
CSE 3401, Functional and Logic Programming, Fall 2008. A. Belov 1

Lecture 9 (Oct 7)

Lecture outline:

• Prolog lists: membership, insertion, concatenation

First, an exercise on list unification:

Example 1. What will be Prolog’s response to the following query:

a([H|T], [H2|T2]) = a([1, 2], T).

To answer “confusing” questions about list unification it helps in terms of “.” notation for
lists. So, the above query is equivalent to

a(.(H, T), .(H2, T2)) = a(.(1, .(2, [])), T).

Applying unification algorithm, we obtain the following m.g.u:

[H/1, T/[2], H2/2, T2/[]]

List membership

Our goal is to define predicate is member(X, L) which is true if X is a member of the list
L. We will use the following recursive definition: is member(X, L) is true if

1. X is a head of L, or

2. X is a member of the tail of L.

This definition gives us the following Prolog program (see is member.pl in the Lecture
Resources section):

is member(X, [X|T]).

is member(X, [H|T]) : −member(X, T).

Now, try the following queries, construct a refutation tree to see how they get answered,
and test it with Prolog.

? − is member(a, [b, a, c]).

? − is member(X, [b, a, c]).

? − is member(a, X).

CSE 3401, Functional and Logic Programming, Fall 2008. A. Belov 2

Element insertion

Lets define predicate insert elem(X, L1, L2) which is true if L2 is a list obtained by
inserting an element X into some position of list L1. We will use the following recursive
definition: insert elem(X, L1, L2) is true if

1. L2 is X appended to L1, or

2. L2 is obtained by taking the head off L1, appending X to the resulting list, and
putting the head of L1 back.

This definition gives the following Prolog program (see insert elem.pl):

insert elem(X, L1, [X|L1]).

insert elem(X, [H|T], [H|T2]) : −insert elem(X, T, T2).

Try the following queries, construct a refutation tree to see how they get answered, and
test it with Prolog.

? − insert elem(a, [b, c], X).

? − insert elem(X, [b, c], [b, c, a]).

? − insert elem(a, X, [b, c, a, d]).

Note that the last query demonstrates that the insert elem predicate that we defined can
be use to remove elements from the list.

Concatenation of lists

Now we want to define predicate append(X, Y, Z) which is true if Z is a list obtained by
concatenation of lists X and Y . Again, the following recursive definition will do the job:
append(X, Y, Z) is true if

1. X is [], and Z is Y , or

2. if H is the head of X, and T is the tail, then Z has H as the head, and the result of
concatenation of T and Y and the tail.

This definition gives the following Prolog program (see append.pl):

append([], Y, Y).

append([H|T], Y, [H|T2]) : −append(T, Y, T2).

If the second clause is confusing, the alternative, longer version that follows the item 2. of
the above recursive definition, can be written as:

append(X, Y, Z) : −X = [H|T], Z = [H|T2], append(T, Y, T2).

Note that this as far as resolution is concerned there is no difference between this and the
previous versions. Try some queries with Prolog.
Read Section 7.2 of Nilsson, Maluszynski, Logic, Programming and Prolog (2ed) for more
on lists.

