CSE 3401 — Functional and Logic Programming, Fall 2008
Department of Computer Science and Engineering
York University

Midterm (with Solutions)

Question 1

(10 points) Let P be the following set of predicate logic sentences:
{VX3Ys(X,Y), VXVYs(X,Y)—g(Y.X) },

and let g be the predicate logic sentence VX3IY g(Y, X). Show that P logically implies g
using resolution. Make sure to specify the m.g.u.’s in your resolution refutation.

Solution: first, convert the sentences in P and the negation of g to clauses. g must be
negated because I asked to use resolution, and therefore the proof that P implies ¢ must be
done by contradiction.

First sentence (C)

VX3V s(X,Y)
VX (X, f(X))
s(X, f(X)) =

Second sentence (Cy):

VXVYs(X,Y) — g(Y, X)
VXVY =s(X,Y) Vg(Y, X)
gV, X) — s(X,Y)

Negation of the goal (Cj3):

VX3V (Y, X)
IXVY —g(Y, X)

VY —g(Y,c)
—g(Y,¢)

And now the resolution refutation:
1. = s(¢,Y) (from C% and C5 with [Y'/Y, X/c])
2. :— (from 1. and C, with [X/c, Y/ f(c)])



Question 2

(15 points) Give the Prolog definition of the predicate proper_suf fiz(L1, L2) which is true
if the list L2 is a proper suffix of the list L1, that is, L2 is a suffix of L1, but not L1 itself.
For example, proper_suf fiz([a,b],[]), proper_suf fiz(|a,b], [b]) are true, but

proper_suf fiz(|a, b], [a,b]) is not.

Give the recursive definition, and the definition using append/3. Explain the intended
meaning of the clauses in your definitions.

(a) (10 points) Recursive definition.

Solution: L2 is a proper suffix of L1 if its either a tail of L1, or a proper suffix of a
tail of L1, that is:

proper_suffix([H|T], T).
proper_suffix([H|T], L2) :- proper_suffix(T, L2).

Some people also had a clause
proper_suffix([X], [1).
which is redundant, because its covered by the first one. Many people wrote this:

proper_suffix([X], [1).
proper_suffix([H|T], L2) :- proper_suffix(T, L2).

If you were to trace the simplest example (e.g. [a,b]) you would realize that this
gives only one solution, namely [].

(b) (5 points) Definition using append/3. Reminder: append(L1, L2, L3) is true if the
list L3 is the result of concatenation of lists L1 and L2.

Solution: L2 is a proper suffix of L1 if L1 can be obtained by concatenation of some
non-empty list, with L2:

proper_suffix (L1, L2) :- append([_|_], L2, L1).

Or, L2 is a proper suffix of L1 if the tail of L1 can be obtained by concatenation of
some list (even empty) to L2 (in other words, L2 is a suffix of the tail of L1).

proper_suffix([H|T], L2) :- append(_, L2, T).

The suf fiz/2 was, by the way, one of the assigned exercises.



Question 3

(5 points) Write down Prolog’s response to the following query:

?7- £(2, [X,YIT], [YIR]) = £(Y, [1I1[2,2]]1, T).

Solution:
X=1

Y =2

T = [2]
R=10;
No

Simply, run Robinson’s algorithm to obtain this answer.

Question 4

(20 points) Write down Prolog’s response to the query
7- p(X).

for each of the following four programs. If you believe that Prolog will respond with more
than one answer, write down all the answers in the order they will be returned by Prolog.
Note: programs in (b)-(d) are almost the same as in (a) — all changes are marked by
comments.

(a) (5 points)

p(X) :- qX,Y), Z is X + Y, r(2).
p(X) - r(X), X > 3.

qX,X) - r(X).

q(1,2).

r(2).

r(3).

r(4).

Solution:

X=2;
X=1;
X =4 ;
No

Draw the resolution refutation tree.



(b) (5 points)

p(X) :- qX,Y), Z is X + Y, r(2).

p(X) - r(X), X > 3.

qX,X) - r(X).

q(1,2).

r(2) :- . % this clause differs from (a)
r(3).

r(4).

Solution:

Take the tree you drawn in (a) — the cut has no effect on the left subtree, because it
only cuts off failed branches. However, on the right subtree (the one that corresponds
to the second clause for p(X)), the cut eliminates a successful branch.

(¢) (5 points)

p(X) :- qX,Y), Z is X + Y, r(2).

p(X) - r(X), X > 3.

qX,X) - r(X), !. % this clause differs from (a)
q(1,2).

r(2).

r(3).

r(4).

Solution:

X =
X =4 ;
No

N

Take the tree you drawn in (a) — the cut removes only the subtree that corresponds
to the clause ¢(1,2).

(d) (5 points)



p(X) - qX,Y), Z is X + Y, \+ r(Z). 7 this clause differs from (a)
p(X) - r(X), X > 3.

q(X,X) - r(X).

q(1,2).

r(2).

r(3).

r(4).

Solution:

X =
X =
X =4 ;
No

S W

Take the tree you drawn in (a) — every successful branch in the left subtree (the one
that corresponds to the first clause for p(X)) becomes a failed branch, and visa versa.
This gives the first two answers. The right branch is not affected by negation and
gives the third answer, as in (a).



