
CSE 3401, Functional and Logic Programming, Fall 2008. A. Belov 1

Lecture 8 (Oct 3)

Lecture outline:

• formal definitions of resolution search tree, and answer

• standard Prolog

• Prolog lists

Last time we saw an example of resolution search tree, and how to compute an answer –
here are the formal definitions of the relevant concepts.

Definition 1. Let P be a logic program, and g be a goal clause. A resolution search tree
for P and g is a possibly infinite labeled tree T such that:

1. The root of T is labeled by g;

2. The leafs of T are labeled by either :−, or “fail”;

3. Each non-leaf node n of T is labeled by some goal clause :− t1, . . . , tn, and

a. if t1 does not unify with any of the heads of clauses in P , then n has one child

“fail”;

b. if C1, . . . , Ck are the clauses of P whose heads unify with t1, in order of

appearance in P , then n has exactly k children n1, . . . , nk, where child ni is

labeled with the result of resolution of :− t1, . . . , tn with Ci on t1. The edge

n → ni is labeled with the m.g.u. of t1 and the head of Ci.

Definition 2. Let P be a logic program, g be a goal clause, and T be a resolution search

tree for P and g. An answer for P and g is a substitution obtained by the composition of

all m.g.u. that label the path from g to :− in T , restricted to the variables of g.

Standard Prolog

Standard Prolog (or, just Prolog)is a logic programming system made into a programming
language. Here are the things that are specific to Prolog:

Program

Prolog program is a collection of facts, rules, and also goals, although the goals are used
only for “special needs” - we may see some of these later. The syntax of clauses is slightly
different:

• Facts are written as, for example, p. (note the dot).

• Rules are written as, for example, p :− r, s, t. (note the dot).

• Goals in the program are written as, for example, :− r, s, t. (note the dot).

CSE 3401, Functional and Logic Programming, Fall 2008. A. Belov 2

Goal

Goal is given as a command line query, for example ? − p.

Unification

Prolog does not perform occurs check in unification, so for example X and f(X) do unify.
Prolog’s operator = is for checking unification of two terms: t1 = t2 iff t1 unifies with t2.

Resolution search tree

Constructed in the depth first manner.

• When the refutation is found, Prolog prints an answer, and waits for users input:
Enter means “stop search”, Prolog answers “Yes” in this case. “;” means “look for
more solutions”.

• If the refutation not found (or it was found, but user asked for more, and there’s no
more), Prolog prints “No”.

Extras

Prolog is a programming language, and so has many extras, on top of the logic
programming system we described, that make it usable. We will cover some of these:

• Lists

• Arithmetic

• Negation

• Search control via Cut

• Extra-logical predicates (predicates about predicates, program database
manipulation, etc)

• System predicates

• Operators

Prolog Lists

List is an ordered sequence of elements (terms), can be of any length. Prolog’s notation for
a list of terms t1, t2, . . . , tn is [t1, t2, . . . , tn]. An empty list, that is a list with 0 elements, is
denoted as [].

Example 3. [1, 2, 3, 4, 5] is a list of 5 elements; [t(X, Y), g(f(X))] is a list of two elements.

CSE 3401, Functional and Logic Programming, Fall 2008. A. Belov 3

Definition 4. Given a list L = [t1, t2, . . . , tn] the head of of L is the term t1, and the tail
of L is the list [t2, . . . , tn].

Example 5. The head of [1, 2, 3, 4, 5] is 1, the tail is [2, 3, 4, 5].

Lists can be constructed and using operator | which takes two arguments: the first should
be a term (note that a list is also a term), and the second is a list. Then, if
L = [l1, dots, lk], and t1, . . . , tn are terms (n >= 1),

[t1, . . . , tn|L]

is the list

[t1, . . . , tn, l1, . . . , lk]

Example 6.

[1|[2, 3, 4]] = [1, 2, 3, 4]

[f(X), g(Y)|[4, 5, 6]] = [f(X), g(Y), 4, 5, 6]

Remember that = in Prolog is unification, so given a query [H|T] = [1, 2, 3, 4, 5] Prolog will
answer

H = 1

T = [2, 3, 4, 5]

“Internally” lists are represented using a predicate .(H, T), in which H is a term, and T is
a list. The operator | is just the “external” notation for . : [t|L] is simply .(t, L), and
[t1, . . . , tn|L] is simply .(t1, .(t2, . . . , .(tn, L))).

Example 7. The list [1, 2, 3, 4, 5] is represented internally as

.(1, .(2, .(3, .(4, .(5, [])))))

Thinking in terms of internal representation may help to figure out whether two lists unify.

