CSE 3401 — Functional and Logic Programming, Fall 2008
Department of Computer Science and Engineering
York University

Take-Home Final Examination

7 p.m., Monday, February 23, 2009 — 7 p.m., Tuesday, March 3, 2009
There are 4 pages in this exam.

INSTRUCTIONS:
e This take-home exam contains 3 questions.

e Submit your solutions electronically by 7 p.m., Tuesday, March 3, 2009. No late
submissions will be accepted. Submission instructions are provided for each question.

e The exam is open book. You may use course materials and other on-line and in-print
sources.

e While the exam period is in effect, you may not communicate about this exam in any
form with any human being (except me). No cheating will be tolerated.

Question 1

(20 points) In the class we have defined the union formula, used to represent propositional
formulas, in the following way:

type formula =
Var of string
| Not of formula
| And of formula * formula
| Or of formula * formula

)

(a) (5 points) Write a recursive function postorder op f, which returns the result of the
postorder application of the function op to the formula f and all its subformulas (i.e.
for every subformula f” of f, op is first applied to the subformulas of f’, and then to f’
itself). Your function should have the type (formula -> formula) -> formula ->
formula.

(b) (5 points) Write a recursive function preorder op f, which returns the result of the
preorder application of the function op to the formula f and all its subformulas (i.e.
for every subformula [’ of f, op is first applied to f’, and then to the subformulas of
opf’). Your function should have the type (formula -> formula) -> formula ->
formula.



(c) (5 points) Write a function tonnf f, which returns the result of the conversion of
the formula f to the negation normal form (NNF). Your function should only use
the functions de_morgan and double neg we defined in the class, and one of the two
functions you defined in parts (a) and (b). You function should have the type formula
-> formula.

(d) (5 points) Write a function to_cnf f, which returns the result the conversion of the
formula f to the conjunctive normal form (CNF). Your function should use only the
function dist_1 we defined in the class, the function to_nnf you defined in part (c)
and one of the two functions you defined in parts (a) and (b). You function should
have the type formula -> formula.

Submission instructions: save the four functions you defined in the file named

questionl.ml. Above each function write a few lines of comments that show your
understanding of the workings of the function. Submit the file using the following

command: submit 3401 exam questionl.ml

Question 2

(80 points) In this question we continue to work with propositional formulas, and this time
we allow the operations of conjunction and disjunction to have an arbitrary number of
operands. The union that represents this type of formulas can be defined in the following
way:

type formula =
Var of string
| Not of formula
| And of formula list
| Or of formula list

For example, the OCaml expression
Not (Or [Var "p"; Var "q"; And [Var "r"; Var "s"; Not (Var "p")]l)

represents the propositional formula —=(p V ¢V (r A s A =p)). You can assume that the lists
of subformulas of And and Or are always of length 2 or more.

For this question I ask you to research and understand the functionality of two OCaml list
functions List.map and List.fold left. Using these two functions, implement the
following;:

(a) (10 points) A recursive function to_string f, which returns the string
representation of the formula f. The string representation of the variables and the



negations is the same as in the class; for the conjunction and disjunction, take the
string representations of the operands, conjoin them using the appropriate operand
symbol (&,v) and enclose the result in brackets. For example, the string
representation of the formula above is "-(p v q v (r & s & -p))". Your function
should have the type formula -> string.

(b) (10 points) A recursive function preorder op f, which returns the result of the
preorder application of the function op to the formula f and all its subformulas (i.e.
for every subformula f’ of f, op is first applied to f’, and then to the subformulas of
opf’). Your function should have the type (formula -> formula) -> formula ->
formula.

(¢) (10 points) A function de_morgan f, which implements the generalized De-Morgan
rule:

S(AANfaN- A )
(fiV oV Vf)

Your function should behave the same way as the function de_morgan we defined in
the class, that is, if the rule applies to f itself (no recursion into subformulas), return
the modified f, otherwise return f unchanged. Your function should have the type
formula -> formula.

—fiVafaVe-Vaf,,
—fiNafa N A f.

Important: in this question you are required to take advantage of the OCaml library
functions List.map and List.fold left. Any implementation that duplicates the
functionality of these functions will be severely penalized.

Submission instructions: save the three functions you defined in the file named
question2.ml. Above each function write a few lines of comments that show your
understanding of the workings of the function. Submit the file using the following
command: submit 3401 exam question2.ml

Question 3

(20 points) In this question we will work with binary trees whose nodes store integer
values. The OCaml definition of the union used to represent such trees is given below:

type tree =
Leaf of int
| Node of int * tree * tree
(a) (5 points) Write a recursive function sum ¢, which returns the sum all the values in
the tree t. Your function should have the type tree -> int.



(b) (15 points) Write a function sum2 ¢, which is a tail-recursive version of the function
sum from part (a).

Submission instructions: save the two functions you defined in the file named
question3.ml. Above each function write a few lines of comments that show your
understanding of the workings of the function. Be particularly verbose in part (b). Submit
the file using the following command: submit 3401 exam question3.ml

Good luck !



