Exercises

Derive the logic programming representation of each of the following sets of propositional formulas P:

Exercise 1. $P = \{(p \lor \neg q) \leftrightarrow (s \to (\neg q \lor t))\}$

Exercise 2. $P = \{(s \land \neg q), q \lor \neg r, (s \leftrightarrow (\neg q \lor t))\}$

Exercise 3. Prove that every propositional formula f has an equivalent formula in CNF. To do this, you will need to do a structural induction on the definition of propositional formula, which goes like this:

base case: f = p or $f = \neg p$ for some variable p. Prove for the base case ...

inducitive step: assume proved for formulas f_1 , f_2 . Now prove for $f_1 \wedge f_2$, $f_1 \vee f_2$, $\neg f_1$.

Solutions are on the next page

Solutions

Exercise 1

$$\begin{array}{l} t \coloneqq p, s, q \\ s, p \coloneqq q \\ p \coloneqq t, q \end{array}$$

Exercise 2

$$\begin{array}{c} s:-\\ &:-q\\ q:-r\\ t:-s,q\\ q,s:-\\ s:-t \end{array}$$

Exercise 3

If you think you have a proof, either email it to me, or come by my office to show it to me.