas in conjunctive normal form
(CNF). There is also resolution procedure for arbitrary formulas, but we won’t talk about
it. What is CNF ? First a few definitions:

Definition 2. A literal is a propositional variable or its negation

For example, p, q, ¬r, ¬q are literals. The first two are examples of positive literals, the
other two are examples of negative literals.

Definition 3. A clause is a disjunction (∨) of literals

For example, p ∨ ¬q ∨ s is a clause. Note that so is just p, i.e. one literal is a clause. Also,
an empty clause, i.e. a clause that does not have literals, is a clause – the truth value of
such clause is always 0 (false).

Definition 4. A propositional formula is said to be in conjunctive normal form (CNF) if it
is a conjunction of clauses.

For example, the formula

(p ∨ ¬q) ∧ (r ∨ ¬s ∨ ¬q) ∧ t

is in CNF (remember, one-literal clauses are allowed).
Why CNF ? Easy representation in computer systems (array of arrays, for example), many
algorithms are more straightforward when defined on CNF, including the resolution
inference procedure.

Fact 5. For every propositional formula, there exists an equivalent formula in CNF.

From logical deduction point of view, a formula in CNF clause1 ∧ clause2 ∧ · · · ∧ clausen is
equivalent to a set of clauses {clause1, clause2, . . . , clausen}. In this context , means
conjunction (∧). By convention, a clause l1 ∨ l2 ∨ ... ∨ lk is also seen as a set – this time a
set of literals {l1, l2, ..., lk}. In this context , means disjunction (∨). To represent clauses in
logic programming we group literals depending on polarity, and write a clause in the
following way:

positive literals :− negative literals (but without negation)

For example,



CSE 3401, Functional and Logic Programming, Fall 2008. A. Belov 3

Example 6. Represent the clause p ∨ ¬q ∨ ¬s ∨ t ∨ r in logic programming notation.
First, write the clause as set of literals:

{p,¬q,¬s, t, r},

then, group positive literals to the left, negative to the right:

{p, t, r¬q,¬s},

and now, the logic programming notation for the above clause is

p, t, r :− q, s. (5)

Another way to look at this: implication, i.e. (5) is equivalent to

(p ∨ t ∨ r)← (q ∧ s)

So, to represent a problem described as a set P of propositional formulas f1, . . . , fn, we

1. Convert each fi to CNF – let’s call it CNF (fi).

2. Represent each clause of CNF (fi) using the logic programming notation.

3. Put all the clauses together.

Example 7. Let

f1 = (p↔ q)→ (s ∨ ¬q),

f2 = s→ (q ∧ ¬p).

Represent P = {f1, f2} using logic programming notation.

Ok, so we need to translate f1 and f2 to CNF. The technique is as follows: first, get rid of
implications (→) and equalities (↔) so the resulting formula contains only ∧,∨,¬; second,
push all the negations to the variables, using the distributive laws.
So, for f1 (I did it in a longer way in the class):

(p↔ q)→ (s ∨ ¬q) ≡

¬(p↔ q) ∨ (s ∨ ¬q) ≡

¬((p ∧ q) ∨ (¬p ∧ ¬q)) ∨ (s ∨ ¬q) ≡

[¬(p ∧ q) ∧ ¬(¬p ∧ ¬q))] ∨ (s ∨ ¬q) ≡

[(¬p ∨ ¬q) ∧ (p ∨ q)] ∨ (s ∨ ¬q) ≡

(¬p ∨ ¬q ∨ s ∨ ¬q) ∧ (p ∨ q ∨ s ∨ ¬q) ≡

¬p ∨ ¬q ∨ s



CSE 3401, Functional and Logic Programming, Fall 2008. A. Belov 4

The LP representation of this clause is s :− p, q.
For f2:

s→ (q ∧ ¬p) ≡

¬s ∨ (q ∧ ¬p) ≡

(¬s ∨ q) ∧ (¬s ∨ ¬p)

The LP represenation of the first clause is q :− s, and the second :− s, p.
Thus, the LP representation of the original problem P is

s :− p, q

q :− s

:− s, p


