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ii An introdu
tion to logi
 programming through PrologOriginal ba
k 
over 
opyAn Introdu
tion to Logi
 Programming through Prolog is one of thefew texts that 
ombine three essential 
omponents of logi
 programming: thede
larative nature of logi
 itself, the programming te
hniques needed to writee�e
tive programs, and the eÆ
ient implementation of logi
 programming by
omputer.Beginning with a gentle introdu
tion to logi
 programming using a numberof simple examples, the book develops a a 
on
ise and self-
ontained a

ount ofthe logi
 behind Prolog programming. This leads into a dis
ussion of methodsof writing programs so that they retain their logi
al meaning, but run as eÆ-
iently as possible. The te
hniques are illustrated by pra
ti
al examples su
h assear
hing a network, solving 
ombinatorial problems, and parsing and evaluatingexpressions. The �nal part of the book explains how logi
 programming 
an beimplemented eÆ
iently, and in
ludes the 
omplete sour
e text of a simple imple-mentation of Prolog, 
apable of running all the programs presented in the book.This Prolog implementation is available on the Internet.Mi
hael Spivey is a University Le
turer in Computer S
ien
e at Oxford and aTutorial Fellow of Oriel College, Oxford.
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Prefa
e

As we approa
h the �ftieth anniversary of the �rst programmable 
omputer,the twenty-�fth anniversary of the `software 
risis' is already long past, thatexpression �rst having been used at an international 
onferen
e in 1968. Thusmore than half of the history of 
omputer s
ien
e has been lived under the shadowof our inability to manage the 
omplexity of the artifa
ts we have 
reated. Underthese 
ir
umstan
es, few would dare to suggest that the problems of our dis
iplinehave a single te
hnologi
al solution. It is 
ertainly not the purpose of this bookto suggest that logi
 programming, interesting and powerful though it may be,is a pana
ea for the problems programmers fa
e today.A more en
ouraging possibility is that we may be able to �nd theories andprogramming paradigms that link together di�erent ways of understanding pro-grams and 
omputer systems. The purpose of this book is to explore to whatextent logi
 programming provides su
h a theory. Based on predi
ate logi
, itallows 
omputing problems to be expressed in a 
ompletely `de
larative' way,without giving instru
tions for how the problem is to be solved. An exe
utionme
hanism, like the one embodied in implementations of Prolog, 
an then beused to sear
h eÆ
iently and systemati
ally for a solution to the problem. Forsome problems, the simplest expression of the problem in logi
al terms also leadsto an e�e
tive pro
edure for solving it when a simple exe
ution me
hanism isused. Other problems require either a more intelligent exe
ution me
hanism, orneed to be re
ast in su
h a way that a simple exe
ution me
hanism 
an �ndsolutions e�e
tively. Through the medium of logi
, we 
an separate the task of
apturing the problem from the task of �nding an e�e
tive way to solve it.The implementation of Prolog provides an ex
ellent example of the 
onstru
-tion of a software system that satis�es a strong, mathemati
al spe
i�
ation. Inthe 
ase of Prolog, this spe
i�
ation is the mathemati
al meaning that underliesthe de
larative interpretation of logi
 programs, and the relevant mathemati
alfoundation is the model theory of Horn 
lause logi
. The thread that links the�rst part of this book (whi
h presents the mathemati
al logi
 behind Prolog)viii



Prefa
e ixwith the last part (whi
h des
ribes how Prolog 
an be implemented) is this: thatthe implementation of Prolog 
an be viewed as 
arrying out symboli
 reasoningwith logi
al formulas, and its 
orre
tness is expressed in the fa
t that it faith-fully realizes the inferen
e rule of resolution, whi
h is itself sound with respe
tto the de
larative meaning of programs. The soundness of the resolution rule isestablished in the �rst part of the book, and its (almost) faithful implementationin Prolog is explained informally in the last part, but in a way that re
e
ts thestru
ture of a formal development by stepwise (data) re�nement.Another attra
tive feature of logi
 programming is the ri
h web of links ithas with other topi
s in 
omputer s
ien
e. These are some of the links that areexplored in this book:� Relational databases, stripped of their inessentials, provide operations onrelations that are 
losely linked to ways of 
ombining relations in logi
programming. We tou
h on these links in Chapter 2.� Mathemati
al logi
, important in formal methods of software developmentand in arti�
ial intelligen
e, is also the foundation of logi
 programming.Studying logi
 programming is a good introdu
tion to mathemati
al logi
,be
ause the logi
 behind logi
 programming is simple, and allows resultslike the soundness and 
ompleteness of inferen
e systems to be proved inthe simplest possible setting. In these books, these results are establishedfor the Horn 
lause logi
 of Prolog in Chapters 5 to 7.� Automated theorem proving is in
reasingly used in the veri�
ation of hard-ware and software systems. It is 
losely related to logi
 programming, bothbe
ause they share some of the same foundations, and be
ause logi
 pro-gramming is a useful vehi
le for implementing theorem provers. Some sim-ple appli
ations of logi
 programming to theorem proving are explored inChapter 11.� Type systems for modern programming languages like ML are expressedas systems of inferen
e rules that are in e�e
t logi
 programs. Compilersfor these languages infer types for the expressions in a program by usingthe same te
hniques that we shall use to implement Prolog in Chapters 15to 18.In a wider sense, every 
omputer system implements a kind of logi
. By providinginput data, we give the system information about some part of the world. The
omputer derives some other information whi
h it presents as its output. If theinput data is a

urate, and the rules we have built into the 
omputer system aresound, then the output data will des
ribe a valid 
on
lusion. Logi
 programmingdepends expli
itly on this view of 
omputer systems by allowing both the programand its input and output data to be expressed as senten
es in formal logi
.Oriel College, Oxford J. M. S.January, 1996



x Prefa
eUsing this bookThe 
hapters of this book 
an be grouped into four parts, ea
h developing di�erentthemes from the theory, appli
ation and implementation of logi
 programming.Chapters 1 to 3 introdu
e the ideas of logi
 programming; writing programsby de�ning relations, 
ombining relations to de�ne new ones, re
ursion in dataand programs. The exposition here is mainly by example, and many topi
s aretou
hed upon that are explored fully in later parts of the book.Chapters 4 to 8 develop the `logi
al' theme by presenting the semanti
s oflogi
 programs and developing the inferen
e system of SLD{resolution that isthe logi
al basis of Prolog implementations. This is the most mathemati
al partof the book, and develops in miniature the standard theory of mathemati
al logi
,in
luding proofs that various inferen
e systems for Horn 
lause logi
 are soundand 
omplete.Chapters 9 to 13 present more pra
ti
al topi
s, from the formulation of graph-sear
hing problems so that they 
an be solved by Prolog's simple sear
h strategy,to appli
ations of logi
 programming in parsing, algebrai
 simpli�
ation and sim-ulating hardware 
ir
uits.The �nal part of the book, in Chapters 14 to 18, pi
ks up where the se
-ond part left o�. It explains how SLD{resolution 
an be implemented eÆ
ientlyby ma
hine, using the 
onventional te
hnology of Prolog implementation. These
hapters des
ribe the fun
tioning of an a
tual interpreter for a Prolog subset, andthe 
omplete sour
e 
ode for this interpreter is in
luded as Appendix C of thisbook. The presentation in this part of the book is based on stepwise re�nementof data representations. The a

ount begins with a simple implementation ofdepth-�rst sear
h that uses abstra
t data types like sequen
es, terms and substi-tutions with 
orresponding abstra
t operations. Later 
hapters explain how theseabstra
t data types 
an be implemented using the 
on
rete data types providedby a ma
hine.Getting a 
opy of pi
oPrologA distribution kit is available that 
ontains the Pas
al sour
e 
ode of the pi
o-Prolog interpreter, 
ode for all the example programs from the book, the `ppp'ma
ro pro
essor that is needed to pre-pro
ess the pi
oProlog sour
e and C sour
e
ode for a Pas
al{to{C translator that 
an be used to 
ompile it via C. You 
anobtain the kit from the WWW pagehttp://spivey.oriel.ox.a
.uk/mike/logi




Chapter 1Introdu
tion

What kind of thing is a 
omputer program?One answer is that a program is a 
olle
tion of instru
tions for 
arrying outsome 
omputing task. This is the answer that would have been given by the �rst
omputer programmers, who had to des
ribe in 
omplete detail both how datawas stored in the memory of their 
omputers and the sequen
e of data movementsand arithmeti
 operations needed to 
ompute the solutions to problems. Thismade programming tedious and error-prone, and so limited the ambition of mostprogrammers to fairly simple numeri
al problems. Lu
kily, 
omputers were smallin those days too.The same answer { that a program is a 
olle
tion of instru
tions { is the basisfor the high-level languages like Fortran and Algol 60 that were invented to easethe programming task; the su

essors of these languages, in
luding Pas
al, Cand Ada, are still with us today. These languages allowed programmers to assignsymboli
 names to storage lo
ations and write algebrai
 expressions instead ofexpli
it sequen
es of movements and operations. Programmers no longer neededto 
on
ern themselves with the exa
t layout of data in memory, or with the exa
tsequen
e of operations needed to evaluate an algebrai
 expression, but 
ould leavethese details to be �lled in by a 
ompiler.Despite all these bene�ts, programs in these languages are still made up of
ommands that work by 
hanging values stored in memory lo
ations. Programsare understood in terms of what happens when a 
omputer obeys the 
ommands.For this reason, programming languages su
h as these are often des
ribed asimperative, by analogy with the grammati
al mood used to give 
ommands innatural language.Another answer to the question `What kind of thing is a program?' stems fromlanguages like Lisp and { of spe
ial interest in this book { like Prolog. The dis-tinguishing feature of these de
larative programming languages, at least in theirpure forms, is that programs are made up not of 
ommands to be exe
uted, but ofde�nitions and statements about the problem to be solved. Grammati
ally, they1



2 Introdu
tionare in the de
larative mood, used for ordinary statements in natural language.Unlike the 
ommands in imperative programs, they 
an be understood in a waythat is independent of the me
hanism that exe
utes the program. De
larativeprograms 
ontain no expli
it instru
tions to be followed by the 
omputer thatexe
utes them. Instead, the job of the 
omputer is to manipulate the information
ontained in the program so as to derive the solution to a given problem.In logi
 programming, a program 
onsists of a 
olle
tion of statements ex-pressed as formulas in symboli
 logi
. There are rules of inferen
e from logi
that allow a new formula to be derived from old ones, with the guarantee thatif the old formulas are true, so is the new one. Be
ause these rules of inferen
e
an be expressed in purely symboli
 terms, applying them is the kind of symbol-manipulation that 
an be 
arried out by a 
omputer. This is what happens whena 
omputer exe
utes a logi
 program: it uses the rules of inferen
e to derive newformulas from the ones given in the program, until it �nds one that expressesthe solution to the problem that has been posed. If the formulas in the programare true, then so are the formulas that the ma
hine derives from them, and theanswers it gives will be 
orre
t. To ensure that the program gives 
orre
t an-swers, the programmer 
he
ks that the program 
ontains only true statements,and that it 
ontains enough of them to allow solutions to be derived for all theproblems that are of interest. The programmer may also be 
on
erned to ensurethat the derivations the ma
hine must 
arry out are fairly short, so that the ma-
hine 
an �nd answers qui
kly, and this may a�e
t the form in whi
h de�nitionsare made and properties stated in the program. Nevertheless, ea
h formula 
anbe understood in isolation as a true statement about the problem to be solved.This kind of de
larative programming allows the programmer to disregard thepre
ise sequen
e of a
tions that takes pla
e when a program is exe
uted, to a mu
hgreater extent than is made possible even with high-level imperative programminglanguages. In 
he
king that the program gives 
orre
t answers, for example, theprogrammer need only 
he
k that ea
h logi
 formula in the program makes atrue statement about the problem, and need not worry about its relationshipwith other parts of the program. This stands in stark 
ontrast with imperativeprogramming, where the 
orre
tness of a 
ommand like `x := x + 1' depends
ru
ially on its pla
e in the whole program, in
luding intera
tions with other
ommands that use x, some of them millions of lines away.1.1 Introdu
ing logi
 programmingThe 
ontrast between imperative and de
larative programming 
an be illustratedby looking at two solutions to a small programming problem, one using the 
on-ventional approa
h of Pas
al, and the other using the approa
h of logi
 pro-gramming. The problem is to provide a program that will help an ar
hite
t indesigning motel suites. The 
lient has already de
ided that ea
h suite will havetwo rooms, a lounge and a bedroom, and its 
oor plan will be something like



1.1 Introdu
ing logi
 programming 3Front Door WindowLiving Room BedroomBedroom DoorWindowFigure 1.1: Floor plan of motel suiteFigure 1.1. The program must determine the dire
tions in whi
h the doors andwindows may fa
e, following these guidelines:1. The lounge window should be opposite the front door to 
reate a feeling ofspa
e.2. The bedroom door should be in one of the walls at right angles to the frontdoor to provide a little priva
y.3. The bedroom window should be in one of the walls adja
ent to the bedroomdoor.4. The bedroom window should fa
e East to 
at
h the morning light.In Pas
al, dire
tions might be represented by elements of an enumerated type,like this:type dire
tion = (north; south; east;west);Guidelines (1) and (2) 
onstrain the design of the lounge. They 
an be expressedin Pas
al by writing a Boolean-valued fun
tion lounge that takes as argumentsproposed dire
tions for the two doors and the lounge window, and 
he
ks whetherthe guidelines are satis�ed (see Figure 1.2). Names like fd and bw stand for`front door' and `bedroom window', and the two Boolean fun
tions opposite andadja
ent have the obvious meanings.Guidelines (3) and (4) 
on
ern the design of the bedroom, and they are ex-pressed by the fun
tion bedroom that 
he
ks the dire
tions for the bedroom doorand window. The fun
tions lounge and bedroom are 
ombined in the suite fun
-tion that 
he
ks a set of 
hoi
es for the whole motel suite.De�ning these fun
tions seems to 
apture the essen
e of the problem, but thePas
al program is not 
omplete until we have shown how they are to be used ina sear
h for valid designs. For a simple problem like this one, and exhaustive



4 Introdu
tionfun
tion lounge(fd ; lw ; bd : dire
tion): boolean;beginlounge := opposite(fd ; lw) ^ adja
ent(fd ; bd)end;fun
tion bedroom(bd ; bw : dire
tion): boolean;beginbedroom := adja
ent(bd ; bw) ^ (bw = east)end;fun
tion suite(fd ; lw ; bd ; bw : dire
tion): boolean;beginsuite := lounge(fd ; lw ; bd) ^ bedroom(bd ; bw)end; Figure 1.2: Pas
al fun
tions for 
he
king motel suite designsfor fd := north to west dofor lw := north to west dofor bd := north to west dofor bw := north to west doif suite(fd ; lw ; bd ; bw) thenprint(fd ; lw ; bd ; bw)Figure 1.3: Exhaustive sear
hsear
h like the one shown in Figure 1.3 will do the job: it tries every 
ombinationof four dire
tions, printing out the 
ombinations for whi
h the suite fun
tionreturns true. Ex
ept for a few details (su
h as the pro
edure print for printingout the answers) this 
ompletes the imperative solution.How 
an the problem be solved using logi
 programming? Like the Pas
alsolution, the heart of the program is a de�nition of the properties that des
ribevalid designs. Instead of the Boolean fun
tions of the Pas
al program, it uses anotation more suited to symboli
 
al
ulation. In this notation, the de�nition oflounge looks like this:lounge(fd;bd; lw ) :�opposite(fd; lw ); adja
ent(fd;bd):In this de�nition, the symbol `:�' is to be read as `if'; think of it as looking a littlelike the leftward-pointing arrow `(' that is sometimes used in ordinary logi
. The
omma that separates the formulas opposite(fd; lw ) and adja
ent(fd;bd) is tobe read as `and'. Names like lounge stand for relations that hold between obje
ts,



1.1 Introdu
ing logi
 programming 5and names like fd are variables that stand for any obje
t. So the whole de�nitionmeans `Dire
tions fd, bd and lw together form a valid design for the lounge iffd is opposite to lw , and fd is adja
ent to bd'. As in the Pas
al program, weassume that the relations opposite and adja
ent have already been de�ned.In the same notation, here is a de�nition of the relation bedroom that des
ribesvalid designs for the bedroom:bedroom(bd;bw ) :� adja
ent(bd;bw );bw = east :Here the name `east ' stands for a 
onstant dire
tion. This de�nition reads `Di-re
tions bd and bw form a valid design for the bedroom if bd is adja
ent to bw ,and bw is the dire
tion east '.The lounge and bedroom relations are 
ombined in the following de�nition,des
ribing what 
onstitutes a valid design for the whole suite:suite(fd; lw ;bd;bw ) :�lounge(fd; lw ;bd); bedroom(bd;bw ):The �nal ingredient in the logi
 program is a statement of exa
tly what problemis to be solved: i.e., that the program must �nd groups of four dire
tions thatsatisfy the suite relation. This is expressed by writing a goal or question likethis: # :� suite(fd; lw ;bd;bw ):The symbol # is just a 
onventional sign, used so that goals have the samesuper�
ial form as other formulas in the program, with one atomi
 formula onthe left of the `:�' sign and a list of atomi
 formulas on the right. It might bepronoun
ed `su

ess', so that the goal means `Su

ess is a
hieved if dire
tion fd,lw , bd and bw together form a valid design for the motel suite'.Unlike the Pas
al program, the logi
 program 
ontains no expli
it instru
tionsfor �nding a solution to the problem, and there is nothing that 
orresponds tothe nested for{loops that sear
h through all possible 
ombinations of dire
tions.In fa
t, it may seem fan
iful to 
all what we have written a program at all, sin
eit does not seem to des
ribe a 
omputational pro
ess; but this absen
e of expli
itinstru
tions is one of the attra
tions of a de
larative style of programming. Itturns out that there are powerful, general strategies for �nding solutions to prob-lems that have been expressed as logi
 programs. Ea
h implementation of logi
programming in
ludes su
h a strategy as a 
entral 
omponent { for example,many implementations of the logi
 programming language Prolog use a strategyknown as `SLD{resolution with depth-�rst sear
h'. Whilst this strategy is notthe most powerful one, it is relatively easy to implement eÆ
iently.Having written a logi
 program, what 
an we do with it? One possibility is touse the statements in the program to prove that 
ertain relationships must hold.



6 Introdu
tionFor example, suppose the fa
tsopposite(east ;west) and adja
ent(east ; south)are known. Putting fd = east , bd = south and lw = west into the de�nition oflounge gives the formulalounge(east ; south;west) :�opposite(east ;west); adja
ent(east ; south):This formula is obtained by substituting east for every o

urren
e of fd in thede�nition of lounge, south for every o

urren
e of bd, and so on.The symbol `:�' means `if' and the 
omma means `and'. Also, the two 
ondi-tions on the right of the `:�' sign in the new formula are both known to be true.So the 
on
lusion on the left must be true as well:lounge(east ; south;west):This formula says that there is a valid design for the lounge in whi
h the front doorfa
es East, the bedroom door fa
es South, and the lounge window fa
es West.We have rea
hed this 
on
lusion by very simple steps: substituting 
onstants forvariables, and 
he
king that two formulas are identi
al. These are operationsthat (as we shall see in more detail later) 
an easily be 
arried out by ma
hine.Carrying on, we might substitute bd = south and bw = east into the de�ni-tion of the bedroom relation to obtain the formulabedroom(south; east) :� adja
ent(south; east); east = east :Again this formula has known fa
ts on the right-hand side of the `:�' sign, sowhatever is on the left-hand side must be true also: we may dedu
e the 
on
lusionbedroom(south; east):As a �nal step, we might take an instan
e of the de�nition of suite, againobtained by substituting 
onstants for variables:suite(east ;west ; south; east) :�lounge(east ;west ; south); bedroom(south; east):Again, the same 
onstant has been substituted for every o

urren
e of ea
h vari-able. By good fortune, the two 
onditions that appear on the right-hand side areexa
tly the same as the two fa
ts we derived earlier. So we may 
on
lude thatthe formulasuite(east ;west ; south; east)



1.1 Introdu
ing logi
 programming 7is true: in other words, that a valid design for the motel suite 
an have the frontdoor fa
ing East, the lounge window fa
ing West, the bedroom door fa
ing South,and the bedroom window fa
ing East. In fa
t, this design is the one shown inFigure 1.1, if we take North to be towards the left of the pi
ture.In this sequen
e of logi
al steps, we worked `forwards' from known fa
ts todesired 
on
lusions, and we were able to prove that a 
ertain set of 
hoi
es 
on-stituted a valid design for the motel suite. Su
h reasoning is of less use in �ndinga valid design, rather than just 
he
king that a proposed design is valid. For thatpurpose, a di�erent pattern of reasoning is more appropriate, one that works`ba
kwards' from problems we would like to solve towards the known fa
ts thatare the ingredients of a solution. This method is used by Prolog as its way ofsolving problems that 
all for the values of variables to be found.Let us see how we might go about solving the motel design problem by hand,using this `ba
kwards' method in essentially the same way as is used automati
allyby Prolog. We wish to derive a 
on
lusion of the formsuite(fd; lw ;bd;bw ):How might we do this? Plainly, we must use the de�nition of the suite relation,and this de�nition says that we must �nd a way of satisfying both the following
onditions:lounge(fd; lw ;bd) and bedroom(bd;bw ),with the variable bd taking the same value in both.Leaving the se
ond of these sub-problems aside for a moment, we 
on
entrateon the �rst one. To derive a 
on
lusion like this, we plainly need to use thede�nition of lounge, whi
h it says that to derive a 
on
lusion lounge(fd; lw ;bd),we must satisfy both of these 
onditions:opposite(fd; lw ) and adja
ent(fd;bd),with fd taking the same value in both.We have now de
omposed the problem into relations like opposite and adja
entthat we know how to deal with. But the 
ondition opposite(fd; lw ) 
an besatis�ed in many ways. For example, we might try putting fd = north andlw = south (as in Figure 1.1, but this time with North at the top of the pi
ture).We also need to satisfy the se
ond 
ondition, that is, adja
ent(fd;bd), where weare supposing for the moment that fd = north. There are two ways to do this,so we �rst try putting bd = east , following Figure 1.1 again.This 
ompletes a tentative solution to the lounge part of the problem, andwe 
an turn to the bedroom sub-problem we put aside earlier. By now, we have
hosen to put bd = east , so the problem we have to solve is bedroom(east ;bw ),



8 Introdu
tionor (expanding the de�nition of bedroom),adja
ent(east ;bw ) and bw = eastWe 
an solve the �rst of these in two ways, by putting bw = north or bw =south, but neither of these leads to a solution of the se
ond part, sin
e it is nottrue that north = east or south = east . A dead end!What has gone wrong is that we made arbitrary 
hoi
es in solving the loungepart of the problem, and these 
hoi
es have turned out not to allow us to 
ompletethe solution of the bedroom part. What we should do now is to go ba
k and
hange those 
hoi
es, hoping that 
hoosing di�erently will lead to more su

essin 
ompleting the solution. This pro
ess of systemati
ally exploring 
hoi
es is anautomati
 part of the exe
ution of logi
 programs, and need not be an expli
itpart of the logi
 program itself, unlike the nested for{loops of the Pas
al program.A sensible way to pro
eed is to revise the latest 
hoi
e we made, leaving earlier
hoi
es alone until we have explored all other possibilities for later ones. This`ba
ktra
king' s
heme is the one followed by Prolog. We �rst try revising our
hoi
e of east as the value of bd, but unfortunately this does not help: we
hose bd = east to solve the problem adja
ent(north;bd), and the only otherpossibility is to put bd = west , but this does not lead to a solution of the bedroompart of the problem either. Eventually, we hit on the idea of setting fd = eastand lw = west as our solution to the sub-problem opposite(fd; lw ), then takingbd = south so that adja
ent(fd;bd) is true, and taking bw = east to establishadja
ent(bd;bw ), �nally 
he
king that the requirement bw = east is satis�ed(it is!). These 
hoi
es solve all the sub-problems, so we have found a design thatsatis�es all the guidelines; in fa
t, the design is the same one we 
he
ked earlier.We have dis
overed a solution to the motel design problem by trying di�erentpossibilities in sequen
e, and that is what Prolog does when it is implemented onordinary, sequential 
omputers. However, there is nothing in the program thatwould prevent us from exploring several sets of 
hoi
es 
on
urrently, perhaps bygiving them to several assistants, or by using several pro
essors in parallel to dothe same thing by ma
hine. This potential for su
h a transparent exploitation ofparallelism is another attra
tive feature of de
larative programming.The problem of designing a motel suite has several solutions: another one hasfd = east , lw = west , bd = south, bw = east . It is quite natural for logi
programs to return several answers to the same question (and also natural forthem to return no answers at all, if the problem posed is in fa
t insoluble). We 
allthis feature of a program non-determinism. If a program is non-deterministi
,Prolog's systemati
 sear
h prints all the answers to a goal in the order they aredis
overed. There is a sense in whi
h our Pas
al program also produ
es all theanswers, but only be
ause the program prints the answers in an expli
it sequen
e.With the logi
 program, the treatment of multiple answers is natural and impli
it.Some real-time programs also exhibit a kind of non-determinism that is 
ausedby haphazard timing of events. This is di�erent from the non-determinism of logi
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 programming 9programming and mu
h less useful. With these real-time programs, it is 
han
e(or the inner workings of the ma
hine) that de
ides whi
h answer is produ
ed,and the user must be prepared to a

ept any of the possible answers. With alogi
 program, it is the environment of a program that de
ides whi
h answer isa

epted, so that the user 
an ask for a list of all the answers from a program andpi
k the one that is wanted, or 
an use the program as part of a larger programthat applies further 
onstraints to the solutions. For example, here is a goal thatasks for a suite design satisfying the additional 
onstraint that the front doorshould fa
e West:# :� suite(fd; lw ;bd;bw ); fd = west :The Prolog strategy (whi
h always solves multiple subgoals by working fromleft to right) would answer this question by generating all the solutions to theoriginal design problem, then reje
ting the ones that did not satisfy the additionalrequirement fd = west .The logi
 programs we shall study in this book are usually made up of logi
alformulas that look like this:P :� Q1; Q2; : : : ; Qn;with P and the Qi being literals or atomi
 formulas like bedroom(bd;bw ). We
all these formulas Horn 
lauses, and we read them as asserting that if all the Qiare true, then P is true also. Horn 
lauses are more restri
tive than the formulasof full predi
ate logi
. For instan
e, predi
ate logi
 allows the 
onne
tives `and'(whi
h we write with a 
omma) and `implies' (whi
h is equivalent to our `:�') tobe 
ombined in any way we 
hoose, not just in the �xed pattern demanded bythe syntax of Horn 
lauses. It also provides other 
onne
tives su
h as `or' and`not' that are not allowed in Horn 
lauses at all. Full predi
ate logi
 provides thequanti�ers `for all' and `there exists' that are only partially re
e
ted in the waywe use variables in Horn 
lauses.Despite these restri
tions, Horn 
lauses are of spe
ial interest be
ause many
omputing problems 
an be expressed in Horn 
lause form, and it is possibleto build eÆ
ient me
hanized theorem provers for theories that are expressed asHorn 
lauses { and that is just what a Prolog implementation is, or should be.A spe
ial 
ase of Horn 
lauses o

urs if we allow n = 0 in the formula above,so that there are no Qi on the right-hand side, like this:P :� :We read this formula as stating simply that P is true. This makes sense, be
ausethere are no formulas Qi that must be true for the 
lause to assert the P is truealso. Clauses like this, with no 
onditions on the right-hand side, are 
alled unit
lauses or simply fa
ts.



10 Introdu
tionA list of fa
ts 
an be used to de�ne a relation by listing all instan
es of it. Forexample, the opposite and adja
ent relations might be de�ned in this way:opposite(north; south) :� :opposite(south; north) :� :opposite(east ;west) :� :opposite(west ; east) :� :adja
ent(north; east) :� :adja
ent(north;west) :� :adja
ent(south; east) :� :adja
ent(south;west) :� :adja
ent(east ; north) :� :adja
ent(east ; south) :� :adja
ent(west ; north) :� :adja
ent(west ; south) :� :As we shall see, this means that logi
 programs 
an be used like relational data-bases.Summary� A logi
 program 
onsists of a series of assertions written in the language offormal logi
.� Results are derived from logi
 programs by symboli
 reasoning.� Logi
 programming systems solve goals by systemati
ally sear
hing for away to derive the answer from the program.Exer
ises1.1 A deluxe motel suite has two bedrooms, but must otherwise obey the designrules listed in this 
hapter. Show how to modify the design program for use indesigning luxury suites. How many solutions to the problem are there? Howmany 
an reasonably be built?Pra
ti
al exer
iseThis exer
ise illustrates the use of pi
oProlog to solve the motel design problemdis
ussed in Se
tion 1.1. The Prefa
e explains how to get a 
opy of pi
oProlog.Alternatively, Appendix B explains how to do the pra
ti
al exer
ises in the bookusing an ordinary Prolog system in pla
e of pi
oProlog.
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ing logi
 programming 11/* motel.pp */suite(FD, LW, BD, BW) :-lounge(FD, LW, BD),bedroom(BD, BW).lounge(FD, LW, BD) :-opposite(FD, LW),adja
ent(FD, BD).bedroom(BD, BW) :-adja
ent(BD, BW),BW = east.opposite(north, south) :- .opposite(south, north) :- .opposite(east, west) :- .opposite(west, east) :- .adja
ent(north, east) :- .adja
ent(north, west) :- .adja
ent(south, east) :- .adja
ent(south, west) :- .adja
ent(east, north) :- .adja
ent(east, south) :- .adja
ent(west, north) :- .adja
ent(west, south) :- .Figure 1.4: The �le motel.ppIn
luded with the pi
oProlog system is the �le motel.pp shown in Figure 1.4.This 
ontains the 
lauses of the motel design program, written using the 
onven-tions that pi
oProlog expe
ts. Names of variables like fd are written in upper
ase, and both names of relations (like suite) and names of 
onstants (like east)are written in lower 
ase. Ea
h 
lause in the program ends with a full stop.Comments are en
losed in the markers /* and */.To start the pi
oProlog system and load this �le of 
lauses, you should use the
ommand$ pprolog motel.ppat the operating system prompt. (In this and the following instru
tions, youshould type what appears in itali
 type.) Pi
oProlog prints a wel
ome message,
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tionthen reads the 
lauses from the �le motel.pp and stores them internally, beforeprinting its usual prompt:Wel
ome to pi
oPrologLoading motel.pp# :-Pi
oProlog is now waiting for you to type a goal to be solved. Let us ask it tosolve the motel design problem:# :- suite(FD, LW, BD, BW).Do not forget to in
lude the �nal full stop, or pi
oProlog will just sit there andwait for it. All being well, pi
oProlog will �nd a solution to the problem, anddisplay it like this:FD = eastLW = westBD = northBW = east ?Pi
oProlog now waits for your response. You 
an 
hoose either to a

ept thissolution by typing a full stop (followed by a 
arriage return), or ask pi
oProlog to�nd another solution, by typing just a 
arriage return. In the latter 
ase, anothersolution is displayed just like the �rst:FD = eastLW = westBD = southBW = east ?By 
ontinuing to reply with just a 
arriage return, you 
an get pi
oProlog toprodu
e all the solutions one after another. After it has shown the last solution,it �nally answers `no', meaning that no (more) solutions 
ould be found, andreturns to the `# :-' prompt. At any point in the stream of answers, you 
antype a full stop. Pi
oProlog then answers `yes', meaning that an answer wasfound and a

epted, and immediately returns to its prompt.You 
an end the session with pi
oProlog by typing the end-of-�le 
hara
ter(usually Control{Z or Control{D) at the prompt.



Chapter 2Programming with relations

Logi
 programming works by de�ning relations between data items. In this 
hap-ter, we look at some of the te
hniques that 
an be used to de�ne new relationsin terms of existing ones. Drawing on database te
hniques, we examine variousways of 
ombining relations to derive the answers to questions.The simplest way to de�ne a relation is to give an expli
it list of fa
ts; thatis, to de�ne the relation by a table. Figure 2.1 is a list of fa
ts de�ning arelation uses(person ; program ;ma
hine) that holds between 
ertain peopleand the software produ
ts and ma
hines they use. This example looks more likea database than a program, and we 
an use it like a database by formulatingqueries about it as logi
al goals. For example, the goal# :� uses(mike;x ; sun):asks `What software produ
ts does Mike use on the Sun?'. The goal 
an beanswered by sear
hing the table for fa
ts that mat
h it; the �rst argument ofuses takes the value mike, and the third takes the value sun, but the se
ondargument may be anything. There are two solutions: one with x = 
ompiler andone with x = editor .Relational database systems have the ability to answer questions by 
ombininginformation from more than one relation, and we 
an mimi
 this in logi
 program-ming too. For example, Figure 2.2 de�nes a relation needs(program ;memory )that relates programs to the amount of memory (in kilobytes) needed to runthem. With this information, we 
an answer a question like `What are the mem-ory requirements of the programs people run on the Ma
?' by de�ning a newrelation:answer(program ;memory ) :�uses(person ; program ;ma
);needs(program ;memory ): 13



14 Programming with relationsuses(mike; 
ompiler ; sun) :� :uses(mike; 
ompiler ; p
) :� :uses(mike; 
ompiler ;ma
) :� :uses(mike; editor ; sun) :� :uses(mike; editor ; p
) :� :uses(mike; diary ; p
) :� :uses(anna; editor ;ma
) :� :uses(anna; spreadsheet ;ma
) :� :uses(jane; database; p
) :� :uses(jane; 
ompiler ; p
) :� :uses(jane; editor ; p
) :� :Figure 2.1: The uses relationneeds(
ompiler ; 128) :� :needs(editor ; 512) :� :needs(diary ; 64) :� :needs(spreadsheet ; 640) :� :needs(database; 8192) :� :Figure 2.2: The needs relationWith this de�nition, the goal # :� answer(x ;y ) has answers in whi
h x is aprogram used on the Ma
 and y is the amount of memory it needs. In databaseterms, the answer relation is 
alled a view . It is a relation that is not storedexpli
itly in the database, but 
omputed in order to answer a query.Relational databases provide a number of operations on relations that 
anbe used to solve many data-pro
essing problems. These operations 
an all berepresented in logi
 programming, and they provide a useful 
lassi�
ation of theways relations 
an be 
ombined. It is the emphasis on relation-level (ratherthan re
ord-level) operations that give relational databases their name and their
laimed advantages over other kinds of database.The operation of sele
tion means restri
ting a relation with an extra 
ondition,as in the query `What are the memory requirements of programs that need morethan 256K?', whi
h is answered by the viewanswer(program ;memory ) :�needs(program ;memory );memory > 256:We assume here that the ordering relation > on numbers is de�ned elsewhere.Sele
tion with an extra 
ondition that is an equation x = 
, where 
 is a
onstant, 
an also be a
hieved by substituting 
 for x in the rest of the query.



2 Programming with relations 15For example, we 
an understand the question `How mu
h memory does the editorneed?' as asking `What are the memory requirements of the program that is theeditor?', and answer it with the viewanswer(program ;memory ) :�needs(program ;memory ); program = editorThis is a dire
t example of sele
tion, with the extra 
ondition program = editor .We 
an a
hieve the same e�e
t by substituting editor for program and deletingthe equation:answer(editor ;memory ) :�needs(editor ;memory ):This de�nition makes it more obvious that all the re
ords that are in the answerrelation have editor as their program 
omponent.Another database operation, proje
tion, involves removing some of the argu-ments of a relation (that is, some of the 
olumns in the table of the relation). It
an be a
hieved by de�ning a view that has fewer arguments than the relation ituses. For example, the question `What programs does ea
h person use?' 
an beanswered by the viewanswer(person ; program) :�uses(person ; program ;ma
hine):Here the third argument, ma
hine , of the uses relation has been omitted fromthe answer relation.The uses relation 
ontains the 
lauseuses(mike; 
ompiler ; sun) :� :and this de�nition of answer lets us derive from it the 
on
lusionanswer(mike; 
ompiler) :� :that re
ords the fa
t that Mike uses the 
ompiler, without spe
ifying the ma
hine.The same 
on
lusion 
an be derived from any 
lause in the uses relation thatmentions Mike and the 
ompiler, whatever ma
hine is involved.It is often natural to 
ombine proje
tion and sele
tion. For example, thequestion `What programs need more than 256K of memory?' is answered by theview answer(program) :�needs(program ;memory );memory > 256:



16 Programming with relationsThis query sele
ts those re
ords from the needs relation with a memory �eldlarger than 256, then proje
ts the result on just the program �eld. The a
tualmemory requirement has been omitted from the arguments of the answer relation,so the answer 
ontains just the program names.A better view for answering the question `How mu
h memory does the editorneed?' is this one:answer(memory ) :�needs(editor ;memory ):where the 
onstant editor has been omitted from the arguments of the answerrelation. Again, this view 
ombines sele
tion and proje
tion, by �rst sele
tingre
ords that satisfy the 
ondition program = editor , then proje
ting on thememory �eld.The operation of relational join 
ombines two relations by mat
hing the valuesof one or more �elds. An example is provided by the all-embra
ing question `Whatpeople use what programs on what ma
hines, and how mu
h memory do theyneed?'. This question is answered by the viewanswer(person ; program ;ma
hine ;memory ) :�uses(person ; program ;ma
hine);needs(program ;memory ):This is the relational join of the uses and needs relations on the program �eld,so 
alled be
ause program is the only �eld that o

urs in both relations. Theanswer is a list of values for all four variables. It 
ontains the same information asthe two separate relations uses and needs, but is rather repetitious be
ause ea
hprogram is asso
iated with the same memory requirement ea
h time it appears.Again, relational join 
an be 
ombined in a natural way with proje
tion andsele
tion. For example, the following view answers the question `What are thememory requirements of programs Anna uses on the Ma
?':answer(program ;memory ) :�uses(anna; program ;ma
);needs(program ;memory ):This view 
ombines relational join with sele
tion of the re
ords that satisfy the
onditions person = anna and ma
hine = ma
, followed by proje
tion on theprogram and memory �elds.It is possible to join a relation with itself on some of its �elds. This operationis useful in answering questions like `Whi
h programs are used by two di�erentpeople on the same ma
hine?'. To answer this question, we �rst make a join of theuses relation with itself on the program and ma
hine �elds, making a relation



2 Programming with relations 17answer1 (person1; person2; program ;ma
hine) that is true if person1 andperson2 both use program on ma
hine :answer1 (person1; person2; program ;ma
hine) :�uses(person1; program ;ma
hine);uses(person2; program ;ma
hine):This relation in
ludes the 
ase that person1 and person2 are in fa
t the sameperson, so we sele
t the re
ords in whi
h they are di�erent, and �nally proje
ton the program �eld:answer(program) :�answer1 (person1; person2; program ;ma
hine);person1 6= person2:The de�nition of the sub-view answer1 
ould be merged with this to give a single
lause de�ning answer .The relational operations of interse
tion, union and di�eren
e 
orrespond to
onjun
tion, disjun
tion and negation in logi
. Interse
tion 
an be used to answerquestions like `What programs do both Anna and Jane use?' by 
ombining twosub-views with the `,' operator (whi
h is read as `and'), like this:answer(program) :�answer1 (program);answer2 (program):answer1 (program) :� uses(anna; program ;ma
hine):answer2 (program) :� uses(jane; program ;ma
hine):Here, the answer view is the interse
tion of the two views answer1 and answer2 ,whi
h are themselves obtained by sele
tion and proje
tion. Interse
tion is thesame as the spe
ial 
ase of relational join in whi
h a pair of relations have identi
al�elds, and the join is on all of them.The answer view for our last query 
an a
tually be de�ned by a single 
lause,like this:answer(program) :�uses(anna; program ;ma
hine1);uses(jane; program ;ma
hine2):The variable ma
hine has been renamed here as ma
hine1 in one literal andma
hine2 in the other, so that the answers will in
lude programs that are used



18 Programming with relationsby both Anna and Jane but on di�erent ma
hines. Without this renaming, theresults would be di�erent. The view 
omputed by the de�nitionanswer(program) :�uses(anna; program ;ma
hine);uses(jane; program ;ma
hine):answers instead the question `What programs do both Anna and Jane use on thesame ma
hine?'. This view is obtained by joining the uses relation with itself onthe program and ma
hine �elds, then sele
ting and proje
ting.The operation of relational union 
orresponds to `or' in logi
. Our Horn 
lausenotation has no symbol for `or', but we 
an a
hieve the same e�e
t by using morethan one 
lause in the de�nition of a relation. For example, the question `Whatprograms are used by either Anna or Jane?' is answered by the viewanswer(program) :� answer1 (program):answer(program) :� answer2 (program):where answer1 and answer2 are as before. If a program p is used by Anna { sothat it satis�es answer1 (p) { then we 
an derive the 
on
lusion answer(p) usingthe �rst 
lause in the de�nition of answer . Similarly, if p satis�es answer2 (p),then the se
ond 
lause allows us to derive the 
on
lusion answer(p).The �nal operation of relational algebra is di�eren
e of relations, and this 
anbe a
hieved by a 
ombination of 
onjun
tion and negation. For example, thequestion `What programs are used by Anna but not by Jane?' 
an be expressedin the viewanswer(program) :�answer1 (program);notanswer2 (program):The not operator is missing from our Horn 
lause notation, but a restri
tedversion, powerful enough for database appli
ations, 
an be implemented usingthe te
hnique of negation as failure that is explained in Chapter 8. Brie
y,to prove notP , negation as failure requires that we attempt to prove P in-stead. If we 
annot prove P , then we 
on
lude that notP is true; 
onversely,if we do su

eed in proving P , then notP is false. This is a valid form ofreasoning, provided that P 
ontains no unknown variables, and we 
an ensurethat this is so in the example by arranging that the literal answer1 (p) is solved�rst.There are several important di�eren
es between the view of relational data-bases presented here and the database systems that are used in pra
ti
e. We havebeen identifying the �elds of relations by their position in the list of arguments,and that be
omes tedious to get right when the database 
ontains more thantwo or three relations with two or three �elds ea
h. Real databases have better
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hemes for �elds, and asso
iate types with the �elds to prevent mistakesand allow more e
onomi
al storage. Real databases 
an maintain indexes fortheir relations that allow joins and sele
tions to be 
omputed in a reasonabletime, even when there are thousands or millions of re
ords in the relations. Theyare 
arefully designed to make fast and e
onomi
al use of disk storage.On the other hand, logi
 programming is more general than relational data-bases in many ways. Logi
 programs 
an de�ne relations partly by plain fa
ts andpartly by 
lauses that have variables and bodies that express 
onstraints on thevalues of the variables. The data in logi
 programs is not restri
ted to be atomi
,as with databases, and (as we shall see in the next 
hapter) relations over re
ur-sive data stru
tures 
an themselves be given re
ursive de�nitions. These thingshave no analogues in relational databases.Summary� Relational databases work by 
ombining relations (tables of data) usingoperations that work on whole relations, rather than individual re
ords.� Queries about a database are answered by de�ning views, new relationsthat are derived using the relational operators.� The tables of relational databases 
an be expressed in logi
 programmingby relations that are de�ned as lists of fa
ts.� Ea
h of these relational operators 
an be expressed in logi
 programmingby 
ombining existing relations in the de�nition of a new one.Exer
ises2.1 The sta� of an oÆ
e run a 
o�ee 
lub, and they have set up a database
ontaining the following relations:� manager(name), whi
h is true if name is a manager.� bill(name ;number;amount), whi
h is true if name has been sent a billnumbered number for amount .� paid(number;amount ;date), whi
h is true if a payment of amount wasmade on date for the bill numbered number.De�ne views that answer the following questions:a. Whi
h managers have been sent a bill for less than ten pounds?b. Who has been sent more than one bill?
. Who has made a payment that is less than the amount of their bill?d. Who has re
eived a bill and either not paid it at all, or not paid it beforeFebruary 1st?
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h 
ase, explain how the query 
an be expressed in terms of the six operationsof relational algebra. Use as a 
ondition for sele
tion the relation before(a;b)that holds if date a is before date b, and use the 
onstant feb1 to name February1st.Pra
ti
al exer
iseYou might like to try running database queries like the ones dis
ussed in this
hapter, or running your solutions to the exer
ises. To help with this, pi
oProlog
omes with a �le database.pp that 
ontains (in pi
oProlog form) the tables ofpeople and programs from Figures 2.1 and 2.2. It also 
ontains the de�nition ofa relation greater(x ;y ) that holds if x is a larger integer than y .



Chapter 3Re
ursive stru
tures

In Chapter 1, we looked at a very simple programming problem that 
ould besolved by trying a �nite set of 
hoi
es drawn from only four possible dire
tions.Realisti
 programming problems are usually more 
omplex than this. They in-volve data that has more internal stru
ture than the simple dire
tions used inthe motel suite example, and they lead to programs that are able to produ
eanswers that are more 
omplex than a simple list of fa
ts. How 
an we representthis 
omplex data in the notation of logi
? And how 
an we build programs thatare 
apable of more than a �xed, �nite 
olle
tion of 
hoi
es?The answers to both these questions are the same: we use re
ursion to builddata that has a nested stru
ture and programs that relate answers to 
omplexproblems with answers to their stru
tural parts. We shall look at the data �rst,using as an example one of the most useful re
ursive data stru
tures, sequen
esor lists.3.1 ListsSuppose we want to build a program that gives street dire
tions between pla
esin a 
ity that has a re
tangular array of streets, as many Ameri
an 
ities do. Thedire
tions 
an be represented by �nite sequen
es of moves, so that the sequen
eNorth, East, South, Southwould mean `Go one blo
k North, then one blo
k East and �nally two blo
ksSouth'. Any sequen
e of moves 
an be represented by a list , 
onstru
ted a

ord-ing to the following rules:1. There is an empty list, whi
h we write nil .2. If x is an item and a is a list, then there is a list that 
onsists of the item21



22 Re
ursive stru
turesx followed by all the items in the list a. We write this list as x :a.3. Nothing is a list ex
ept a

ording to rules (1) and (2).For example, the sequen
e of four moves is represented by the listnorth:(east :(south:(south:nil))):We 
an 
he
k that this expression really is a list by reasoning like this:nil is a list be
ause of rule (1).So south:nil is a list be
ause of rule (2).So south:(south:nil) is a list be
ause of rule (2).and so on. To stop the notation from be
oming 
umbersome, we adopt the
onvention that the `:' symbol asso
iates to the right, so that x :y :a means thesame as x :(y :a), and our list of moves 
an be written without parentheses asnorth:east :south:south:nil :Noti
e that any list is built up by starting with nil and repeatedly using the `:'operation to add further elements, so any properly-
onstru
ted list must end innil . It is tempting at �rst to save writing and omit the `:nil ' from the end ofexpressions for lists, but the expression north:east :south:south does not mean thesame thing as north:east :south:south:nil { it is not a proper list be
ause it endsin south instead of nil . In
luding an expli
it nil at the end of every list meansthat we do not have to treat as a spe
ial 
ase the singleton lists that 
ontain justone element. Instead, they are exa
tly the lists like east :nil that are made byusing the `:' operation just on
e.If we know how to get from x to y in our 
ity, and we know how to get fromy to z , then we know one way of getting from x to z : just go via y . This isprobably not the best way of getting from x to z , but it is better than nothing.The list of one-blo
k moves that we would follow in going from x to z 
onsistsof all the moves for getting from x to y , followed by all the moves for gettingfrom y to z .Let us try to de�ne a relation append(a;b;
) that is true of three lists a, band 
 exa
tly if 
 is the list that 
ontains all the elements of a followed by allthe elements of b. As a �rst approximation, we might think of de�ning it by along list of fa
ts like this:append(nil ; nil ; nil) :� :append(nil ;x :nil ;x :nil) :� :append(nil ;x :y :nil ;x :y :nil) :� :...



3.1 Lists 23append(p:nil ; nil ; p:nil) :� :append(p:nil ;x :nil ; p:x :nil) :� :append(p:nil ;x :y :nil ; p:x :y :nil) :� :...append(p:q:nil ; nil ; p:q:nil) :� :append(p:q:nil ;x :nil ; p:q:x :nil) :� :...This 
olle
tion of fa
ts 
ould be arranged in a two-dimensional array, in whi
hea
h row 
orresponds to one possible length for the �rst argument a, and ea
h
olumn 
orresponds to one length for the se
ond argument b. Ea
h element ofthe array is a fa
t that 
an be used to solve append problems for exa
tly one
ombination of lengths for the arguments: for example, the fa
tappend(p:nil ;x :y :nil ; p:x :y :nil) :� :
an be used to solve any problem in whi
h a list 1 and a list of length 2 are to bejoined. Plainly, any true instan
e of append appears somewhere in the array, butit would be mu
h more useful to summarize the 
ontents of this in�nite array ina �nite des
ription that 
ould be written out in full and used as a program forappending lists. What we are looking for is a �nite 
olle
tion of 
lauses fromwhi
h all the fa
ts in the array 
ould be derived.A
tually, even the in�nite array takes a big step in 
utting down the size of theproblem, be
ause it uses variables like p, q, x , y in pla
e of 
onstants. Instan
eslike append(north:east :nil ; south:south:nil ; north:east :south:south:nil)
an be obtained by substituting 
onstants for the variables that appear in a fa
tfrom the array.A se
ond simplifying step is to noti
e that whatever appears as the se
ondargument of append also appears as a sub-expression of the third argument, likethis: append(p:q:nil ;x :y :nil ; p:q:(x :y :nil)) :� :In this formula, I have put in a pair of parentheses that 
ould have been omitteda

ording to our 
onvention about `:'. We 
an redu
e the two-dimensional arrayof fa
ts into a one-dimensional (but still in�nite) array by summarizing ea
h rowof the two-dimensional array as a single fa
t. Ea
h of these fa
ts uses a variablefor the se
ond argument of append , and that variable 
an stand for any list:append(nil ;b;b) :� :
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ursive stru
turesappend(z :nil ;b; z :b) :� :append(y :z :nil ;b;y :z :b) :� :append(x :y :z :nil ;b;x :y :z :b) :� :...Again, every true example of the append relation is an instan
e of a fa
t from thislist. Just 
hoose the fa
t a

ording to the number of items in the �rst argumentof append , then �ll in the se
ond argument with a list of the right length.There is still some pattern in this new list of fa
ts, and it 
an be used tosummarize it further. If line i of the list isappend(a;b;
) :� :then line i+1 di�ers from it by adding a new element in front of both A and C,like this:append(x :a;b;x :
) :� :We 
an make this into a Horn 
lause:append(x :a;b;x :
) :� append(a;b;
):If we take this 
lause together with the very �rst fa
t in the list (the one aboutnil), then we obtain a �nite de�nition of append :append(nil ;b;b) :� : (app:1)append(x :a;b;x :
) :� append(a;b;
): (app:2)This is the de�nition that is often used in logi
 programming.There is an appealing similarity between this pair of 
lauses that de�ne appendand the three rules for building lists that began this 
hapter. The �rst rule forbuilding lists says the nil is a list, and the 
lause (app.1) tells us what happenswhen the list nil is appended with another list. The se
ond rule for buildinglists says that we 
an build a list x :a if we already have a list a, and the 
lause(app.2) tells us what happens when a list of this form is appended with anotherlist, provided we already know what happens with the list a itself. The third rulefor building lists does not 
orrespond to anything in the program for append , butto a prin
iple that will apply whenever we use the program to solve problems:No lists a, b and 
 satisfy the relation append(a;b;
) unless they 
an beproved to do so using 
lauses (app.1) and (app.2).This prin
iple is an example of the 
losed world assumption. It is importantbe
ause it guarantees that the only solutions to append problems are the ones



3.2 Deriving fa
ts about append 25that are generated by the program, so that if a question about append has anyanswers, they will be found by using the program.3.2 Deriving fa
ts about appendIn Chapter 1, we found that the suite program 
ould be used in two ways. Thesimpler way was to derive from it the fa
t that a 
ertain, known design was
orre
t. In a similar way, the append program 
an be used by deriving from itthe fa
t that 
ertain lists satisfy the append relation. Later, we shall see how theappend program 
an be used to solve problems in whi
h the lists involved are notknown in advan
e.Let us �rst use the append program to derive a parti
ular fa
t, sayappend(1:2:nil ; 3:4:nil ; 1:2:3:4:nil):I am using lists of numbers instead of lists of dire
tions to save spa
e. To derivethis fa
t, we will take 
ertain instan
es of the 
lauses (app.1) and (app.2) {obtained by substituting 
onstants for the variables that appear in those 
lauses{ then appeal to the meaning of the `:�' sign to derive what is on the left fromwhat is on the right. It may not be obvious what 
lauses we should use, andwhat 
onstants should be substituted for variables, but if we 
annot guess howto do the derivation, we 
an at least 
he
k that the pro
esses of substitution andmat
hing are 
arried out properly as the derivation pro
eeds.We begin with an instan
e of (app.1), obtained by substituting 3:4:nil for thevariable b:append(nil ; 3:4:nil ; 3:4:nil): (1)Now we take an instan
e of (app.2), substituting 2 for x , nil for a and 3:4:nilfor both b and 
 :append(2:nil ; 3:4:nil ; 2:3:4:nil) :� append(nil ; 3:4:nil ; 3:4:nil): (2)This formula has the form P :� Q, and the formula (1) is exa
tly identi
al tothe right-hand side Q. So we 
an dedu
e that the left-hand side P is true:append(2:nil ; 3:4:nil ; 2:3:4:nil): (3)Next, we take another instan
e of (app.2), this time substituting di�erent 
on-stants for the variables:append(1:2:nil ; 3:4:nil ; 1:2:3:4:nil) :� append(2:nil ; 2:4:nil ; 2:3:4:nil): (4)
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ursive stru
turesThe right-hand side of this formula exa
tly mat
hes the fa
t (3), so again we 
anderive the left-hand side as a 
on
lusion:append(1:2:nil ; 3:4:nil ; 1:2:3:4:nil): (5)And this is exa
tly the 
on
lusion we were aiming for.At �rst, it might seem that the se
ond 
lause in the de�nition of append isuseless, be
ause it has append on the right-hand side as well as the left { so surelyit 
annot be a good de�nition. The derivation we have just looked at shows thatthis is not so, be
ause (app.2) lets us derive more 
ompli
ated append fa
ts fromsimpler ones, so it lets us build up fa
ts about 
omplex lists in the same way thatthe lists themselves are built up with the `:' operation.The approa
h of working from known fa
ts towards a desired 
on
lusion is �nefor use by hand in proving append fa
ts that are already known. But now thatthere is an in�nite spa
e of possibilities to explore, it is not reasonable to expe
ta ma
hine to have the insight required to see what instan
es of whi
h 
lausesshould be used. This is all the more so when the problem is to answer a goal like# :� append(3:1:nil ; 2:4:nil ;w ):that 
ontains variables. This goal asks for a w that is the result of appendingthe lists 3:1:nil and 2:4:nil . Instead of blindly guessing a suitable list w and then
onstru
ting the proof that it is right, the ma
hine running the append program�nds the 
orre
t answer w and the proof that it is right simultaneously. Let usfollow the Prolog method for solving this problem, working ba
kwards as we didwith the program for designing motel suites.First, it is obvious that 
lause (app.1) 
annot be used dire
tly to solve thisgoal. Why not? Be
ause (app.1) 
an only establish append fa
ts where the �rstargument is nil , and here the �rst argument, 3:1:nil , is not the same as nil . Ifthe problem 
an be solved at all, it must be solved by using 
lause (app.2). Letus 
ompare the goal in hand with the left-hand side or head of (app.2):# :� append(3 :1:nil ; 2:4:nil ; w ):append(x : a; b; x :
) :� append(a;b;
):If we are to use (app.2) to answer the goal, then these two formulas must mat
hexa
tly, and this 
an only happen if the parts 
onne
ted by lines mat
h; thatis, if x = 3, a = 1:nil , b = 2:4:nil and w = 3:
 . These substitutions are theminimum that must be done to make the goal and the head of (app.2) identi
al.If we apply them to the right-hand side or body of (app.2), we obtain the newgoal # :� append(1:nil ; 2:4:nil ;
):
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ts about append 27If only we 
an �nd an answer to this new goal, we 
an obtain an answer to theoriginal goal by puttingw = 3:
 . To derive this answer, we take whatever deriva-tion leads to an answer to the new goal, and add one extra step, using (app.2) andapplying the substitution we have just dis
overed to make the formulas mat
h.So now we try to solve the goal# :� append(1:nil ; 2:4:nil ;
):Again (app.1) is no help, be
ause the �rst argument of append is not nil . So wetry (app.2) again, 
hanging the names of variables to prevent 
onfusion:# :� append( 1 :nil ; 2:4:nil ; 
 ):append(x 0:a0; b 0; x 0:
 0) :� append(a0;b 0;
 0):Again, the goal and the head of (app.2) 
an be made the same, this time bysetting x 0 = 1, a0 = nil , b 0 = 2:4:nil and 
 = 1:
 0. Filling in these values in thebody of (app.2) gives the new goal# :� append(nil ; 2:4:nil ;
 0):So our original goal 
an be answered (with 
 = 1:
 0 and so w = 3:1:
 0) providedwe 
an answer this simpler goal.But the new goal 
an be solved dire
tly using (app.1). We rename the variableb of (app.1) as b 00 to avoid 
onfusion, and 
ompare the goal with the head of(app.1):# :� append(nil ; 2:4:nil ; 
 0):append(nil ; b 00; b 00) :� :The two mat
h, provided we take 
 0 = b 00 = 2:4:nil , and the new goal is theempty goal# :� :There is no more work to do, and we need only assemble the parts of the answerthat were dis
overed at ea
h step to re
over an answer to the original goal:w = 3:
 = 3:1:
 0 = 3:1:2:4:nil :This may seem like an enormous e�ort just to append two lists, but the onlyoperations we have used { mat
hing goals against the heads of 
lauses, and
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ursive stru
turesperforming substitutions to generate new goals { are both easy to me
hanizeeÆ
iently, and it is this that makes logi
 programming pra
ti
al.Now let us 
onsider a slightly di�erent goal:# :� append(u ;v ; 1:2:3:nil):This asks for a pair of lists u and v that when appended give the list 1:2:3:nil .If we 
ompare this goal with the heads of 
lauses (app.1) and (app.2), we �ndthat both of them mat
h. Using (app.1) looks like this:# :� append( u ; v ; 1:2:3:nil):append(nil ; b; b ) :� :The mat
h 
an be made with u = nil and v = b = 1:2:3:nil , and the new goalis empty, indi
ating a dire
t answer to the original goal: u = nil , v = 1:2:3:nil .Alternatively, we may use (app.2) like this:# :� append( u ; v ; 1:2:3:nil):append(x :a; b; x : 
 ) :� append(a;b;
):The mat
hing substitutions are x = 1, u = x :a = 1:a, v = b and 
 = 2:3:nil .The new goal is# :� append(a;b; 2:3:nil):One way to answer this new goal is to use (app.1), giving the immediate answera = nil , b = 2:3:nil , and so leading to a se
ond answer to the original goal:u = 1:nil , v = 2:3:nil . Another way to answer the new goal is to use (app.2)�rst; this generates a third goal, and so on. In all, the original goal has foursolutions:u = nil ; v = 1:2:3:nil ;u = 1:nil ; v = 2:3:nil ;u = 1:2:nil ; v = 3:nil ;u = 1:2:3:nil ; v = nil :Like the multiple solutions to the problem of designing a motel suite, these 
anall be found by exploring systemati
ally the 
hoi
es that 
an be made. A Prologsystem will �nd all four solutions and present them one after another.The pro
ess (
alled uni�
ation) of mat
hing the head of a 
lause with a goal tobe solved is the key to exe
ution of logi
 programs. Unlike the pattern-mat
hingused in some fun
tional programming languages, it involves information 
ow in
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tions: from the goal to the 
lause that is being used to solve it, andfrom the 
lause ba
k to the goal. For example, in the last appli
ation of (app.2)shown above, the mat
hing tells us that the variable u in the goal should takethe value 1:a, and the variable 
 in the 
lause should take the value 2:3:nil .A spe
ial feature of logi
 programs illustrated by this example is that they are`bi-dire
tional'; there is no need to sele
t in advan
e a �xed set of inputs and a�xed set of outputs for a program. We 
an supply values for any 
ombinationof the three arguments of append and have the ma
hine 
ompute values for theothers. We have looked at an example where we supplied the �rst two arguments,and left the ma
hine to 
ompute the (unique) value of the third argument thatmade the append relation true, and another example where we supplied the thirdargument, and the ma
hine would give a list of di�erent possibilities for the othertwo arguments.Be
ause of the generality of the uni�
ation pro
ess, we 
an pla
e 
onstraintson the values that are found by using the same variable more than on
e in thegoal. For example, the goal# :� append(x ;x ; 1:2:3:1:2:3:nil):asks for a list that, when appended with itself, gives the list 1:2:3:1:2:3:nil . AProlog system will su

eed in solving this goal, �nding the solution x = 1:2:3:nil .In e�e
t, it does so by generating pairs of lists that append to give 1:2:3:1:2:3:nil ,and sele
ting from the seven su
h pairs of lists the one pair in whi
h both listsare the same.It is even possible to supply none of the arguments of the append relation, asin the goal# :� append(x ;y ; z):This produ
es an in�nite list of answers like this:x = nil ; z = y ;x = a:nil ; z = a:y ;x = a:b:nil ; z = a:b:y ;... ...In other words, this is exa
tly the list of fa
ts about append that we summarizedin the re
ursive de�nition.3.3 More relations on listsRe
ursion provides us with a way to de�ne other useful relations on lists. Oneexample is the relation list(a) that is true exa
tly when a is a list 
onstru
ted
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ursive stru
turesa

ording to our three rules. This relation 
an be de�ned by expressing two ofthe three rules as Horn 
lauses:list(nil) :� : (list:1)list(x :a) :� list(a): (list:2)The �rst of these 
lauses says that nil satis�es the relation list , and the se
ondsays that if a satis�es list , so does x :a. From the two 
lauses, we 
an dedu
ethat various obje
ts are lists. For example, the fa
t that 1:2:nil is a list 
an bededu
ed as follows: list(nil) is true be
ause of (list.1); so by applying (list.2)with x = 2 and a = nil , we may dedu
e list(2:nil). Applying (list.2) again, thistime with x = 1 and a = 2:nil , we dedu
e list(1:2:nil).The third rule about lists is impli
it in the program. Just as with the appendrelation, we say an obje
t a satis�es the relation list(a) only if it 
an be provedto do so from the de�nition of list . Any obje
t that is not a proper list, perhapsbe
ause it does not end in nil , 
annot be proved from the de�nition to satisfythe list relation.We 
an think of the two 
lauses (list.1) and (list.2) as a spe
i�
ation of arelation list , and ask what relations satisfy that spe
i�
ation. Certainly, therelation we had in mind, the one that is true of proper lists and false of everythingelse, satis�es the spe
i�
ation. But so do many other relations, for example theone that is true of proper lists and also lists that end in 3 instead of nil . Eventhe relation that is true of every obje
t satis�es the spe
i�
ation. The relationwe intended to de�ne by writing the 
lauses (list.1) and (list.2) is the least orsmallest relation that satis�es the spe
i�
ation. It is an important fa
t aboutlogi
 programs, whi
h we shall prove in Chapter 5, that a program written as aset of Horn 
lauses always has su
h a `least model'.For now, we 
ontent ourselves with de�ning some other useful relations on lists.Here is the de�nition of a relation member(x ;a) that is true if x is a member ofthe list a:member(x ;x :a) :� :member(y ;x :a) :� member(y ;a):The �rst 
lause says that x is a member of the list x :a, and the se
ond says thaty is a member of x :a if it is a member of a. Neither of these 
lauses applies tothe empty list, be
ause the empty list has no members. It is quite permissibleto write de�nitions that have no 
lause that applies to 
ertain input values, andthe result is to de�ne a relation that does not hold for these values.We 
an use the member relation to test for membership. For example, thegoal # :� member(2; 1:2:3:nil) re
eives the answer `yes', and the goal # :�member(5; 1:2:3:nil) re
eives the answer `no'. It 
an also be used to generate themembers of a list, so that the goal # :� member(x ; 1:2:3:nil) re
eives the threeanswers x = 1, x = 2 and x = 3.



3.3 More relations on lists 31To apply this idea, let us de�ne dominates(x ;a) as the relation that is truewhen x is greater than or equal to (geq) every member of the list a:dominates(x ; nil) :� :dominates(x ;y :a) :� geq(x ;y ); dominates(x ;a):Any number dominates the empty list, and a number x dominates the list y :aif it is greater than or equal to y and dominates the list a. Now we 
an de�nethe relation maximum(x ;a) that that is true if x is the maximum of the list a:maximum(x ;a) :� member(x ;a); dominates(x ;a):This de�nition simply says that the maximum of a list a is a member of a thatis greater than or equal to every member of a. A goal like# :� maximum(x ; 3:1:4:2:nil):is exe
uted by solving the two immediate subgoals member(x ; 3:1:4:2:nil) anddominates(x ; 3:1:4:2:nil). The Prolog strategy is to generate solutions to the�rst member subgoal one after another, then test ea
h one to see if it makes thedominates subgoal true.Another, more eÆ
ient, de�nition of maximum uses re
ursion dire
tly. We�rst de�ne a relation max1 (x ;y ;a) that is true if x is the maximum numberamong y and the members of list a:max1 (x ;x ; nil) :� :max1 (x ;y ; z :a) :� geq(y ; z);max1(x ;y ;a):max1 (x ;y ; z :a) :� less(y ;x );max1 (x ; z ;a):In terms of max1 , we 
an write a new de�nition of maximum:maximum(x ;y :a) :� max1 (x ;y ;a):This de�nition is more eÆ
ient as a program, be
ause the maximum of a list isfound in a single pass through the list, rather than the multiple passes neededby our earlier program.We de�ned member dire
tly by re
ursion, but there is another de�nition thatuses the append relation instead:member(x ;a) :� append(u ;x :v ;a):This de�nition says that x is a member of a if there are lists u and v su
hthat appending u and x :v gives the list a. With this de�nition, a goal like# :� member(2; 3:1:2:4:nil) is exe
uted by sear
hing for a solution to the subgoal
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Figure 3.1: A binary treeappend(u ; 2:v ; 3:1:2:4:nil). By trying both 
lauses for append and ba
ktra
king,Prolog is able to �nd a solution where u = 3:1:nil and v = 4:nil .3.4 Binary treesLists, represented with nil and the `:' operator, are the simplest and most usefulre
ursive data type, but logi
 programming also allows more general data stru
-tures. As an example, we 
onsider here the type of binary trees with labels atthe leaves, de�ned by the following rules:1. If x is any obje
t, then tip(x ) is a binary tree.2. If l and r are binary trees, then so is fork(l;r).3. Nothing is a tree ex
ept a

ording to rules (1) and (2).For example, the binary tree shown in Figure 3.1 is represented by the termfork(fork(tip(a); tip(b));fork(fork(tip(
); tip(d)); tip(e)))These rules for forming trees have the same re
ursive 
hara
ter as the rules forforming lists, and we 
an de�ne relations on trees by re
ursion just as we usedre
ursion to de�ne relations on lists.We 
an use re
ursion to de�ne a relation 
atten(t ;a) between a tree t and alist a that is true when a 
ontains in order all the tips from t , so that if t is thetree of Figure 3.1 then 
atten(t ; a:b:
:d :nil) is true.
atten(tip(x );x :nil) :� :
atten(fork(l;r);
) :�
atten(l;a);
atten(r;b); append(a;b;
):



3.4 Binary trees 33The �rst 
lause says that tip(x ) 
attens to give the list 
ontaining just x ; these
ond says that a tree fork(l;r) 
attens to give a list 
 that is obtained by
attening l and r separately and joining the results with append .This de�nition of 
atten 
an be used to �nd the 
attened form of a givenbinary tree, and it gives one list as the answer for ea
h tree. Also, be
ause of thedire
tion-less 
hara
ter of logi
 programming, it 
an be used to �nd trees that
atten to a given list. Ea
h list is the 
attening of several trees, and ba
ktra
kingreturns these trees one after another.Summary� Complex information 
an be modelled by data that has a nested stru
ture.� Relations over these data stru
tures 
an be de�ned using re
ursion.� Prolog solves goals by mat
hing them with 
lauses from the program andgenerating subgoals. If the goal uses a re
ursive relation, these subgoalsmay use a simpler instan
e of the same relation.Exer
ises3.1 What is the result of exe
uting the following goal?# :� maximum(x ; nil):3.2 What solutions would a Prolog system display for the goal# :� maximum(x ; 3:1:3:2:nil):using the two de�nitions of maximum from the text? Why?3.3 Use re
ursion or de�nition in terms of append or other relations to de�nethe following relations on lists:a. pre�x (a;b) if list a is a pre�x of list b.Example: pre�x (1:2:nil ; 1:2:3:4:nil).b. suÆx (a;b) if list a is a suÆx of list b.Example: suÆx (3:4:nil ; 1:2:3:4:nil).
. segment(a;b) if list a is a 
ontiguous segment of list b.Example: segment(2:3:nil ; 1:2:3:4:nil).d. sublist(a;b) if list a is a sub-list (not ne
essarily 
ontiguous) of list b.Example: sublist(1:3:nil ; 1:2:3:4:nil).e. delete(a;x ;b) if list b is the result of deleting a single o

urren
e of x fromlist a. Example: delete(3:1:4:2:nil ; 4; 3:1:2:nil).
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ursive stru
turesf. perm(a;b) if list a is a permutation of list b.Example: perm(4:1:2:3:nil ; 3:1:4:2:nil).3.4 De�ne a relation last(a;x ) that is true if a is a non-empty list, and x isits last element. Write de�nitions (a) using dire
t re
ursion, and (b) in terms ofappend . What are the solutions of the goal # :� last(a; 3), where a is a variable?3.5 How many answers does pi
oProlog display for the goal# :� maximum(x ; 3:1:3:2:nil)using ea
h of the de�nitions of maximum given in the text? Why is this?3.6 When it is used as a Prolog program, the de�nition of 
atten(t ;a) in thetext works well if it is given the tree t and asked to �nd its 
attened form a, orif it is given both t and a and asked to 
he
k that the relation holds. It worksless well, however, if given the list a and asked to �nd 
orresponding trees t .Why is this? How 
an the problem be solved?



Chapter 4The meaning of logi
 programs

We have seen how the simple logi
 of Horn 
lauses 
an be used to write 
omputerprograms, and how symboli
 reasoning 
an be used by hand or by 
omputer as away of exe
uting programs written in this way. The answers that are output bya logi
 program are statements that 
an be derived from the program by steps ofsymboli
 derivation. In this 
hapter, we begin a 
loser look at logi
 programs bygiving pre
ise rules for the syntax of a program, and more importantly, explainingwhat a logi
 program means as a logi
al theory.That programs have su
h a logi
al meaning at all is an aspe
t of the de
larativenature of logi
 programming. It is important be
ause it allows us to understandlogi
 programs in a way that is independent of what happens when they areexe
uted. To ensure that the answers output by a logi
 program are 
orre
t, theprogrammer need only ensure that the 
lauses of the program, when interpreteda

ording to their logi
al meaning, are true of the problem to be solved. Itis the responsibility of whoever implements a logi
 programming language toensure that its rules of reasoning are sound , that is, they deliver true 
on
lusionswhenever they are applied to true premisses.The programmer also needs to ensure that the program is 
apable of givinganswers to enough di�erent questions to be useful. The empty program (
on-taining no 
lauses at all) 
ertainly gives no in
orre
t answers, be
ause it givesno answers at all, but it is not a very interesting program. For this purpose, theprogrammer needs to be sure that the 
lauses of the program 
ontain all rele-vant information about the problem, and also that the rules of reasoning used bythe implementation are 
omplete, that is, any 
on
lusion whi
h follows from theprogram 
an in fa
t be derived from it by the symboli
 rules.De�ning a logi
al meaning for logi
 programs helps us to understand what in-formation is expressed by 
lauses and programs. It also gives a reliable 
riterionfor judging whether the rules of reasoning embodied by a parti
ular implemen-tation of logi
 programming are sound and 
omplete. So the logi
al semanti
sgiven in this 
hapter are the beginning of two parallel stories. One story tells35
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 programshow programming problems 
an be expressed in the logi
 of Horn 
lauses. Wehave already begun to tell this story in the �rst few 
hapters of this book, andwe will return to it later.The other story tells how parti
ular rules of reasoning (hopefully sound and
omplete) 
an be embodied in an implementation of logi
 programming and usedto exe
ute programs and solve goals. This story is told in the next few 
hapters,where we shall �nd that a single rule of reasoning 
alled SLD{resolution is thebasis for an e�e
tive, sound and 
omplete pro
edure for solving goals. The storyis 
on
luded in the last part of the book, where the implementation of SLD{resolution in pi
oProlog is des
ribed.The �rst se
tion of this 
hapter 
ontains a summary of the syntax of thesimplest kind of logi
 programs, without 
ertain extensions that we shall addlater. In the main part of the 
hapter, we de�ne the logi
al meaning of programswritten in this simple language. This prepares the way for the next 
hapter, whi
hformalizes the rules of reasoning we have been using informally, and 
ontains aproof that they are sound and 
omplete.4.1 SyntaxA typi
al program is the one that de�nes the 
atten relation:
atten(tip(x );x :nil) :� :
atten(fork(u ;v );a) :�
atten(u ;b);
atten(v ;
); append(b;
 ;a):Three kinds of name are used in this 
lause:� 
atten and append are relation symbols that name a relation between dataobje
ts su
h as trees or lists. In Prolog, relation symbols 
an have any namethat begins with a lower-
ase letter. In this book, they are shown in lower-
ase itali
s like this. Ea
h relation symbol has a �xed number of arguments(two for 
atten, three for append); this number is 
alled the arity of thesymbol.� fork and tip are fun
tion symbols that 
onstru
t data obje
ts (in this 
ase,trees). In Prolog and in this book, fun
tion symbols have names that
ould also be used for relation symbols, but they 
an be distinguishedby the fa
t that relation symbols are always outermost in a formula like
atten(fork(u ;v );a), and fun
tion symbols are used only in writing thearguments of the formula.� x , u , v , a, et
., are variables. In Prolog, variables 
an be given any namethat starts with an upper-
ase letter. In this book, they are shown in small
apitals like this.



4.1 Syntax 37For 
onvenien
e, some relation and fun
tion symbols, su
h as the list 
onstru
tor`:' and the equality sign `=' are written as in�x operators, so we 
an writex = 1:2:3:4:nilinstead of something likeequal(x ; 
ons(1; 
ons(2; 
ons(3; 
ons(4; nil))))):These in�x symbols are just a matter of synta
ti
 
onvenien
e, and we 
ouldmanage without them by using an ordinary symbol instead, with only the disad-vantage that our programs would be more diÆ
ult to read. Consequently, whenwe dis
uss the meaning of logi
 programs and the me
hanisms by whi
h theyare exe
uted, we 
an ignore the existen
e of in�x symbols ex
ept in examples.Most Prolog systems allow the programmer to introdu
e new in�x symbols, butpi
oProlog provides only a �xed 
olle
tion, and new ones 
ould be added only bymodifying pi
oProlog itself.Both relation symbols and fun
tion symbols have a �xed arity or number ofarguments, and this number 
an be zero. Relation symbols with no argumentsare rather uninteresting, be
ause they are the same as propositional variables like`it is raining', or `I am wet'. We 
an write a 
lause that expresses the statement`If it is raining, then I'll get wet':wet :� raining :But programs built from 
lauses like this are not able to a
hieve any very useful
al
ulations.On the other hand, fun
tion symbols with no arguments play a vital partin most programs, be
ause they are the same as 
onstants su
h as the emptylist nil , or atomi
 data items like editor and ma
 in the database example ofChapter 2. Constants are the basis on whi
h we 
an build up more 
omplexterms by applying fun
tion symbols su
h as `:' or fork .In terms of this 
lassi�
ation of the symbols they 
ontain, we 
an summarizethe syntax of logi
 programs as follows:� A program is a set of 
lauses. From a logi
al point of view, the order inwhi
h these 
lauses are written has no importan
e.� A 
lause is a formulaP :� Q1; : : : ; Qn:P is a literal 
alled the head of the 
lause, and Q1, : : : , Qn are literals thattogether form the body of the 
lause. In the 
ase n = 0, there are no literalsin the body; su
h a 
lause is written P :� :
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 programs� A literal or atom is a formulap(t1; : : : ; tk)where p is a relation symbol of arity k and t1, : : : , tk are k terms. In the
ase k = 0, the literal is written simply as p.For the present, the terms `atom' and `literal' are synonymous. In Chap-ter 8, however, we shall introdu
e negated literals notP , where P is anatom of the form p(t1; : : : ; tk).� A term is either a variable like x or person , or it is a 
ompound termf(t1; : : : ; tk)where f is a fun
tion symbol of arity k, and t1, : : : , tk are k smaller terms.A fun
tion symbol with no arguments is a 
onstant, written simply as f .In this summary, the words in itali
s are the ones we shall use to refer to parts ofprograms. In dis
ussing logi
 programming in general (rather than writing logi
programs themselves), we use a few extra notational 
onventions. Upper-
aseletters su
h as C, P and Q refer to 
lauses and atoms, the letters t and u areused for terms, and p and q are relation symbols.Prolog does not require relation or fun
tion symbols to be de
lared, and unlikepi
oProlog, most Prolog systems do not enfor
e our 
onvention that they shouldhave a �xed arity, but it will be simpler for us to sti
k to this 
onvention. We shalltalk about the alphabet of a program, meaning the sets of relation and fun
tionsymbols used in the program, together with their arities. In the 
atten program,there are two relation symbols: append of arity 3, and 
atten of arity 2. Thereare four fun
tion symbols: `:' of arity 2, nil of arity 0, tip of arity 1 and forkof arity 2. We 
an write down the alphabet of this program using the followingnotation, in whi
h a semi
olon separates the relation symbols from the fun
tionsymbols:fappend=3;
atten=2; :=2; nil=0; tip=1; fork=2g:More generally, we shall say `f=k is a fun
tion symbol' as a short way of in
ludingthe information that f has arity k. We shall assume that the alphabet of everyprogram 
ontains at least one 
onstant symbol, be
ause this allows us to avoida number of annoying diÆ
ulties with the theory. If a program does not 
ontain
onstant symbols already, we 
an always add one to its alphabet.We say a program T is well-formed with respe
t to an alphabet L if all therelation and fun
tion symbols used in T are drawn from L and used with the
orre
t arity. If L is an alphabet, we write Term(L) for the set of terms that arewell-formed with respe
t to L. We write GrTerm(L) for the set of well-formedground terms with respe
t to L, that is, the set of well-formed terms that 
ontains



4.2 Truth tables 39no variables. Analogously, we write GrLit(L) for the set of well-formed groundliterals with respe
t to L.4.2 Truth tablesThe 
lauses of a logi
 program may 
ontain 
omplex terms with fun
tion symbolsand variables, and if we are to explain the meaning of logi
 programs, we mustgive a meaning to them. We leave that for later, and begin by explaining themeaning of the very simple logi
 programs that 
ontain only relation symbolswith no arguments. Su
h relation symbols are like the propositional variables ofBoolean algebra, and we 
an explain the meaning of these programs using thefamiliar method of truth tables.For example, here is a 
lause the we 
ould read as saying `I'll get wet if it'sraining':wet :� raining : (1)There are two relation symbols, wet and raining in this 
lause, so there are fourpossible assignments of the truth values true and false to them. Ea
h row ofthis truth table shows one truth assignment and the resulting truth value of the
lause:wet raining (1)T T TT F TF T FF F TA 
lause like (1) is 
onsidered true unless the right-hand side is true but theleft-hand side is false, something that happens in only one row of the truth table.If we know that 
lause (1) is true, and also that the 
lausemiserable :� wet : (2)is true (meaning `I'll be miserable if I get wet'), then we expe
t that the 
lausemiserable :� raining : (3)to be true as well, with the informal meaning `I'll be miserable if it's raining'. We
an use a truth table to 
he
k that this is a valid inferen
e. The table has eightrows, one for ea
h assignment of truth values to the three symbols miserable,wet and raining . Ea
h row shows the truth values taken by the 
lauses (1), (2)and (3).
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 programsmiserable wet raining (1) (2) (3)T T T T T T �T T F T T T �T F T F T TT F F T T T �F T T T F FF T F T F TF F T F T FF F F T T T �If 
lause (3) really does follow logi
ally from 
lauses (1) and (2), then it shouldbe true in ea
h row of the truth table where both (1) and (2) are true. Theserows are marked with � in the truth table, and they all do 
ontain a T for 
lause(3) as well as 
lauses (1) and (2); we may 
on
lude that 
lause (3) does followfrom 
lauses (1) and (2).We 
an use truth tables to assign a `meaning' to 
lauses as follows: we say thatthe meaning of a 
lause is the set of rows in a truth table where the 
lause is giventhe value T. This de�nition lets us judge whether a 
laimed 
on
lusion followsfrom stated premisses. We 
he
k that every row that makes all the premissestrue also makes the 
on
lusion true. If so, then the 
on
lusion really is a logi
al
onsequen
e of the premisses.This way of assigning meanings to 
lauses is also attra
tive be
ause it assignsthe same meaning to 
lauses that are evidently equivalent from a logi
al point ofview. For example, the two 
lausesmiserable :� wet ; 
old :and miserable :� 
old ;wet :both express the idea `I'll be miserable if it's 
old and I get wet'. They havethe same mathemati
al meaning, be
ause they are true in the same rows of atruth table { in fa
t in all rows ex
ept the one where wet and 
old are true butmiserable is false.As a way of 
he
king that one propositional formula follows from others, themethod of truth tables has the advantage that it 
an be 
arried out in a 
om-pletely routine way. A disadvantage is that truth tables be
ome very large unlessthe number of di�erent propositional variables is very small, and it then be-
omes more attra
tive to justify 
on
lusions by symboli
 reasoning than by theexhaustive testing implied by truth tables. Even so, we 
an still use the idea of atruth table as our 
riterion for judging whether a method of symboli
 reasoningis sound and 
omplete.
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tions and variables 41Methods that repla
e exhaustive testing by symboli
 reasoning be
ome evenmore attra
tive when we extend the pi
ture to in
lude 
lauses that 
ontain vari-ables and fun
tion symbols. Analogues of truth tables exist in this broadersetting, and we shall use them as a 
riterion of truth against whi
h symboli
methods 
an be judged. However, these analogues of truth tables are no longerbased on �nite arrays of T's and F's, but on in�nite mathemati
al sets and fun
-tions. The table has an in�nite number of `rows', so it is no longer possible to
he
k them all one by one.4.3 Adding fun
tions and variablesTruth tables work well enough for simple programs that 
ontains only relationsymbols with no arguments, but something more is needed when relations 
anhave arguments that 
ontain variables and fun
tion symbols. In pla
e of rows in atruth table, we will use interpretations that assign a truth value to ea
h memberof the (perhaps in�nite) set of literals that 
an be formed from the alphabet ofthe program. If the relation symbols have no arguments, then the set of groundliterals is �nite; they are just the relation signs themselves. In that 
ase, aninterpretation is mu
h the same as a row in the truth table, giving a truth value(T or F) for ea
h relation symbol.More generally, we de�ne an interpretation M over an alphabet L to be a setM � GrLit(L) of ground literals formed from L. The idea is that the membersof M are the literals that are true, and all the others are false. If L 
ontainsrelation and fun
tion symbols that take arguments, then GrLit(L) is in�nite,be
ause we 
an form in�nitely many terms like nil , 0:nil , 0:0:nil , et
. The set ofinterpretations is in�nite too, be
ause the set of all subsets of an in�nite set isalso in�nite.Ea
h row of a truth table shows the truth values taken by some premissesand a 
on
lusion when the literals take 
ertain truth values. These truth valuesfor the formulas are 
al
ulated from the truth values for the literals by followingrules 
onne
ted with the meaning of the logi
al operators. Following the analogy,we now give rules that determine, for ea
h interpretation, the truth value of a
lause with fun
tion symbols and variables.We deal �rst with ground 
lauses, whi
h may 
ontain fun
tion symbols but
ontain no variables. If M is an interpretation, we say the ground 
lauseP :� Q1; : : : ; Qn:is true in M exa
tly if either P 2 M , or Qi =2 M for some i. This agrees withthe rule we used earlier with truth tables: a 
lause is 
onsidered true unless allthe literals in the body are true, but the head of the 
lause is false. We translate`P is true' by P 2 M , be
ause M 
ontains exa
tly the ground literals that are
onsidered true under the interpretation.
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 programsNow for 
lauses that 
ontain variables: we say a 
lause C is true in an interpre-tationM exa
tly if every ground instan
e of C is true inM . A ground instan
e ofa 
lause C with variables is any 
lause that 
an be obtained from C by system-ati
ally substituting ground terms for the variables of C. By `systemati
ally',we intend that the same ground term should be substituted for ea
h variablewherever it appears. We shall be more pre
ise about this when we introdu
e the
on
ept of a formal substitution in Se
tion 4.4.Finally, we say that a program T is true in an interpretation M if ea
h 
lauseof the program, 
onsidered separately, is true inM . In this 
ase, we also say thatM is a model of T , and write j=M T . Similarly, we write j=M C if an individual
lause C is true in M . The meaning of a program T is the set of all models ofT , that is, the set of all interpretations M su
h that j=M T .If the 
lauses of T 
ontain variables, it may be that the same variable appearsin several di�erent 
lauses. We de�ne the meaning of a program by treating the
lauses separately, allowing ground terms to be substituted for variables in ea
h
lause independently of the others. Be
ause of this, the value of a variable inone 
lause is not related to its values in other 
lauses. On the other hand, werequired the same ground term to be substituted for a variable wherever it o

ursinside a single 
lause; this makes sure that within a 
lause, ea
h variable refersto a single value.We say that a 
lause C follows from a program T (or that T entails C) if Cis true in every model of T . This is just like the 
riterion for entailment we usedwith truth tables, be
ause it is equivalent to saying that every interpretation(row of the truth table) that makes all the 
lauses of T true also makes C true.This way of giving meaning to logi
 programs says nothing about what happenswhen a program runs. This makes it a little unsatisfying for us as programmers,be
ause we want to know what the 
omputer does when we present it witha program. On the other hand, this is exa
tly what we should expe
t for ade
larative programming language: programs have a meaning that is independentof the way the programming language is implemented. Later, when we 
ome todes
ribe the me
hanisms by whi
h logi
 programs are exe
uted, we will have astrong expe
tation about what the me
hanisms should a
hieve, be
ause exe
utinga program should produ
e all and only the 
on
lusions that are entailed by theprogram.4.4 SubstitutionsIn des
ribing what it means for a 
lause to be true in an interpretation, we usedthe idea of systemati
ally substituting ground terms for variables. We now makethis idea more pre
ise by introdu
ing formally the idea of a substitution and theoperation of applying a substitution to a term or 
lause to obtain an instan
e of it.A substitution s:Var ! Term(L) is a fun
tion from variables to terms. Itasso
iates a term with ea
h variable, and when we `systemati
ally' substitute



4.4 Substitutions 43terms for variables a

ording to s, it is the term s(x ) that we substitute for ea
ho

urren
e of a variable x . We shall use the notation fx1  t1; : : : ;xn  tng forthe substitution that maps ea
h of the variables xi to the 
orresponding term ti(for 1 � i � n), and maps all other variables to themselves.The instan
e of a term t under a substitution s is the term t[s℄ de�ned asfollows: if t is a variable x , then t[s℄ = s(x ). If f is a fun
tion symbol of arity k,and t = f(t1; : : : ; tk), thent[s℄ = f(t1[s℄; : : : ; tk[s℄):This last equation tells us how to form t[s℄ for a 
ompound term t from thearguments of t: we re
ursively apply the same substitution s to ea
h of them,then build the results into a new 
ompound term that also has f as its fun
tionsymbol. Be
ause the arguments of the original term are smaller than the termitself, this equation lets us work out the instan
e under s of any term t. There
ursion stops with variable symbols (to whi
h the �rst part of the de�nitionapplies) and 
onstants (whi
h are un
hanged by substitution). As a slight abuseof notation, we write t[x  u℄ as an abbreviation for t[fx  ug℄, saving a pairof bra
es.We shall also use the notation P [s℄ for the instan
e of a literal P under thesubstitution s: if P = p(t1; : : : ; tk) thenP [s℄ = p(t1[s℄; : : : ; tk[s℄):Also, we write C[s℄ for the instan
e of a 
lause C under s: if C is the 
lauseP :� Q1; : : : ; Qn;then C[s℄ is the 
lauseP [s℄ :� Q1[s℄; : : : ; Qn[s℄:A ground substitution is simply a substitution g su
h that g(x ) is a groundterm for every variable x . Plainly, if g is a ground substitution, then t[g℄ is aground term for every term t.The main reason for introdu
ing the idea of a substitution expli
itly is thatsubstitutions themselves have helpful algebrai
 properties. For example, if r ands are substitutions, then there is another substitution r.s 
alled the 
ompositionof r and s, su
h that t[r.s℄ = t[r℄[s℄ for all terms t. We 
an de�ne the substitutionr . s by giving its a
tion on variables: it is the substitution u su
h thatu(x ) = r(x )[s℄for all variables x . That is, to 
ompute u(x ), we �rst apply r to x , then take the
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 programsinstan
e under s of the resulting term. We need to prove that this substitutionhas the properties we desire, and this we do in the proposition below.There is also an identity substitution I su
h that t[I℄ = t for all terms t. Itis de�ned by I(x ) = x for all variables x . Again, we must prove that I has thedesired properties.PROPOSITIONLet t be a term, and let r, s and w be substitutions.1. t[r . s℄ = t[r℄[s℄.2. t[I℄ = t.3. Composition is asso
iative: (r . s) . w = r . (s . w).4. The identity substitution I is a unit element for 
omposition: I.s = s = s.I.Proof: For part (1), we use indu
tion on the stru
ture of the term t; that is, ifP (t) is the property we wish to prove for all terms t, we �rst prove P (x ) for allvariables x , then prove for every fun
tion symbol f of arity k that P (f(t1; : : : ; tk))is implied by the indu
tion hypotheses P (t1), : : : , P (tk). Sin
e every term is builtup from variables by using a �nite number of fun
tion symbols, it follows thatP (t) holds for all terms t.Applying this idea to the spe
i�
 problem in hand, we see thatx [r . s℄ = r(x )[s℄ = x [r℄[s℄for any variable x . Also, if f is a fun
tion symbol of arity k, and t1, : : : , tn aresu
h that ti[r . s℄ = ti[r℄[s℄ for ea
h i, thenf(t1; : : : ; tk)[r . s℄ = f(t1[r . s℄; : : : ; tk[r . s℄)= f(t1[r℄[s℄; : : : ; tk[r℄[s℄)= f(t1[r℄; : : : ; tk[r℄)[s℄= f(t1; : : : ; tk)[r℄[s℄:This 
ompletes the proof of part (1). We leave part (2) as an exer
ise. The proofrequires another stru
tural indu
tion on t.For parts (3) and (4), we are required to prove the equality of various substi-tutions. For this, we use the fa
t that two substitutions are equal if they agreeon every variable. If x is any variable, thenx [(r . s) . w℄ = x [r . s℄[w℄ = x [r℄[s℄[w℄ = x [r℄[s . w℄ = x [r . (s . w)℄:Also, x [I . s℄ = x [I℄[s℄ = x [s℄ = x [s℄[I℄ = x [I . s℄.The 
on
ept of a substitution allows us to be more pre
ise about the meaning oflogi
 programs, and spe
i�
ally the ground instan
es of a 
lause C that we used



4.4 Substitutions 45in de�ning what it means for C to be true in a 
ertain interpretation; they aresimply the instan
es C[g℄ where g is a ground substitution. Substitutions willalso let us formulate a set of rules of reasoning by whi
h valid 
on
lusions 
an bederived from programs; that is the subje
t of the next 
hapter.A parti
ularly simple kind of substitution is one that a
ts as a permutationon the set of variables. We 
all su
h a substitution s a renaming . Its de�ningproperties are that s(v ) is a variable for ea
h v , and if v1 6= v2 then s(v1) 6=s(v2). If 
lauses C and C 0 are su
h that C 0 = C[s℄ for some renaming s, we saythat C 0 is a variant of C. Be
ause ea
h renaming s has an inverse s0 su
h thats . s0 = s0 . s = I, it follows that if C 0 is a variant of C then also C is a variantof C 0. Variants are important in exe
uting and reasoning with logi
 programs,be
ause repla
ing 
lauses from a program by variants of them allows us to avoid
onfusion between the variables used in one appli
ation of a 
lause from thoseused in another appli
ation.Summary� Logi
 programs are made up of Horn 
lauses that 
ontain relation, fun
tionand variable symbols.� Programs 
an be given a meaning as logi
al theories. This meaning isindependent of any exe
ution me
hanism.� Inferen
e rules and exe
ution me
hanisms for logi
 programs 
an be assessedby 
omparing their e�e
t with the logi
al meaning of the program.Exer
ises4.1 Show using a truth table that the 
on
lusionvaluable :� metal ; yellow ; heavy : (1)follows from the two premissesvaluable :� gold ; heavy : (2)and gold :� metal ; yellow : (3)4.2 At �rst, we de�ned j=M C �rst for C a ground 
lause. Later, we extendedthe de�nition to allow C to be any 
lause. Show that the two de�nitions are
onsistent, that is, if C is a ground 
lause then j=M C (in the earlier sense) if
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 programsand only if j=M C[g℄ for all ground substitutions g. What part is played in theproof by our assumption that L 
ontains at least one 
onstant?4.3 Prove by stru
tural indu
tion that if the variable x does not appear in theterm t then t[X  u℄ = t.4.4 Complete the proof that t[I℄ = t for every term t.4.5 Prove that if x and y are distin
t variables, and x does not appear in w ,then t[x  u℄[y  w℄ = t[y  w℄[x  u[y  w℄℄:



Chapter 5Inferen
e rules

Our way of giving meaning to logi
 programs �xes pre
isely what it means for a
lause to be entailed by a program { and so what it means for an answer to agoal to be 
orre
t { but it does not give us any pra
ti
al way of 
he
king whetherthis is so for a parti
ular program and a parti
ular 
lause. In this 
hapter, webegin to develop formal inferen
e rules that allow 
on
lusions to be derived fromprograms in a way that 
an be 
he
ked by symboli
 
al
ulation. For ea
h rule,we prove as a theorem that any 
lause that 
an be derived a

ording to the ruleis in fa
t entailed by the program { in other words, that the rule is sound.5.1 Substitution and ground resolutionThe �rst inferen
e rule is the following rule of substitution, whi
h we have in fa
tbeen using sin
e Chapter 1:From a 
lause C, derive the instan
e C[s℄, where s is any substitution.The soundness of this rule follows from the following proposition:PROPOSITIONLet C be a 
lause, M be an interpretation and s be a substitution. If j=M C thenj=M C[s℄.Proof: If j=M C, it follows by the de�nition of j=M that j=M C[g℄ for any groundsubstitution g. If h is a ground substitution, then s . h is also a ground substi-tution, sin
e (s . h)(x ) = s(x )[h℄ is a ground term for ea
h variable x . Puttingg = s . h, we dedu
e that j=M C[s . h℄. But C[s℄[h℄ = C[s . h℄, so j=M C[s℄[h℄.Sin
e this is true for any ground substitution h, it follows that j=M C[s℄. 47



48 Inferen
e rulesCOROLLARYFor any program T , 
lause C and substitution s, if T j= C then T j= C[s℄.Proof: Let M be any model of T . Then j=M C, and so by the propositionj=M C[s℄ also. Therefore T j= C[s℄.The substitution rule allows us to derive instan
es of a 
lause by `�lling in' thevalues of variables, one of the key steps in the kind of derivation we 
arried outin Chapter 1. The other key step is to 
ombine two 
lauses that have a mat
hingliteral, to derive a new 
lause. We 
onsider �rst the spe
ial 
ase used there, inwhi
h both the 
lauses are ground. It is 
alled the rule of ground resolution:From two ground 
lausesP :� Q1; : : : ; Qj; : : : ; Qnand Q :� R1; : : : ; Rmsu
h that Q = Qj, derive the 
lauseP :� Q1; : : : ; Qj�1; R1; : : : ; Rm; Qj+1; : : : ; Qnobtained by taking a 
opy of the �rst 
lause and repla
ing Qj with the bodyof the se
ond 
lause.We 
all the 
lause that is derived in this rule the ground resolvent of the �rst two
lauses on Qj. The soundness of the rule follows from the following proposition:PROPOSITIONLet the three ground 
lauses above be C1, C2 and C3, and let M be an interpre-tation. If j=M C1 and j=M C2 then j=M C3.Proof: Using the de�nition of j=M , we 
an distinguish various (not mutuallyex
lusive) 
ases:1. P is true in M . In this 
ase, C3 is automati
ally true in M .2. One of the Qi for i 6= j is false in M . Again C3 is true in M , be
ause it
ontains Qi in its body.3. One of the Ri is false in M . Again the body of C3 
ontains Ri, so C3 is truein M .Be
ause C1 is true in M , either P is true in M (
ase 1), or one of the Qi is false
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ase, either i 6= j (
ase 2), or Q = Qj is false in M . In that
ase, the truth of C2 implies that one of the Ri is also false in M (
ase 3).Combining the rule of substitution (using a ground substitution) with the rule ofground resolution allows us to derive new ground 
lauses from a program. Bothrules say that if 
ertain 
lauses are entailed by a program, then so is another
lause. We 
an build up elaborate derivations by using the output from oneappli
ation of a rule as input to another rule, so deriving more and more elaborate
on
lusions from a program. Su
h a derivation 
an be set out as a list, in whi
hea
h item is justi�ed by naming the rule that 
an be used to derive it frompre
eding items.EXAMPLEThe following program de�nes a relation reverse(a;b) that holds between twolists a and b if the members of b are those of a in reverse order:reverse(nil ; nil) :� : (rev:1)reverse(x :a;
) :� reverse(a;b); append(b;x :nil ;
): (rev:2)append(nil ;b;b) :� : (app:1)append(x :a;b;x :
) :� append(a;b;
): (app:2)From this program, we 
an derive the fa
treverse(1:2:nil ; 2:1:nil) :� :by the derivation shown in Figure 5.1. In a derivation like this, ea
h line is ob-tained either by applying the rule of substitution (subst) to a program 
lause, orby applying the rule of ground resolution (GR) to pre
eding lines in the deriva-tion. Sin
e ea
h line depends only on program 
lauses or lines that have beenderived before it, we 
an be sure that ea
h line (in
luding the last) is entailed bythe program, and thus that the program entails the �nal 
on
lusion.Although derivations are traditionally presented as linear lists, the stru
ture ofa derivation 
an be shown more 
learly as a tree, as in Figure 5.2, where ea
hnumbered node refers to a line in the derivation of Figure 5.1. At the leaves ofthe tree are 
lauses derived from those in the program by the substitution rule.All the 
lauses at interior nodes are derived from their two 
hildren by a step ofground resolution. This example shows how the rules of substitution and groundresolution 
an be used to derive answers to goals of the form # :� P that 
onsistof a single literal P . We simply look for a way to derive a ground 
lause P [g℄ :�where P [g℄ is a ground instan
e of P .Although it works, this pro
edure is in
onvenient for manual use and ineÆ
ientfor ma
hine implementation, be
ause we are for
ed to guess the substitutions that
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e rules1. reverse(1:2:nil ; 2:1:nil) :� (rev.2), substreverse(2:nil ; 2:nil); append(2:nil ; 1:nil ; 2:1:nil):2. append(2:nil ; 1:nil ; 2:1:nil) :� append(nil ; 1:nil ; 1:nil): (app.2), subst3. reverse(1:2:nil ; 2:1:nil) :� 1, 2, GRreverse(2:nil ; 2:nil); append(nil ; 1:nil ; 1:nil):4. reverse(2:nil ; 2:nil) :� (rev.2), substreverse(nil ; nil); append(nil ; 2:nil ; 2:nil):5. reverse(nil ; nil) :� : (rev.1)6. reverse(2:nil ; 2:nil) :� append(nil ; 2:nil ; 2:nil): 4, 5, GR7. append(nil ; 2:nil ; 2:nil) :� : (app.1), subst8. reverse(2:nil ; 2:nil) :� : 6, 7, GR9. reverse(1:2:nil ; 2:1:nil) :� append(nil ; 1:nil ; 1:nil): 3, 8, GR10. append(nil ; 1:nil ; 1:nil) :� : (app.1), subst11. reverse(1:2:nil ; 2:1:nil) :� : 9, 10, GRFigure 5.1: Derivation of a reverse fa
tare needed to make the derivation �t together properly. For example, in writingdown the �rst line of the example, the author was for
ed to guess that the reverseof 1:2:nil would be 2:1:nil , and a ma
hine might not have the insight to makethat guess 
orre
tly. A wrong guess would have been revealed only later in thederivation, when the literals in the body of the 
lause would fail to mat
h theheads of other 
lauses.To solve this problem, we need to use a di�erent inferen
e rule that 
ombinesfeatures of the rules of substitution and ground resolution, allowing de
isionsabout what to substitute for variables to be delayed until information is availablethat allows the de
ision to be made 
orre
tly. We shall study this rule of generalresolution in the next 
hapter. First, however, we look at ways of using ourpresent inferen
e rules to solve a wider 
lass of problems.5.2 RefutationThe goal# :� append(1:2:nil ; 3:4:nil ;a); append(a; 5:6:nil ;b):asks for the lists 1:2:nil and 3:4:nil to be 
on
atenated, and the result to be
on
atenated with 5:6:nil to give the �nal answer b. We 
an use a tri
k toextend our method of substitution and ground resolution to 
ope with goals likethis that 
ontain more than one literal.
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Figure 5.2: Tree stru
ture of the reverse derivationThe tri
k is to give a spe
ial meaning to the symbol # that we have been usingto write goals. We add # to the alphabet of the program as a relation symbol #=0with no arguments, and add the goal to the program as an extra 
lause. Thenwe try to use substitution and ground resolution to derive the empty 
lause # :�from this augmented program. If we su

eed, then we 
on
lude that there arevalues of the variables in the original goal that make all its literals true. As weshall see, it is possible to �nd out from the derivation of # :� what these valuesare.Why does this method work? The pre
ise 
laim is this: we start with aprogram T with alphabet L, and a list of literals P1, : : : , Pn. We add the 
lause# :� P1; : : : ; Pn: (�)to T to get an augmented program T 0 over L0 = L [ f#=0g, and 
laim thefollowing:PROPOSITIONIf T 0 j= (# :�) then for ea
h modelM of T , there is a ground substitution g su
hthat j=M Pi[g℄ for ea
h i.Proof: Let M be a model of T . Then M is an interpretation over L, but we 
anuse it as an interpretation over L0 also. It makes # a
t like the propositional
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onstant false, be
ause # =2 M . We know that M is not a model of T 0, be
auseT 0 j= (# :�) and # is false in M . So one of the 
lauses of T 0 is false in M , andit 
an only be the 
lause (�), be
ause all the 
lauses of the original program Tare true in M . This means that there is a ground substitution g that makes Pi[g℄true in M for ea
h i.This tri
k 
hanges our inferen
e rules from a proof system into a refutation sys-tem, be
ause the tri
k is to add to the program the opposite of the fa
t we wantto prove (sin
e # :� P is in e�e
t P ) false or notP ), and to show that theresulting set of 
lauses is in
onsistent by deriving a 
ontradi
tion. This refutesthe assumption that the goal is allowing false, allowing us to 
on
lude that some
hoi
e of substitution makes it true.5.3 CompletenessWe have seen how substitution and ground resolution 
an be used to derive
onsequen
es from logi
 programs, and that the rules are sound, so that theonly 
onsequen
es that 
an be derived are ones that really do follow from theprogram. A natural question is whether every valid 
onsequen
e of the program
an be derived in this way. The answer is `yes', as the following theorem states:THEOREM [Completeness of substitution and ground resolution℄Let T be a program with alphabet L, and let P be a ground literal over L. IfT j= P , then the 
lause P :� 
an be derived from T by substitution and groundresolution.Proof: We prove the theorem by 
onstru
ting a spe
ial modelM0 of T , 
alled theleast model of T , in whi
h a ground literal R is true exa
tly if R :� is derivablefrom T using substitution and ground resolution. If P is true in all models ofT , then it is true in this spe
ial model M0, and we 
an 
on
lude that P :� isderivable from T . So let M0 = fR j R :� is derivable from T g. We must showthat M0 really is a model of T . Let C = (Q :� R1; : : : ; Rn) be a 
lause of T ,and let g be a ground substitution. We must show that j=M0 C[g℄, i.e., that ifj=M0 Ri[g℄ for ea
h i then also j=M0 Q[g℄. Sin
e C is a 
lause of T , we 
an usethe substitution rule to derive the 
lauseC[g℄ = (Q[g℄ :� R1[g℄; : : : ; Rn[g℄):If j=M0 Ri[g℄ for ea
h i, then (by the de�nition of M0) all the 
lauses Ri[g℄ :� arederivable, so we 
an also derive Q[g℄ :� from these and C[g℄ by n steps of groundresolution. Thus j=M0 Q[g℄, and we may 
on
lude that j=M0 C. Sin
e this is truefor ea
h 
lause C of T , we 
on
lude that M0 is a model of T . This 
ompletes theproof.



5.3 Completeness 53The least modelM0 
onstru
ted in the proof is a
tually more interesting than thetheorem itself. The ground literals that are true inM0 are those that are derivablefrom the program T . The 
losed world assumption of Chapter 3 states that theseliterals are the ones that are a
tually true: thus the 
losed world assumption isequivalent to saying that the least model of the program faithfully represents therelations that the program is intended to des
ribe. This is a safe assumption,be
ause the soundness of our inferen
e rules guarantees that the ground literalsthat are true inM0 are also true in every other model of the program. The 
losedworld assumption will be
ome important in Chapter 8, where we shall assumethat any ground literal that is not true in M0 is in fa
t false.The theorem establishes the ground-literal 
ompleteness of substitution andground resolution { in the sense that any ground literal that follows from aprogram 
an be derived from it using these rules. We shall also be interested intwo other kinds of 
ompleteness for systems of inferen
e rules:� refutation 
ompleteness: that if every model of T 
ontains values that satisfyP1, : : : , Pn, then the empty goal 
an be derived from the augmented programT 0 = T [ f# :� P1; : : : ; Png. This follows immediately from ground-literal
ompleteness, be
ause the symbol # is a ground literal.� answer 
ompleteness: that any 
orre
t answer to a goal 
an be extra
tedfrom a refutation. We shall explore this in Se
tion 7.4.In the next 
hapter, we shall abandon ground resolution in favour of the 
ompu-tationally more attra
tive rule of general resolution, but the work we have putinto the analysis of ground resolution will not be wasted, be
ause results aboutground resolution 
an often be extended to 
over general resolution too.Summary� Inferen
e rules are synta
ti
 rules that allow 
on
lusions to be derived froma program.� An inferen
e rule is sound if it allows only valid 
on
lusions to be derivedfrom valid premisses.� A system of inferen
e rules is 
omplete if it allows any valid 
on
lusion tobe derived.� The rules of substitution and ground resolution are sound and 
omplete.Exer
ises5.1 Show that the following rule of 
ommutation is sound: from the 
lauseP :� Q1; Q2 derive the 
lause P :� Q2; Q1. [More generally, if � is a permutationof f1; : : : ; ng, then from P :� Q1; : : : ; Qn one may derive P :� Q�(1); : : : ; Q�(n):℄
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e rules5.2 Prove the soundness of the following rule of fa
toring : if s is a substitutionsu
h that Q1[s℄ = Q2[s℄, then from the 
lause P :� Q1; Q2 derive the 
lauseP :� Q1[s℄. [More generally, if Qi[s℄ = Qj[s℄, then from the 
lauseP :� Q1; : : : ; Qi; : : : ; Qj; : : : ; Qn:one may derive the 
lauseP [s℄ :� Q1[s℄; : : : ; Qi[s℄; : : : ; Qj�1[s℄; Qj+1[s℄; : : : ; Qn: ℄5.3 Prove the soundness of the following rule of dire
t resolution: from 
lausesP :� Q1; : : : ; Qn and Q :� R1; : : : ; Rm (not ne
essarily ground) with Q = Qj,derive the 
lauseP :� Q1; : : : ; Qj�1; R1; : : : ; Rm; Qj+1; : : : ; Qn:



Chapter 6Uni�
ation and resolution

The inferen
e rules of substitution and ground resolution allow us to derive 
on-sequen
es from programs, and the 
ompleteness theorem of Se
tion 5.3 showsthat any valid 
onsequen
e 
an be derived using the rules. But these parti
ularrules are rather in
onvenient, be
ause all the substitutions of ground terms forvariables must be done in advan
e, at the leaves of the proof tree, and the in-formation needed to determine what substitutions are appropriate only be
omesavailable when we look at internal nodes, where 
lauses are 
ombined by steps ofground resolution.In a step of ground resolution, the head of one 
lause is mat
hed with a literalin the body of another 
lause, and a new 
lause is made from them. For ground
lauses, the mat
hing is simple: two literals mat
h if they are identi
al. Our aimnow is to generalize the resolution rule so that it works on non-ground 
lauses.In a resolution step, two literals P and Q will mat
h if they have a 
ommoninstan
e, i.e., if there is a substitution s su
h that P [s℄ and Q[s℄ are identi
al.The new 
lause that results from the resolution step will have its variables �lledin by applying the substitution s. For example, the two literalsappend(1:2:nil ; 3:4:nil ;w ) and append(x :a;b;x :
)have a 
ommon instan
e append(1:2:nil ; 3:4:nil ; 1:
) that is obtained by applyingthe substitutionfx  1;a 2:nil ;b  3:4:nil ;w  1:
gto both literals. We shall use this fa
t to justify an inferen
e step that beginswith the goal# :� append(1:2:nil ; 3:4:nil ;w ): 55



56 Uni�
ation and resolutionand the program 
lauseappend(x :a;b;x :
) :� append(a;b;
):and from them derives the new goal# :� append(2:nil ; 3:4:nil ;
):This new goal is obtained by applying the mat
hing substitution to the body ofthe program 
lause.This style of reasoning has a marked advantage, be
ause the values to besubstituted for the variables in the goal and program 
lause 
an be dis
overedas part of the mat
hing pro
ess between the literals involved in the resolutionstep, rather than being 
hosen in advan
e. The result of the step still 
ontainsa variable 
 , and its value 
an be 
hosen a

ording to the needs of subsequentsteps, without a�e
ting the validity of the present one.Unfortunately, the two literals that mat
hed have many other 
ommon in-stan
es, su
h as these:append(1:2:nil ; 3:4:nil ; 1:2:3:4:nil);append(1:2:nil ; 3:4:nil ; 1:3:v ):We therefore fa
e the problem of 
hoosing whi
h of the many 
ommon instan
esto use in the resolution step. Choosing the last of the 
ommon instan
es shownleads to a dead end, be
ause it results in the new goal# :� append(2:nil ; 3:4:nil ; 3:v ):and that goal has no answer. What has happened here is that a value has been
hosen for the variable 
 before the information was available to determine whatthat value should be. An impulsive guess has been made at the value of 
 , andthat guess turns out to be wrong.Lu
kily, there is a best 
hoi
e of a 
ommon instan
e, in the sense that any other
ommon instan
e of the two literals 
an be obtained from it by applying a furthersubstitution. Later resolution steps may a
tually make further substitutions, andusing this `best' 
hoi
e of substitution in the present step does not restri
t theirfreedom to do so. In our example, the best 
hoi
e of substitution is the �rstone we tried. In general, the best 
hoi
e 
an be found by a pattern-mat
hingalgorithm 
alled uni�
ation.



6.1 Uni�
ation 576.1 Uni�
ationIf t and u are two terms, we say a substitution s is a uni�er of t and u if t[s℄ = u[s℄.The terms t and u may have many uni�ers, but we shall prove that if they haveany uni�ers at all, then they have a most general uni�er (m.g.u.). This is auni�er r of t and u with the additional property that every other uni�er s 
anbe written as s = r . w for some substitution w.THEOREM [Uni�
ation℄If two terms t and u have any uni�ers at all, then they have a most generaluni�er.Proof: The proof of this theorem is 
onstru
tive, in the sense that it does not
onsist merely of eviden
e that a most general uni�er exists, but (at least impli
-itly) 
ontains an algorithm for 
omputing one. We shall need this algorithm lateras part of the implementation of pi
oProlog, so we make the algorithm expli
itas the program shown in Figure 6.1. The proof of the theorem is the proof thatthis program works.The program is written using data stru
tures su
h as terms, substitutions,and sequen
es, that are not dire
tly provided by a programming language likePas
al. For now, it will be enough to prove that this abstra
t version of thealgorithm works, and leave until later the details of how these data stru
tures
an be implemented. The inputs to the program are two terms t and u, andthe outputs are a Boolean value ok that indi
ates whether the terms have anyuni�ers, and if they do, a most general uni�er r. As the program is exe
uted,the internal variable S holds a sequen
e of pairs of terms that are waiting to bemat
hed with ea
h other.The sequen
e S is used rather like a sta
k. Sometimes a number of new pairsof terms are `pushed' onto it by the 
ommandS := h(p1; q1); : : : ; (pk; qk)i � S(in whi
h the notation h: : :i denotes a sequen
e with the elements listed, andthe � operator is 
on
atenation of sequen
es). Sometimes the �rst pair in S is`popped' by the 
ommands(p; q) := head(S);S := tail(S):The 
ommandS := S[x  q℄has the e�e
t of repla
ing ea
h pair (y; z) in S by the pair (y[x  q℄; z[x  q℄),in whi
h q has been substituted for x throughout. In the rest of the proof, we
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ation and resolutionfun
tion Unify(t; u: term; var r: substitution): boolean;var S: sequen
e of (term � term);ok : boolean;p; q: term;beginS := h(t; u)i; r := I; ok := true;while ok ^ (S 6= hi) do begin(p; q) := head(S); S := tail(S);if (p is f(p1; : : : ; pk)) ^ (q is g(q1; : : : ; qm)) then beginif f = g thenS := h(p1; q1); : : : ; (pk; qk)i � Selseok := falseendelse if (p is a variable x ) ^ (p 6= q) then beginif (x o

urs in q) thenok := falseelse beginr := r . fx  qg;S := S[x  q℄endendelse if (q is a variable x ) ^ (p 6= q) then beginif (x o

urs in p) thenok := falseelse beginr := r . fx  pg;S := S[x  p℄endendelsef t is a variable and t = u: do nothing gend;Unify := okend; Figure 6.1: Uni�
ation algorithmsay a substitution k uni�es S if y[k℄ = z[k℄ for every pair of terms (y; z) in S.We are now ready to state the invariant that relate the values of the programvariables to the original terms t and u. The idea is that ok is false only if t andu have no uni�er, and if ok is true then any uni�er w of t and u 
an be writtenw = r . k for some substitution k that uni�es S. So r represents the part of a
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ation 59uni�er for t and u that has been dis
overed so far, and S represents the parts oft and u that remain to be mat
hed. More formally stated, the invariant 
onsistsof the following two statements:� If t and u have a uni�er, then ok is true.� If ok is true, then t[w℄ = u[w℄ for any substitution w if and only if there isa substitution k su
h that w = r . k and k uni�es S.We must �rst show that the invariant is true initially. The initialization sets Sto the sequen
e h(t; u)i that 
ontains just the pair (t; u), and r to the identitysubstitution I, and ok to true. In this state, the invariant is true, be
ause asubstitution k uni�es S exa
tly if k uni�es t and u, and so we 
an writew = I . w = r . k;where k = w uni�es S.The main part of the program is repeated until either ok is false, or the sta
kS is empty. Let S0 be the value taken by S at the start of an exe
ution of theloop body. The program removes a pair (p; q) from S, then performs one of thefollowing a
tions:Case 1: If p = f(p1; : : : ; pk) and q = g(q1; : : : ; qm) for some fun
tion symbols f=kand g=m, then the a
tion depends on whether f = g:� If f 6= g, then p and q have no uni�er, so there is no substitution that uni�esS0. The invariant lets us dedu
e that t and u have no uni�er either, so ok
an be set to false.� If f = g (and so k = m), then the program adds the k pairs (p1; q1),: : : , (pk; qk) to S. Any substitution that uni�es p and q also uni�es these kpairs of terms, and vi
e versa, so the invariant is maintained.Case 2: If p = x is a variable and p 6= q, the a
tion depends on whether thevariable x o

urs in q.� If so, then p and q have no uni�er: for any substitution s, the term q[s℄ will
ontain p[s℄ as a proper sub-term, so 
annot be equal to it. The 
ag ok 
anbe made false.� If x does not o

ur in q , the program sets r to r . fx  qg and sets S toS[x  q℄, the result of applying the substitution fx  qg to every pair inS. For any substitution w, the invariant tells us that if w uni�es t and u,then w fa
tors as w = r . k, where k uni�es S0. In parti
ular, k uni�es pand q. It follows that fx  qg . k = k, sin
ek(x ) = p[k℄ = q[k℄ = x [x  q℄[k℄ = (fx  kg . k)(x );



60 Uni�
ation and resolutionand for any variable y di�erent from x ,k(y ) = y [k℄ = y [x  q℄[k℄ = (fx  qg . k)(y ):So w = r . k = r . (fx  qg . k) = (r . fx  qg) . k;and w fa
tors through r . fx  qg just as it did through r. Also, k uni�esS[x  q℄, sin
e for any (y; z) in S,(y[x  q℄)[k℄ = y[fx  qg . k℄ = y[k℄;similarly (z[x  q℄)[k℄ = z[k℄, and y[k℄ = z[k℄ be
ause k uni�es S0.Conversely, if k uni�es S[x  q℄ then fx  qg . k uni�es S0, and so bythe invariant (r . fx  qg) . k uni�es t and u.Case 3: If q is a variable and p 6= q then the situation is symmetri
al with Case 2.Case 4: If p = q = x is a variable, then the program leaves S equal to tail(S0).This maintains the invariant, be
ause any substitution uni�es S exa
tly if ituni�es S0.If the program terminates, either ok is false, or S is empty. If ok is false, the �rstpart of the invariant tells us that t and u have no uni�ers. On the other hand, ifok is true and S is empty, then every substitution k uni�es S. The se
ond partof the invariant then tells us (taking k = I) that the substitution r = r . I is auni�er of t and u. Also, if w is any other uni�er of t and u, then w fa
tors asw = r . k for some substitution k. In short, if the program terminates, then itdoes so in a state where ok is true exa
tly if t and u have a uni�er, and if so, ris a most general uni�er of t and u.Our �nal task is to prove that the program does terminate, whatever the valuesof t and u. Noti
e that 
ase 2 (and by symmetry 
ase 3), if they do not lead toimmediate termination, redu
e by 1 the number of distin
t variables that o

urin S, be
ause p = x o

urs in S0, but x does not o

ur in q, and so does noto

ur in S[x  q℄. Also, 
ases 1 and 4 leave the number of distin
t variablesun
hanged, but redu
e by 2 the total number of fun
tion and symbols in elementsof S. Sin
e the number of symbols in t and u is �nite, these steps 
an only beexe
uted a �nite number of times before S be
omes empty.As we have explained it, the uni�
ation theorem applies to pairs of terms. Lit-erals, however, have the same form as terms, di�ering only in that the outermostsymbol is a relation instead of a fun
tion. An analogous result applies to literals,and the same algorithm 
an be used to 
ompute most general uni�ers for them.
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ation 61EXAMPLELet us apply the uni�
ation algorithm to the literals append(w ;w ; 1:2:1:2:nil)and append(x :a;b;x :
). The algorithm begins withS = h(append(w ;w ; 1:2:1:2:nil); append(x :a;b;x :
))ir = I:In the �rst iteration, it 
ompares the two input literals and �nds they are both
onstru
ted with append=3. So Case 1 applies, and the new state isS = h(w ;x :a); (w ;b); (1:2:1:2:nil ;x :
)ir = I:The next iteration involves 
omparing w with x :a; here Case 2 applies. Be
ausew does not o

ur in x :a, the new 
omponent fw  x :ag is added to r andapplied to the rest of S, givingS = h(x :a;b); (1:2:1:2:nil ;x :
)ir = fw  x :ag:Next, the algorithm 
ompares x :a and b. Here Case 3 applies, and the new stateis S = h(1:2:1:2:nil ;x :
)ir = fw  x :a;b  x :ag:In the next iteration, both p and q are 
onstru
ted with :=2, so Case 1 applies,and the new state isS = h(1;x ); (2:1:2:nil ;
)ir = fw  x :a;b  x :ag:Now the algorithm 
ompares the terms 1 and x . Case 3 applies, and the newvalue of r is obtained by 
omposing the new 
omponent fx  1g with theprevious value. The new value isr = fw  x :a;b  x :ag . fx  1g= fw  1:a;b  1:a;x  1g:Be
ause the substitutions are 
omposed, the value of x has been substituted intothe values re
orded for w and b. The new state isS = h(2:1:2:nil ;
)ir = fw  1:a;b  1:a;x  1g:



62 Uni�
ation and resolutionA �nal appli
ation of Case 3 gives the stateS = hir = fw  1:a;b  1:a;x  1;
  2:1:2:nilg;in whi
h S is empty. At this point, the algorithm terminates with ok true, andthe �nal value of r is a most general uni�er of t and u.The values taken by S at various stages in the example illustrates the subtletyof the argument that the algorithm terminates. The number of pairs in S growsand shrinks, but ea
h step involving a variable eliminates that variable from S,and ea
h other step redu
es the total size of the terms in S. The very �rst stepin
reases the size of S from 1 to 3 pairs, but makes the total size of the termssmaller by eliminating two o

urren
es of the append symbol.6.2 ResolutionThe inferen
e rule of resolution generalizes and 
ombines into one the two rulesof substitution and of ground resolution. Unlike ground resolution, it works on
lauses that may 
ontain variables and produ
es a result that may also 
ontainvariables. Here is the statement of the rule of resolution:From the two 
lausesP :� Q1; : : : ; Qj; : : : ; Qn:and Q :� R1; : : : ; Rm:where there exists a substitution s su
h that Q[s℄ = Qj[s℄, derive the 
lause(P :� Q1; : : : ; Qj�1; R1; : : : ; Rm; Qj+1; : : : ; Qn)[s℄:We 
all this 
lause the resolvent of the two 
lauses on Qj under the substitutions. It is obtained by repla
ing the literal Qj in the body of the �rst 
lause by thewhole body of the se
ond 
lause, then applying the substitution s to the whole
lause. We immediately state and prove the soundness of this rule:PROPOSITIONLet M be an interpretation, and let the three 
lauses above be C1, C2 and C 0respe
tively. If j=M C1 and j=M C2 then j=M C 0.



6.2 Resolution 63Proof: Let g be any ground substitution; we shall show that j=M C 0[g℄. Sin
ej=M C1 and j=M C2, it follows by the substitution rule that j=M C1[s . g℄ andj=M C2[s . g℄. Also, Q[s . g℄ = Q[s℄[g℄ = Qj[s℄[g℄ = Qj[s . g℄, and C 0[g℄ is theground resolvent of C1[s . g℄ and C2[s . g℄ on the literal Qj[s . g℄. Thus by theground resolution rule, j=M C 0[g℄. Sin
e this is true for any ground substitutiong, it follows that j=M C 0.As before, soundness of the resolution rule follows immediately from this propo-sition. In applying the resolution rule, it is natural to 
hoose the substitution sto be a most general uni�er of Qj and Q. In this 
ase, we 
all the resulting 
lausethe resolvent of C1 with C2 on Qj. As we shall show in the next se
tion, theseare the only resolvents we need to 
onsider when sear
hing for a derivation.EXAMPLEHere is the reverse program from Chapter 5:reverse(nil ; nil) :� : (rev:1)reverse(x :a;
) :� reverse(a;b); append(b;x :nil ;
): (rev:2)append(nil ;b;b) :� : (app:1)append(x :a;b;x :
) :� append(a;b;
): (app:2)From this program, we 
an use resolution to derive the 
on
lusionreverse(x1:x2:nil ;x2:x1:nil) :� :in whi
h x1 and x2 are variables. This 
on
lusion 
overs as a spe
ial 
ase the
on
lusion reverse(1:2:nil ; 2:1:nil) :� that we derived from the same program bysubstitution and ground resolution. In fa
t, as we shall see later, we 
an takeany derivation that uses ground resolution and produ
e a derivation that has thesame `shape', but uses general resolution instead, with a 
on
lusion that 
oversthe original 
on
lusion as a spe
ial 
ase.Our derivation begins with variants of (rev.1) and (rev.2):1. reverse(x1:a1;
1) :� (rev.2)reverse(a1;b1); append(b1;x1:nil ;
1):2. append(x2:a2;b2;x2:
2) :� (app.2)append(a2;b2;
2):The head of (2) uni�es with the append literal in the body of (1). The unifyingsubstitution is fb1  x2:a2;b2  x1:nil ;
1  x2:
2g and the resolvent is3. reverse(x1:a1;x2:
2) :� 1, 2, Rreverse(a1;x2:a2); append(a2;x1:nil ;
2):



64 Uni�
ation and resolutionNow we take a fresh variant of (rev.2) and a variant of (rev.1):4. reverse(x4:a4;
4) :� (rev.2)reverse(a4;b4); append(b4;x4:nil ;
4):5. reverse(nil ; nil) :� : (rev.1)The head of (5) uni�es with the reverse literal in the body of (4). The mat
hingsubstitution is fa4  nil ;b4  nilg, and the resolvent is6. reverse(x4:nil ;
4) :� append(nil ;x4:nil ;
4): 4, 5, RNow we take a variant of (app.1):7. append(nil ;b7;b7) :� : (app.1)and resolve it with (6). The mat
hing substitution is fb7  x4:nil ;
4  x4:nilg,and the resolvent is8. reverse(x4:nil ;x4:nil) :� : 6, 7, RNow we 
an form a resolvent between (3) and (8), deriving9. reverse(x1:x2:nil ;x2:
2) :� append(nil ;x1:nil ;
2): 3, 8, RFinally, we resolve (9) with another variant of (app.1):10. append(nil ;b10;b10) :� : (app.1)We obtain the �nal result11. reverse(x1:x2:nil ;x2:x1:nil) :� : 9, 10, RTo a human eye, this derivation seems more 
ompli
ated than the original proofby ground resolution, be
ause ea
h step involves unifying two literals that mayboth 
ontain variables. But the 
ru
ial di�eren
e between this style of derivationand one using ground resolution is that uni�
ation 
an be done by a systemati
algorithm, and there is now no need to use insight in guessing what terms shouldbe substituted for variables to make the proof work.6.3 Derivation trees and the lifting lemmaOur aim in this se
tion is to show that derivations by ground resolution 
an be`lifted' to make derivations by general resolution. This provides a way of showing



6.3 Derivation trees and the lifting lemma 65that general resolution is 
omplete, be
ause every 
onsequen
e of a program 
anbe derived by ground resolution, and this derivation 
an be lifted to use generalresolution. In fa
t, the result is even more useful than this suggests, be
auselifting a derivation preserves its tree stru
ture. This 
omes in useful later, whenwe be
ome interested in the shapes of derivation trees that must be 
onsidered inthe sear
h for answers to a goal. Then, as now, we shall be able to work mostlywith ground resolution, and, as a �nal step, lift our results to the general 
ase.We begin with a more pre
ise de�nition of derivation trees.DEFINITIONThe set of derivation trees for a program T , and the out
ome of ea
h derivationtree are de�ned as follows:1. If C is an instan
e of a 
lause of T , then leaf (C) is a derivation tree without
ome C.2. If D1 and D2 are derivation trees with out
omes C1 and C2, and C is aresolvent of C1 with C2, then resolve(C;D1; D2) is also a derivation treewith out
ome C.Derivation trees are usually drawn like the tree in Figure 5.2, sin
e the 
ow oflogi
al impli
ation then goes down the page in a natural way. The root, labelledwith the �nal out
ome, is at the bottom, and at the top are leaves, ea
h labelledwith an instan
e of a program 
lause. Derivations by substitution and groundresolution are a spe
ial 
ase of derivation trees, in whi
h the leaves are labelledwith ground instan
es of 
lauses from T , and all the resolve nodes 
orrespondto steps of ground resolution. Another spe
ial 
ase o

urs when the leaves arelabelled with variants of program 
lauses rather than more spe
i�
 instan
es,and ea
h resolution step uses the most general uni�er of the two literals involved:we 
all su
h a derivation tree stri
t.The re
ursive de�nition of derivation trees gives a method of proving generalresults about them: we 
an argue by stru
tural indu
tion on derivations. Thisis quite di�erent from an argument by stru
tural indu
tion on the 
lause thatis the out
ome of the derivation. In one 
ase, we are examining the reason whythe out
ome is a 
lause, and in the other, we are examining the reason why itis entailed by the program. This method of proof is used to establish our mostimportant result about derivation trees, the lifting lemma.LEMMA [Lifting lemma℄Let T be a program and D be a derivation tree for T . Then there is a stri
tderivation tree D0 for T su
h that1. D0 has the same shape as D, in the sense that either D and D0 are bothleaves, or they are both 
onstru
ted by resolve, and in that 
ase, the twoimmediate sub-trees of D0 have the same shape as those of D.



66 Uni�
ation and resolution2. Ea
h sub-tree of D has an out
ome that is an instan
e of the out
ome ofthe 
orresponding sub-tree of D0.Proof: We argue by indu
tion on the stru
ture of D. If D is a leaf leaf (C[s℄),where C is a program 
lause and s is a substitution, then we may take D0 to beleaf (C 0), where C 0 is any variant of C.If D has the form resolve(C;D1; D2), and the lifting lemma is true of D1 andD2, then let D01 and D02 be stri
t versions of D1 and D2. We may suppose thatno variable appears in both D01 and D02, sin
e we 
an 
hoose variants of program
lauses to make this so. LetC1 = (P :� Q1; : : : ; Qj; : : : ; Qn)C2 = (Q :� R1; : : : ; Rm)be the out
omes of D01 and D02. By hypothesis, there is a substitution s su
hthat C1[s℄ and C2[s℄ are the out
omes of D1 and D2 respe
tively. The 
lause Cis obtained from C1[s℄ and C2[s℄ by a step of resolution. Suppose it is resolutionon the literal Qj[s℄ under the substitution s0, so Q[s . s0℄ = Qj[s . s0℄, andC = (P :� Q1; : : : ; R1; : : : ; Rm; : : : ; Qn)[s . s0℄:Sin
e Q and Qj have a 
ommon instan
e, they have a most general uni�er r, ands . s0 fa
tors through r, say s . s0 = r . k. Let C 0 be the resolvent of C1 and C2on Qj under r, and let D0 = resolve(C 0; D01; D02). Then D0 has the same shape asD, its out
ome C 0 is obtained by a resolution step under a most general uni�er,and C = C 0[k℄ is an instan
e of C 0. This 
ompletes the proof.6.4 Completeness of resolutionThe lifting lemma leads immediately to 
ompleteness results for general resolu-tion. An example of su
h a result is the refutation 
ompleteness of resolution,that if a goal G 
an be solved by a program T , then there is a refutation ofT [ fGg by resolution.THEOREM [Refutation 
ompleteness of resolution℄Let T be a program and G a goal su
h that T [ fGg j= #. Then there is a stri
tderivation tree for T [ fGg with out
ome # :�.Proof: By 
ompleteness of ground resolution, there is a derivation tree D forT [fGg with out
ome # :�. By the lifting lemma, we 
an �nd a stri
t derivationtree D0 (of the same shape) for T [fGg whose out
ome has # :� as an instan
e.But the 
lause # :� is an instan
e of no 
lause but itself, so D0 is the requiredstri
t derivation tree.



6.4 Completeness of resolution 67Summary� If two terms have a 
ommon instan
e, then they have a most general 
om-mon instan
e, obtained by applying their most general uni�er to either ofthem.� The existen
e of most general uni�ers allows the rules of substitution andground resolution to be repla
ed by a single rule of resolution.� Any derivation that 
an be 
arried out using substitution and ground reso-lution 
an be mimi
ked using the rule of resolution.� Any goal that has a solution for a given program 
an be solved by refutationusing the rule of resolution.Exer
ises6.1 What (if any) are the most general uni�ers of the following pairs of terms?a. f (x ;y ) and f (g(y ); h(z)).b. f (x ;x ) and f (y ; g(y )).
. p(x ; g(x ); h(y )) and p(g(y ); z ; h(a)).6.2 Suppose terms t, u and v are su
h that t and u have a uni�er, and u andv have a uni�er. Prove or disprove the statement that t and v ne
essarily have auni�er.6.3 Let u1, u2, w1, w2 be terms. Consider the 
ompound terms t1 = f(u1; w1)and t2 = f(u2; w2), and suppose that u1 and u2 have a m.g.u. r and w1[r℄ andw2[r℄ have a m.g.u. s. Show the r . s is most general uni�er of t1 and t2.6.4 The 
on
ept of most general uni�er 
an be extended to sets of terms (in-stead of just pairs): we say r is a uni�er of a set S if t1[r℄ = t2[r℄ for all termst1; t2 2 S, and say r is a most general uni�er (m.g.u.) of S if any other uni�er sfa
tors as s = r . k for some substitution k.If r is a m.g.u. of t1 and t2, and s is a m.g.u. of t1[r℄ and t3[r℄, prove that r . sis a m.g.u. of the set ft1; t2; t3g. Prove also that if this set has any uni�ers, thenit has a most general uni�er that 
an be obtained in this way.6.5 [Hard℄a. Let a relation � on terms be de�ned so that t � u if and only if t[s℄ = ufor some substitution s. Prove that � is re
exive and transitive, and �ndan example that shows it is not anti-symmetri
.b. Let �:Term �Term ! Var be a fun
tion that assigns a distin
t variable toea
h pair of terms, and de�ne a binary operation u on terms as follows: if



68 Uni�
ation and resolutionf is a fun
tion symbol of arity k, thenf(t1; : : : ; tk) u f(u1; : : : ; uk) = f(t1 u u1; : : : ; tk u uk);and for all other pairs of terms t and u, t u u = �(t; u). Prove that t u u isa greatest lower bound of t and u under u.
. Explain how uni�
ation 
an be used to �nd a least upper bound for twoterms t and u where one exists.



Chapter 7SLD{resolution and answer substitutions

Resolution is a better 
andidate for ma
hine implementation than ground reso-lution, but it still su�ers from some drawba
ks. One is that there are severalways that resolution might be used to produ
e a refutation of a goal. We mighttry using 
lauses from the program dire
tly on the goal, mat
hing the 
lausehead with literals in the goal, and deriving a new goal, or we might try usingresolution to 
ombine program 
lauses with ea
h other, making new 
lauses that
an be used on the goal.This 
hoi
e of methods makes it appear that a ma
hine sear
hing for a refu-tation must explore a large and 
omplex sear
h spa
e, sometimes 
arrying outresolution steps that do not involve the 
urrent goal at all. But lu
kily this 
om-plexity is an illusion, be
ause (as we shall show in this 
hapter) every refutation
an be re
ast in a `straight-line' form, where every resolution step involves a 
lausetaken dire
tly from the program and the goal that was produ
ed in the previousstep. Derivation trees in straight-line form 
onsist of a long, thin spine, with theoriginal goal at the top and the empty goal at the bottom. All the nodes that arenot on the spine are leaves, labelled with variants of program 
lauses. This meansthat the ma
hine 
an sear
h for a refutation in a systemati
 way by starting withthe goal and repeatedly 
hoosing a program 
lause to resolve with it. There isstill some 
hoi
e here { and in fa
t it is this remaining element of 
hoi
e thatmakes logi
 programs non-deterministi
 { but the 
hoi
e is severely restri
ted.Another apparent sour
e of 
omplexity in sear
hing for a refutation is that agoal may have several literals, and we may 
hoose to solve them in any order.Even with straight-line derivations, we might 
hoose to work on any one of thegoal literals in the �rst resolution step, and subsequently we may 
hoose fromboth the other literals of the original goal and the new literals introdu
ed by pre-vious resolution steps. It appears that, in order to su

eed in �nding a refutation,we might have to 
onsider the literals in a parti
ular order, and even perhapsinterleave steps in the solution of one literal with the solution of other ones.Again, this 
omplexity is only apparent, be
ause every straight-line refutation69
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an be rearranged until the literals are solved in a predetermined order. To keepthe dis
ussion simple, we shall 
onsider only the stri
t left-to-right order that isused by Prolog, but in fa
t the same argument shows that any 
hoi
e of order ispermissible.It is important to 
ut down the sear
h spa
e of derivations that a ma
hinemust examine, be
ause this makes exe
ution of logi
 programs more eÆ
ient. Ifwe 
an show that every goal that has a refutation at all has one in a 
ertainrestri
ted form, then we 
an build an exe
ution me
hanism that 
onsiders onlyrefutations in that restri
ted form. Also, if the form of refutations is restri
ted,it may be possible to use more eÆ
ient data stru
tures to represent derivationsinside the implementation. The Prolog approa
h, in whi
h derivations have astraight-line form and literals are 
onsidered in a �xed order, is known as SLD{resolution. It allows a parti
ularly simple and eÆ
ient form of sear
h, and allowsderivations to be represented by a simple sta
k-like data stru
ture similar to theone used in implementing other programming languages.The �rst part of this 
hapter treats SLD{resolution in more detail, showingthat resolution remains 
omplete when we adopt the restri
tions of straight-lineform and a �xed order of solving literals. The se
ond part dis
usses a methodfor extra
ting an answer substitution from a refutation, so that solving a goaldoes not yield just a simple `yes' or `no', but also spe
i�
 values of variables thatmake the literals of the goal true if possible. Answer substitutions extra
ted bythis method are what Prolog displays when it has su

eeded in solving a goal.We shall prove that the answers extra
ted from refutations are 
orre
t, and thatevery 
orre
t answer 
an be obtained in this way.7.1 Linear resolutionDEFINITIONWe say a derivation tree for an augmented program T [ fGg is linear if eitherit is a leaf, or it is of the form fork(C;D1; D2), where D1 is linear and D2 is aleaf.A linear tree looks like Figure 7.1. The 
lauses Ci are (instan
es of) program
lauses, and the 
lauses C 0i are derived by a resolution step that has a program
lause as its right-hand input. Obviously, the head of C 0i+1 is an instan
e of thehead of C 0i, so if a linear derivation is a
tually a refutation, then all the 
lausesC 0i along the spine are goals, C0 is an instan
e of the original goal G, and C 0n isthe empty goal.We are now going to show how any refutation that uses ground resolution
an be re
ast in linear form. We shall then use the lifting lemma to argue thatrefutations using general resolution 
an also be put into linear form. The proofdepends on making moves that begin with a derivation that is not linear and endwith one that is a little bit more linear. Any non-linear derivation has at least
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C 0n�1 CnC 0n

C1C0 C 01 C2C 02 C3C 03

Figure 7.1: Linear derivation treeone fork node that is not on the spine, as shown in Figure 7.2. The spine of thederivation tree runs through C1 and C5, and C4 is a fork node that is not on thespine. The wavy-topped triangles labelled D1, D2 and D3 may be any derivationsthat have out
omes C1, C2 and C3 respe
tively.If Figure 7.2 represents a valid derivation, then so does Figure 7.3. Thisderivation 
ontains the same 
lauses C1, C2 and C3 and has the same out
omeC5, but it has a di�erent 
lause C4 inside. Suppose the 
lauses in the tree ofFigure 7.2 are as follows:C1 = (P :� Q1; : : : ; Qj; : : : ; Qn)C2 = (Q :� R1; : : : ; Rk; : : : ; Rm)C3 = (R :� S1; : : : ; Sp);with C4 obtained from C2 and C3 by resolving on R = Rk:C4 = (Q :� R1; : : : ; Rk�1; S1; : : : ; Sp; Rk+1; : : : ; Rm);
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D1 D2 D3C2 C3C4C5C1
Figure 7.2: A non-linear derivation tree
D1 D2 D3C2C1 C 04 C5 C3

Figure 7.3: Derivation tree after reshaping



7.2 SLD{resolution 73and C5 obtained from C1 and C4 by resolving on Q = Qj:C5 = (P :�Q1; : : : ; Qj�1; R1; : : : ; Rk�1;S1; : : : ; Sp; Rk+1; : : : ; Rm; Qj+1; : : : ; Qn):Remember that we are using ground resolution.In the new tree, C 04 is obtained by resolving the 
lauses C1 and C2 on Q = Qj:C 04 = (P :� Q1; : : : ; Qj�1; R1; : : : ; Rk; : : : ; Rm; Qj+1; : : : ; Qn);then C5 is obtained by resolving C 04 with C3 on R = Rk, with the same result asbefore. Thus Figure 7.3 shows a valid derivation.A move like this is possible whenever a tree 
ontains a fork node that is noton the spine, and it redu
es by one the number of su
h nodes. So by makinga sequen
e of moves, we 
an redu
e any derivation tree to linear form. Moreformally, the move is the basis for an argument that every 
lause that 
an bederived from the augmented program by ground resolution 
an also be obtainedby linear ground resolution The argument is by mathemati
al indu
tion on thenumber of o�-spine fork nodes.The refutation 
ompleteness theorem for ground resolution tells us that anygoal that is false in every model of a program has a refutation from the programby ground resolution. Combining this with the result we have just proved tellsus that su
h a goal also has a linear ground refutation. A
tually, we are moreinterested in general resolution than in ground resolution, so we now apply thelifting lemma. If T [ fGg j= # then (by refutation 
ompleteness of groundresolution) there is a derivation by ground resolution of # :� from T [ fGg. Aswe have just argued, this derivation may be put into linear form. Finally, we applythe lifting lemma: there is a stri
t derivation tree with the same shape as thislinear ground derivation (so it is also linear), su
h that ea
h 
lause in the groundderivation is an instan
e of the 
orresponding 
lause in the stri
t derivation.In parti
ular, the out
ome # :� of the ground derivation is an instan
e of theout
ome of the stri
t derivation. But this goal is an instan
e of nothing ex
eptitself, so the stri
t derivation is also a refutation of T [ fGg.7.2 SLD{resolutionAt ea
h step in 
onstru
ting a linear refutation, we must 
hoose whi
h literal inthe goal to mat
h with program 
lauses. We now show that this 
hoi
e does notmatter, in the sense that if there is a refutation that takes the literals in anyorder, then there is one that takes them in left-to-right order. In other words,linear resolution remains refutation 
omplete if we further restri
t it to operateon goal literals from left to right. We 
all a refutation that obeys this furtherrestri
tion an SLD{refutation. (SLD stands for `Sele
ted-literal Linear resolution
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G1 C1G2 C2G3

Figure 7.4: A fragment of a linear treefor De�nite 
lauses', and `de�nite 
lauses' are just Horn 
lauses under anothername.)Again, we use an argument based on a move that repla
es a bad fragment ofderivation tree with a better one, and again we work with ground resolution �rstand then appeal to the lifting lemma, but the argument is a little more subtle thistime. The move begins with a fragment of a linear tree as shown in Figure 7.4;G1, G2 and G3 are goals, and C1 and C2 are instan
es of program 
lauses. Letus suppose that the resolution step that derives G2 from G1 and C1 does not usethe �rst literal of G1, but that the resolution step that derives G3 from G2 andC2 does use the �rst literal of G2. Let the original goal and 
lauses beG1 = (# :� P1; P2; : : : ; Pk; : : : ; Pn)C1 = (P :� Q1; : : : ; Qm)C2 = (P 0 :� R1; : : : ; Rp):Let G2 be obtained from G1 and C1 by resolving on P = Pk where k > 1:G2 = (# :� P1; P2; : : : ; Pk�1; Q1; : : : ; Qm; Pk+1; : : : ; Pn):Be
ause k > 1, the �rst literal in G2 is identi
al with that in G1. Let G3 beobtained by resolving with C3 on this literal P 0 = P1:G3 = (# :� R1; : : : ; Rp; P2; : : : ; Pk�1; Q1; : : : ; Qm; Pk+1; : : : ; Pn):



7.2 SLD{resolution 75Our move ex
hanges the two resolution steps, so that now the �rst step resolvesG1 with C3 on P 0 = P1 to obtain the goalG02 = (# :� R1; : : : ; Rp; P2; : : : ; Pk; : : : ; Pn):Then the se
ond step resolves this with C2 on P = Pk to obtain the same out-
ome G3 as before.What does a move like this a
hieve? It moves the `good' resolution step
loser to the top of the derivation tree, and pushes the `bad' step further down.Suppose we have a linear refutation of T [ fGg that does not obey left-to-rightorder. Let G be the goal # :� P1; P2; : : : ; Pm. At the top of the derivationtree is G, and at the bottom is the empty goal # :�. Sin
e all the literals ofG have disappeared by the time we rea
h the bottom of the tree, there mustbe some step that involves resolution on the leftmost literal P1 of G. Repeatedmoves 
an be used to bring this resolution step to the top of the tree, giving arefutation that begins with a `good' step, and these moves do not 
hange theheight of the tree.Now 
onsider the rest of the tree, beginning with the out
ome G1 of the �rst(now good) step. It is a linear ground refutation of G1, and it is one step shorterthan the original refutation of G0. This suggests an indu
tive argument; we 
anprove by indu
tion on n that every linear refutation of length n 
an be arrangedto obey left-to-right order. The base 
ase n = 0 is trivial, be
ause the 0-stepderivation of # :� from itself is already an SLD{refutation. For the step 
ase,we �rst bring the right resolution step to the top of the tree by using a numberof our moves, then apply the indu
tion hypothesis to all but the �rst step of thetree. This gives an SLD{refutation of G1, and putting ba
k the �rst step gives anSLD{refutation of G. Finally, this result extends to general resolution throughthe lifting lemma.As we shall see later, SLD{resolution 
an be implemented in an espe
iallyeÆ
ient way using a sta
k to hold the literals in the 
urrent goal. At ea
hresolution step, we pop a literal from the sta
k, mat
h it with the head of aprogram 
lause by uni�
ation, and if this is su

essful, push instan
es of theliterals in the body of the 
lause. This is the method used by Prolog.Although this method 
an be implemented eÆ
iently, and every goal has anSLD{refutation if it has any refutation at all, the sear
h for a refutation 
ansometimes be mu
h more diÆ
ult with SLD{resolution than if the literals aretaken in a more `intelligent' order. For example, 
onsider using the 
lausegrandparent(a;
) :� parent(a;b); parent(b;
):to solve the goal # :� grandparent(x ; fred). Expanding the grandparent literalgives # :� parent(a;b); parent(b; fred):



76 SLD{resolution and answer substitutionsA stri
tly left-to-right strategy would 
ontinue by solving the leftmost literalparent(a;b). E�e
tively, the strategy would be to enumerate all pairs (a;b)where a is a parent of b, and 
he
k ea
h of them to see if b is a parent offred . This is mu
h less e�e
tive than the alternative strategy of solving theliteral parent(b; fred) �rst (it 
an have at most two solutions), then looking forsolutions of parent(a;b) on
e the value of b is known. The left-to-right strategyfails be
ause it leads us to solve a literal that 
ontains no information that isspe
i�
 to the goal being solved.For this goal, it would be better to write the de�nition of grandparent in thelogi
ally equivalent formgrandparent(a;
) :� parent(b;
); parent(a;b):sin
e the left-to-right order would then 
hoose the 
orre
t literal to solve �rst.But of 
ourse, that would not be any good if the goal were# :� grandparent(mary ;x ):In the absen
e of an intelligent sele
tion strategy, Prolog programmers sometimesneed to write several versions of a de�nitions, ea
h working well with a parti
ularpattern of known and unknown arguments. Often, however, the variety of pat-terns that a
tually o

urs in the exe
ution of a program is not very great, and asingle ordering of literals will work for all of them.7.3 Sear
h treesWe have shown that it is suÆ
ient to use linear derivations, and to adopt theProlog strategy of working from left to right. The only remaining 
hoi
e we havein 
onstru
ting a refutation for a goal is whi
h 
lause to use in ea
h step. Thepossible 
hoi
es 
an be shown as a sear
h tree, in whi
h the original goal is shownat the root, and the 
hildren of ea
h node are the goals that 
an be derived fromit by using various 
lauses in a single step of SLD{resolution.As an example, Figure 7.5 shows the sear
h tree for the goal# :� append(a;b; 1:2:nil):with the usual two 
lauses for append . Ea
h ar
 is labelled with the 
lause andmat
hing substitution that is used. Thus either of the 
lauses may be used on theoriginal goal. The 
lause (app.1) leads to an immediate solution, with a = niland b = 1:2:nil , and the 
lause (app.2) has a mat
hing substitution with a = 1:a1and leads to the new goal # :� append(a1;b; 1:nil). The new goal generated byusing (app.2) 
an itself be resolved with either 
lause, leading to the solutionsa = 1:nil , b = 2:nil and, after another step, a = 1:2:nil , b = nil .



7.3 Sear
h trees 77# :� append(a;b; 1:2:nil):
# :� : # :� append(a1;b; 2:nil):

# :� : # :� append(a2;b;nil):
# :� :

(app.1), a = nil , b = 1:2:nil (app.2), a = 1:a1
(app.1), a1 = nil , b = 2:nil (app.2), a1 = 2:a2

(app.1), a2 = b = nil
Figure 7.5: Sear
h tree for an append goalIn this sear
h tree, all the bran
hes are �nite and end in the empty goal. Moretypi
al sear
h trees have bran
hes that end in failure, that is, a goal that is notempty but mat
hes no program 
lause. They may also have in�nite bran
hesthat 
orrespond to in�nite sequen
es of resolution steps that never lead to failureor su

ess.Here is a program whose sear
h tree has bran
hes that end in failure, and alsoin�nite bran
hes that 
an be followed forever. It des
ribes the problem of makinga journey on a small airline serving European 
apitals (see Figure 7.6 for a map).
ight(london; paris) :� :
ight(london; dublin) :� :
ight(paris; berlin) :� :
ight(paris; rome) :� :
ight(berlin; london) :� :journey(a;a) :� :journey(a;
) :� 
ight(a;b); journey(b;
):The �rst few 
lauses de�ne a relation 
ight(a;b) that is true if there is a dire
t
ight from a to b with seats available. The last two 
lauses de�ne a relationjourney(a;b) that is true if it is possible to make a journey of zero or more
ights from a to b. One possible journey begins and ends at a without taking



78 SLD{resolution and answer substitutionsDublin
London

Berlin
Paris

RomeFigure 7.6: Map of airline 
ightsany 
ights. Other journeys begin with a 
ight from a to another 
ity b, and
ontinue with a further journey from b to the �nal destination 
 . Figure 7.7shows the sear
h tree when this program is used to exe
ute the goal# :� journey(london; rome):To save spa
e, the 
ity names are represented by their initial letters, d , l , r , et
.The diagram shows three �nite bran
hes and an in�nite bran
h.The leftmost bran
h (1) ends in failure. It 
orresponds to a de
ision to 
y �rstfrom London to Dublin. Sin
e there are no available 
ights out of Dublin, thisleads to immediate failure. The next bran
h (2) ends in su

ess, and 
orrespondsto 
ying from London to Paris, then from Paris to Rome. Next to it is a failurebran
h (3) that represents an attempt to 
y from London to Rome via Paris,then 
ontinue on a 
ir
ular tour that ends in Rome. Sin
e Rome (like Dublin) isa dead end, the bran
h ends in failure. Finally, bran
h (4) represents a de
isionto 
y round the 
ir
uit London{Paris{Berlin{London. After doing this, we areleft with the same problem we started with, namely the goal# :� journey(london; rome):The sear
h tree below this point is a 
opy of the entire sear
h tree, whi
h istherefore in�nite. The whole sear
h tree 
ontains an in�nite number of su
-
ess nodes, ea
h representing a sequen
e of 
ights that goes round the 
ir
uit



7.3 Sear
h trees 79# :� journey(l ; r):# :� 
ight(l ;x1); journey(x1; r):x1 = d x1 = p# :� journey(d ; r):(1) # :� journey(p; r):# :� 
ight(p;x2); journey(x2; r):x2 = r x2 = b
# :� :(2) # :� 
ight(r ;x3); journey(x3; r):(3)

# :� journey(b; r):# :� journey(r ; r): # :� 
ight(b;x4); journey(x4; r):x4 = l# :� journey(l ; r):(4)Figure 7.7: Sear
h tree for # :� 
ight(london; rome).a di�erent number of times before �nally ending in Rome. It also 
ontains anin�nite bran
h that 
orresponds to 
ying round the 
ir
uit forever.What will happen in pra
ti
e when we try to solve a goal that has an in�nitesear
h tree? The answer depends on the sear
h strategy that is used to explorethe tree. Prolog's sear
h strategy is depth-�rst . It 
hooses one 
hild of the rootnode, and explores that 
hild and all its des
endants before 
onsidering any of itsother 
hildren. In other words, the sear
h is a pre-order traversal of the sear
htree. In Prolog, the order of visiting the 
hildren of a node 
orresponds to theorder in whi
h 
lauses appear in the program. Thus, in the example, a 
ight from



80 SLD{resolution and answer substitutionsLondon to Dublin will be 
onsidered before a 
ight to Paris, be
ause the 
lause
ight(london; dublin) :� :appears earlier in the program than the 
lause
ight(london; paris) :� :As we shall see in the last part of this book, depth-�rst sear
h 
an be im-plemented easily and eÆ
iently, be
ause the entire state of the sear
h 
an berepresented by a single a
tive path in the tree. However, depth-�rst sear
h spoilsthe 
ompleteness of SLD{resolution. If the sear
h tree 
ontains an in�nite bran
h,then depth-�rst sear
h will never rea
h any node that 
omes after that bran
hin the sear
h order. That is, any node that would be to the right of the in�nitebran
h in a diagram of the tree. This means that a sear
h tree may 
ontain oneor more su

ess nodes, but depth-�rst sear
h may not �nd them be
ause it getsstu
k on an in�nite bran
h �rst.In the example, the existen
e of an in�nite bran
h does not prevent depth-�rst sear
h from �nding the solutions, be
ause the in�nite bran
h is the rightmostone in the tree. This is just a fortunate 
oin
iden
e, and a di�erent order forthe 
lauses in the 
ight relation would prevent the Prolog sear
h strategy from�nding any solutions. For some, programs, there may be no �xed order for the
lauses that allows depth-�rst sear
h to �nd solutions.We 
all a sear
h strategy fair if ea
h node in the sear
h tree is visited even-tually, even if the sear
h tree has in�nite bran
hes. An example of a fair sear
hstrategy is breadth-�rst sear
h, whi
h visits all the nodes on ea
h level of thetree before beginning to visit the nodes on the next level. Thus breadth-�rstsear
h visits the original goal, then all the goals that 
an be derived from it byone resolution step, then all the goals that 
an be derived in two resolution steps,and so on. For any node in the sear
h tree, there are only �nitely many nodesthat 
ome before it in this ordering, so the node will eventually be visited.Depth-�rst sear
h is not fair, be
ause nodes that are to the right of an in�nitebran
h are never visited, no matter how long the sear
h 
ontinues. One solu-tion to this problem is to abandon depth-�rst sear
h in favour of a fair sear
hstrategy su
h as breadth-�rst sear
h. Another solution, more pra
ti
al for Prologprogrammers, is to rewrite the program so that its sear
h spa
e no longer 
ontainsin�nite bran
hes. We shall look at te
hniques for doing this for graph-sear
hingprograms in Chapter 9.7.4 Answer substitutionsSo far, our proof methods have been rather unsatisfying as ways of exe
uting logi
programs, be
ause they have enabled us to say whether a goal 
an be solved, but



7.4 Answer substitutions 81have not given any information about what values for the variables lead to asolution. This information is impli
itly present in the unifying substitutions thatare 
omputed as part of resolution, and we now look at ways of extra
ting theinformation from a refutation as an `answer substitution', as Prolog does whenit displays the answer to a goal.DEFINITIONLet T be a program and G = (# :� P1; : : : ; Pn) be a goal. An answer substitutionfor G with respe
t to T is a substitution s su
h that T j= Pi[s℄ for ea
h i.The idea is that 
omposing all the uni�ers along the spine of an SLD{refutationwill give us an answer substitution. A
tually, this `extra
ted' substitution isnot quite what we want, be
ause it may involve variables that were not in theoriginal goal, but were introdu
ed from a program 
lause. So we de�ne also thesubstitution that is `
omputed' by a refutation, in whi
h these extra variableshave been removed.DEFINITIONThe substitution s extra
ted from a derivation tree D for a program T is de�nedas follows:� If D = leaf (C[w℄), where C is a program 
lause and w is a renaming, thens = w.� IfD = fork(C;D1; D2), then s = s1.r, where s1 is the substitution extra
tedfrom D1 and r is the unifying substitution of the resolution step whi
hderived C.The substitution 
omputed by a refutation D of a goal G is the substitutions � vars(G), where s is the substitution extra
ted from D.In this de�nition, the notation s �A stands for the restri
tion of a substitution sto a set of variables A. It is de�ned by(s �A)(x ) = � s(x ); if x 2 Ax ; otherwiseThus s � A is the substitution that agrees with s on variables in the set A, andleaves other variables un
hanged. The substitution extra
ted from a refutationD is thus the 
omposition of all the uni�ers along the leftmost bran
h of D,restri
ted to the set of variables that a
tually appear in the goal G at its top.Given these de�nitions, two questions naturally arise:� Are the substitutions 
omputed by refutations of a goal G 
orre
t answersubstitutions for G?



82 SLD{resolution and answer substitutions� Can every 
orre
t answer substitution for G be obtained as the substitution
omputed by a refutation of G?These questions 
orrespond 
losely to the 
on
epts of soundness and 
ompletenessof inferen
e rules. The �rst question is answered positively by the followingtheorem:THEOREM [Answer 
orre
tness of resolution℄Let D be a refutation of T [ fGg, and let r be the substitution 
omputed by D.Then r is an answer substitution for G with respe
t to T .Proof: We shall show by indu
tion that the substitution s extra
ted from D isan answer substitution for G. Sin
e r agrees with s on the variables that a
tuallyo

ur in G, the theorem follows from this. For simpli
ity, we assume that thetop node of the SLD{refutation D is leaf (G) (with no renaming).We argue by indu
tion on the length of D. If D has length zero, then it
onsists of the single node leaf (# :�) and G is the empty goal # :�. For thisgoal, any substitution is (va
uously) an answer substitution. If D has non-zerolength, suppose that the result holds for all shorter SLD{refutations. Considerthe �rst resolution step in D, and suppose it 
ombines the goalG = (# :� P1; : : : ; Pn)with the 
lauseC = (P :� Q1; : : : ; Qm)by mat
hing P and P1 with uni�er r. The out
ome of this step is the goalG0 = (# :� Q1; : : : ; Qm; P2; : : : ; Pn)[r℄:The remainder of the refutation D is an SLD{refutation of G0 one step shorterthan D, so we may assume that the substitution s0 extra
ted from it is an answersubstitution for G0. The substitution extra
ted from D itself is s = r . s0.Now let M be a model of T , and let g be any ground substitution. We areassuming that s0 is an answer substitution for G0. Thusj=M Qj[r℄[s0℄[g℄ for all j, 1 � j � m,and soj=M Qj[s℄[g℄ for all j, 1 � j � m.Be
ause j=M C, and so by substitution j=M C[s℄, it follows that j=M P [s℄[g℄, orequivalently that j=M P1[s℄[g℄. Also, j=M Pi[s℄[g℄ for 2 � i � n. Sin
e M and g



7.4 Answer substitutions 83are arbitrary, we may 
on
lude that T j= Pi[s℄ for ea
h i. Hen
e s is an answersubstitution for G.So the answers 
omputed by refutations are 
orre
t. Now for the other question:Can all 
orre
t answers be obtained in this way? The answer is a quali�ed `yes'.If s is an answer substitution for G, then there is a refutation of G that 
omputesan answer substitution r su
h that s = r . k for some k. If r is an answersubstitution, so is r . k for any k, so this is a

eptable.THEOREM [Answer 
ompleteness of resolution℄Let s be an answer substitution for a goal G with respe
t to a program T . Thenthere is an SLD-refutation D of T [ fGg su
h that the substitution r 
omputedby D satis�es s = r . k for some substitution k.Proof: Let vars(G) = fv1; : : : ;vng, and let the alphabet of T and G be L.Invent n new 
onstant symbols a1, : : : , an not in L. Let m be the substitutionfv1  a1; : : : ;vn  ang, and 
onsider the ground goal G[s.m℄ over the extendedalphabet L [ fa1; : : : ; ang.Let G = (# :� P1; : : : ; Pn). Be
ause s is an answer substitution for G, itfollows that j=M Pi[s℄ and so j=M Pi[s . m℄ for ea
h i and ea
h model M ofT , and so T [ fG[s . m℄g j= #. Hen
e by refutation 
ompleteness, there is anSLD{refutation D0 of G[s .m℄. Be
ause G[s .m℄ is a ground goal, D0 
omputesthe identity substitution. The only pla
es that the new 
onstants ai appear inthe refutation are along the spine, be
ause these 
onstants do not appear in any
lause of the program T . So we 
an repla
e them by the original variables vi toobtain an SLD{refutation D of G[s℄ that also 
omputes the identity substitution.The refutation D begins with G[s℄, an instan
e of G. Now apply the liftinglemma to obtain an SLD{refutation D0 of G that has the same length as D. Infa
t, the refutation D0 
onstru
ted in the proof of the lifting lemma 
omputes asubstitution r0 su
h that s . r = r0 . k, where r is the substitution 
omputed byD (a
tually r = I) and k is another substitution. This fa
t 
an be proved byindu
tion on the length of D. We 
on
lude that s = r0 . k as required.Summary� Any derivation from a program 
an be put into linear form, in whi
h oneof the inputs to ea
h resolution step is a 
lause taken from the program.� A refutation that is in linear form 
an be rearranged so that subgoals aresolved in left-to-right order.� From any refutation, we 
an extra
t a substitution that answers the goal.The substitutions that 
an be obtained in this way 
orrespond exa
tly withthe 
orre
t answers to the goal.



84 SLD{resolution and answer substitutionsExer
ises7.1 Redu
e the derivation of reverse(x1:x2:nil ;x2:x1:nil) given in Chapter 6 tothe form of a derivation by SLD{resolution.7.2 De�ne a relation palin(a) that is true of the list a is a palindrome, thatis, if it reads the same ba
kwards as forwards. For example, 1:2:3:2:1:nil is apalindrome, but 1:2:3:2:nil is not. Show the sequen
e of goals that are derivedin a su

essful exe
ution of the goal # :� palin(1:x :y :z :nil). What answersubstitution is 
omputed?



Chapter 8Negation as failure

So far, we have treated in our theory only logi
 programs that are 
omposedentirely of Horn 
lauses, and have disallowed the use of the 
onne
tive not.In Chapter 2, we saw that negation was useful in expressing the operation ofrelational di�eren
e, and { unlike the `or' 
onne
tive involved in relational union{ it 
annot be avoided by rewriting the program. We therefore need to extendour theory to 
over negation, and we shall do so using the te
hnique of negationas failure. The idea is that, at least for some formulas P , if we attempt to proveP and fail to do so, it is reasonable to dedu
e that notP is true.In the next se
tion, we apply this idea to the situation where goals may 
ontainuses of not, although the logi
 program itself 
ontains only pure Horn 
lauses.Se
tion 8.2 extends this to allow not to be used in the bodies of program 
lausesalso. Finally, Se
tion 8.3 explains how our semanti
 theory 
an be extended to
over negation.8.1 Negation in goalsThe goal # :� member(5; 1:2:3:4:nil) asks whether 5 is a member of the list1:2:3:4:nil . Prolog exe
utes this goal by 
omparing 5 with ea
h number inthe list and, �nding that it is di�erent from ea
h of them, gives the answer`no'. This suggests a method for exe
uting goals that involves negation, su
has # :� notmember(5; 1:2:3:4:nil): delete the not and exe
ute the plain goalthat results. If Prolog answers `no' for the plain goal, give the answer `yes'for the negated goal, and if Prolog answers `yes' for the plain goal, give theanswer `no' for the negated goal. This method also gives the 
orre
t answerfor a goal like # :� notmember(2; 1:2:3:4:nil) that ought to fail. Prolog �ndsthat 2 is a member of 1:2:3:4:nil , so it gives the answer `yes' to the plain goal# :� member(2; 1:2:3:4:nil). Our method then tells us to answer `no' to thenegated goal. 85



86 Negation as failureThis method is 
alled negation as failure. It relies on the 
ompleteness of theresolution method used to exe
ute goals. If the goal has an answer, then we knowthat resolution will �nd it. Consequently, when resolution fails to �nd an answer,we may dedu
e that there is none, and thus that the literal in the goal is falsein the least model M0 of the program. Thus negation as failure interprets notwith respe
t to the least model, and relies on the 
losed world assumption, thatthe literals that are true in the intended use of the program are exa
tly the onesthat are true in its least model, and thus may be derived from it by resolution.Negation as failure works properly only for ground literals. If exe
ution ofa non-ground goal # :� P su

eeds, we may 
on
lude only that some groundinstan
e of P is true in the least modelM0, and not that every ground instan
e istrue; thus it would not be valid to 
on
lude that every ground instan
e of notPis false, and doing so 
an lead to wrong answers. For example, 
onsider the goal# :� notmember(x ; 1:2:3:4:nil);x = 5: (�)We expe
t this goal to have the answer x = 5, be
ause 5 is not a memberof the list 1:2:3:4:nil . But if negation as failure is used to exe
ute this goal,together with Prolog's left-to-right strategy, then the following is what happens:the subgoal notmember(x ; 1:2:3:4:nil) is the �rst to be exe
uted. Negation byfailure requires that we exe
ute the goal # :� member(x ; 1:2:3:4:nil) in its pla
eand reverse the result. Now this goal has several solutions, in
luding x = 1, sothe goal su

eeds, and we make the negated literal fail. Consequently, the wholegoal (�) fails, although we expe
ted it to su

eed.We 
ould try exe
uting the goal# :� x = 5;notmember(x ; 1:2:3:4:nil):instead. This time, it is the subgoal x = 5 that is exe
uted �rst. It su

eeds,setting x to 5 and leaving the new goal# :� notmember(5; 1:2:3:4:nil):As we have seen, this goal su

eeds under negation as failure, and the �nal resultis the 
orre
t answer x = 5. In Prolog, it is the programmer's responsibility toensure that any negated literal has be
ome a ground literal before it is sele
tedfor exe
ution. As the program is written, the literal may 
ontain variables, butthese variables must have been given ground values by the rest of the programbefore the literal is rea
hed in the usual left-to-right exe
ution order.Be
ause they must be
ome ground before they begin to be exe
uted, negatedliterals 
an never 
ontribute anything to the answer substitution of a program,but 
an only be used to test values found elsewhere. This pla
es a restri
tionon the use of negated literals in programs, but it is one that is satis�ed whennegation is used to 
ompute the di�eren
e of two relations as in the database



8.2 Negation in programs 87queries of Chapter 2. For example, the following goal asks for programs that areused by Mike, but not by Anna on the same ma
hine:# :� uses(mike; program ;ma
hine);not uses(anna; program ;ma
hine):If this goal is exe
uted in left-to-right order, then a su

essful attempt to solve the�rst subgoal uses(mike; : : :) results in spe
i�
 values for the variables programand ma
hine , and the fun
tion of the subgoal not uses(anna; : : :) is to apply afurther test to these known values.8.2 Negation in programsSo far we have restri
ted negation to goals that are ground literals, but it is alsouseful to write program 
lauses that have negated literals in their bodies. Indatabase queries, this allows us to de�ne views using relational di�eren
e, andthen use these views in formulating further views and queries.As another example of negation inside program 
lauses, here is a program thatde�nes the relation subset(a;b) that holds between known lists a and b if everymember of a is also a member of b:subset(a;b) :� notnonsubset(a;b):nonsubset(a;b) :� member(x ;a);notmember(x ;b):The relation nonsubset(a;b) holds if a is not a subset of b. This is so exa
tly ifthere is a member x of a that is not a member of b. The relation subset(a;b)holds exa
tly if the relation nonsubset(a;b) does not hold.This program 
an be used to 
he
k that one list is a subset of another, and itdoes so by 
he
king the members one by one. For example, 
onsider the goal# :� subset(2:4:nil ; 1:2:3:4:nil): (1)We �rst expand the subset literal to obtain# :� notnonsubset(2:4:nil ; 1:2:3:4:nil): (2)Now we use negation as failure, and try instead to solve the goal# :� nonsubset(2:4:nil ; 1:2:3:4:nil): (3)whi
h is immediately expanded into# :� member(x ; 2:4:nil);notmember(x ; 1:2:3:4:nil): (4)



88 Negation as failureThe exe
ution 
ontinues by solving the �rst subgoal member(x ; 2:4:nil) to givethe solution x = 2. We next try to solve the goal# :� notmember(2; 1:2:3:4:nil): (5)As we saw in the pre
eding se
tion, this goal fails, and this means that x = 2is not a solution of (4). We try again with the other solution to the subgoalmember(x ; 2:4:nil), that is, x = 4. This leads to the goal# :� notmember(4; 1:2:3:4:nil): (6)whi
h also fails. This exhausts the members of 2:4:nil , so the goal (4) fails, andso does (3). So by negation as failure, (2) su

eeds, and so does the original goal(1). Thus negation as failure exe
uted the goal (1) by 
he
king that ea
h memberof the list 1:2:nil is also a member of 1:2:3:4:nil.For the exe
ution of a subgoal notP to work properly, it is ne
essary that Pshould have be
ome a ground literal before negation as failure is applied to it, forthe same reason that negation as failure 
ould only be used for ground literals ingoals. In the subset example, if lists a and b are known, then solving the subgoalmember(x ;a) makes x known, and the negated subgoal notmember(x ;b) isthen ground, so negation as failure 
an be used. If either of the lists a or b werenot 
ompletely known, however, the negated subgoal would not be
ome ground,and negation as failure 
ould not soundly be used.It is worth 
omparing the program for subset with an alternative de�nitionthat uses re
ursion instead:subset(nil ;b) :� :subset(x :a;b) :� member(x ;b); subset(a;b):Unlike the program that uses negation, this program 
an be used to generatesubsets of a given set, and unlike the other program, this one depends on thefa
t that sets are represented by lists. The program with negation depends onlyon the existen
e of a member relation de�ned on sets, and it would 
ontinue towork without 
hange if sets were represented by (say) binary trees instead oflists, provided a suitable member relation were de�ned.8.3 Semanti
s of negationThe semanti
s of programs that in
lude negation poses a problem. Unlike pro-grams without negation, they do not ne
essarily have least models in the sense ofSe
tion 5.3. Consider, for example, the program that 
ontains the single 
lausep :� not q : (�)



8.3 Semanti
s of negation 89Here p and q are relation symbols with no arguments. This has a model in whi
hp is true and q is false, and also a model where p is false and q is true. Neitherof these models is smaller than the other, and their `interse
tion' { in whi
h bothp and q are false { is not a model.One solution to this problem is to 
onsider only strati�ed programs, wherethe relations 
an be separated into layers, with relations in higher layers beingde�ned in terms of the ones in lower layers. Mutual re
ursion is allowed amongthe relations in any layer, but any use of negation must refer to a relation in alower layer than the one being de�ned. For example, the program for subset isstrati�ed: member is in the lowest layer, nonsubset (whi
h uses notmember) ina layer above it, and subset (whi
h uses notnonsubset) in a third layer.A strati�ed program has a natural model that is built up as follows: the �rstlayer 
ontains no negation at all, so we take the least model of that. Now wetreat relations from the �rst layer and their negation as �xed, and take the leastmodel of the se
ond layer that is 
onsistent with them. In this way we 
an takeleast models of ea
h su

essive layer, and �nally build a model for the wholeprogram.For example, the single 
lause (�) is a strati�ed program with two layers. In thelower layer is the relation q (for whi
h there are no 
lauses). In the natural model,q is false. In the upper layer is p, whi
h is de�ned in terms of the negation of q.It is true in the natural model, be
ause not q is true. An example of a programthat is not strati�ed is the single 
lausep :� not p: (��)This fails to be strati�ed be
ause the 
lause de�nes p in terms of not p, and that
annot possibly refer to a lower level than the one 
ontaining p. Interestinglyenough, this program only has one model, the one in whi
h p is true.Summary� Negation as failure is a way of adding negation to Horn 
lause programs.� It works for negated ground literals, and treats them with respe
t to theleast model of the program.� The meaning of a program that 
ontains negated literals in its 
lauses 
anbe explained by dividing the program into layers.Exer
ises8.1 A route-�nding program for Ameri
an 
ities uses a list likenorth:east :west :north:nil



90 Negation as failureto represent a path that goes North for one blo
k, then East for a blo
k, thenWest for a blo
k, and �nally North again. This path 
an be optimized tonorth:north:nil , be
ause the instru
tions to go East and then immediately Westagain 
an be deleted without a�e
ting the feasibility of the path or its startingand �nishing points.a. De�ne a relation optstep(a;b) that holds if path b is the result of deletingfrom path a a su

essive pair of moves in opposite dire
tions.b. Use negation as failure to de�ne a relation optimize(a;b) that holds if pathb 
an be obtained from path a by repeated appli
ation of optstep, but
annot be further optimized in this way. Your program should 
orre
tlyanswer questions like# :� optimize(north:east :west :north:nil ;b):where the �rst argument is a ground term.
. Write another de�nition of optimize(a;b) by dire
t re
ursion on a. Com-pare the eÆ
ien
y of this de�nition with your answer to part (b).



Chapter 9Sear
hing problems

In Chapter 7, we used the problem of planning a sequen
e of airline 
ights toillustrate the 
on
ept of sear
h trees. In this 
hapter, we take a 
loser look at thisproblem and, more generally, the problem of �nding paths in a dire
ted graph.Like a map of the airline network, a dire
ted graph 
onsists of a 
olle
tion ofpla
es or nodes and some 
onne
tions or ar
s from one node to another. We 
allthe graph dire
ted be
ause these ar
s have a dire
tion, and there 
an be an ar
from A to B without there being an ar
 from B to A.In sear
hing problems, we are interested in exploring the nodes that 
an berea
hed from a spe
i�ed starting node by following the ar
s. The graph may havephysi
al lo
ations as its nodes and physi
al 
onne
tions as its ar
s, or it may bemore abstra
t. An example is the famous `water jugs' problem. We are giventwo jugs, one that holds seven litres of water and another that holds �ve litres.We are allowed to �ll the jugs from a tap, empty them into the sink, or pourwater from one jug to another, and we are required to measure out four litres ofwater. We 
an represent this problem as sear
hing a graph in whi
h the nodesare labelled by the amount of water in ea
h jug, and the ar
s show the possiblemoves. For example, there is an ar
 from the node (5; 2) to the node (3; 5) that
orresponds to pouring water from the larger jug to the smaller one until thesmaller jug is full. The problem is to �nd a path in the graph from the startingnode (0; 0) to the node (4; 0) in whi
h the large jug 
ontains four litres of water.These problems all 
on
ern the transitive 
losure of a dire
ted graph, a newgraph that shares the same nodes as the original graph, but has an ar
 from Ato B exa
tly if there is a path from A to B in the original graph. Another wayof des
ribing the transitive 
losure is to say it is the smallest graph (in the sensethat it has fewest ar
s) that 
ontains all the ar
s of the original graph, but is alsotransitive in the sense that whenever there is an ar
 from A to B and an ar
 fromB to C, there is also an ar
 from A to C. A useful variation on this theme is there
exive{transitive 
losure of a graph, whi
h also has an ar
 from ea
h node Ato itself. 91



92 Sear
hing problems9.1 Representing the problemIn logi
 programming, we 
an represent a dire
ted graph by a relation ar
(a;b)that holds if there is an ar
 on the graph from a to b. In simple examples, we
ould de�ne this relation by expli
itly listing all the ar
s, but in more 
ompli
atedsituations, the ar
 relation might be de�ned by a program. Logi
 programmingallows us to use the same graph-sear
hing program, however the ar
 relation isde�ned.In terms of ar
, we 
an de�ne another relation 
onne
ted(a;b) that representsthe re
exive{transitive 
losure. One way to do this makes expli
it the fa
t that
onne
ted(a;b) holds if there is a path in the graph from a to b. In the followingprogram, a path of n ar
s is represented by a list of n+1 nodes, with ea
h node
onne
ted to the next by an ar
:
onne
ted(a;b) :� ispath(p); �rst(p;a); last(p;b):ispath(a:nil) :� :ispath(a:b:p) :� ar
(a;b); ispath(b:p):�rst(a:p;a) :� :last(a:nil ;a) :� :last(a:p;b) :� last(p;b):The program be
omes shorter and more eÆ
ient if we 
ombine the three 
on-ditions on p that are spe
i�ed in the de�nition of 
onne
ted into one relationpath(a;b; p), de�ning it dire
tly by re
ursion:
onne
ted(a;b) :� path(a;b; p):path(a;a;a:nil) :� :path(a;
 ;a:b:p) :� ar
(a;b); path(b;
 ;b:p):The path relation is often useful in itself, be
ause it 
an not only determinewhether a and b are 
onne
ted, but also return an expli
it path between them.If the path is not required, we 
an simplify the program still further, like this:
onne
ted(a;a) :� :
onne
ted(a;
) :� ar
(a;b); 
onne
ted(b;
):These three ways of de�ning the 
onne
ted relation are equivalent. This 
anbe shown using the program transformation methods that are the subje
t ofChapter 13.



9.1 Representing the problem 93An alternative way to de�ne the 
onne
ted relation is by writing dire
tly thefa
t that it is a re
exive and transitive relation 
ontaining ar
:
onne
ted(a;
) :� 
onne
ted(a;b); 
onne
ted(b;
):
onne
ted(a;b) :� ar
(a;b):
onne
ted(a;a):As a Prolog program, this de�nition is mu
h less e�e
tive than the de�nitionsabove. Consider what happens if we try to solve a goal su
h as# :� 
onne
ted(start ; �nish):in whi
h start and �nish are 
onstants. Assuming there is no dire
t ar
 fromstart to �nish, we must use the �rst 
lause to expand the goal into# :� 
onne
ted(start ;b1); 
onne
ted(b1; �nish):This 
an be expanded by using the �rst 
lause again, generating# :� 
onne
ted(start ;b2); 
onne
ted(b2;b1); 
onne
ted(b1; �nish):Obviously, this expansion pro
ess 
ould go on forever, leading to an in�nitebran
h in the sear
h tree. By way of 
ontrast, our earlier de�nitions of 
onne
tedalways generate an ar
 subgoal as the �rst one to be solved after ea
h expansionstep. This means that, at least for �nite graphs without 
y
les, the expansionpro
ess must eventually terminate.Although this de�nition is not useful as a Prolog program, it gives us an op-portunity to be pre
ise about what is meant by de�ning the re
exive{transitive
losure as the `smallest' relation with 
ertain properties. As the program demon-strates, the properties in question 
an be expressed as a Horn-
lause program,and the results of Se
tion 5.3 guarantee that this program has a smallest model.In this model, 
onne
ted is interpreted as the smallest re
exive and transitiverelation that 
ontains the given ar
 relation.We 
an also 
he
k that the two de�nitions of re
exive{transitive 
losure areequivalent. Let r1 be the relation that holds between two nodes if there is a pathfrom one to the other, that is, r1 is the relation de�ned by our �rst series ofprograms for 
onne
ted . It is easy to see that r1 is re
exive (be
ause a:nil is apath from a to a) and transitive (be
ause a path from a to b 
an be joined witha path from b to 
 to make a path from a to 
), and that it 
ontains the ar
relation. But the relation r2 de�ned by the new program is the smallest relationthat is re
exive and transitive and 
ontains ar
. So r1 
ontains r2.Conversely, if r2 is the relation de�ned by the new program, then it satis�esthe 
lauses of our original program. The 
lause
onne
ted(a;a) :� :



94 Sear
hing problemsis true of r2 be
ause this is one of the 
lauses de�ning r2, and the 
lause
onne
ted(a;
) :� ar
(a;b); 
onne
ted(b;
):is true of r2 be
ause it in
ludes ar
 and is transitive. Thus r2 is one of therelations that satisfy the 
lauses of our original program, so it 
ontains r1, thesmallest su
h relation.9.2 Avoiding 
y
lesThe �rst series of programs in the pre
eding se
tion work reasonably well forsear
hing �nite graphs that have no 
y
les, that is, where there is never anynon-trivial path from a node to itself. Su
h graphs result in sear
h trees that are�nite. If the graph has 
y
les, however, these programs behave badly, be
ausethe 
y
les in the graph lead to in�nite bran
hes in the sear
h tree, and Prolog'sdepth-�rst strategy 
an lead it to get stu
k exploring an in�nite bran
h. We sawan example of this in Se
tion 7.3.There are two solutions to this problem with depth-�rst sear
h. One is toabandon Prolog in favour of an implementation of logi
 programming that hasa fair sear
h strategy, su
h as breadth-�rst sear
h. This solution sounds drasti
,but it 
an be made feasible by using Prolog as a vehi
le for implementing fairsear
hing. Prolog systems often in
lude non-logi
al features that make this easier,but we look at a simple way of doing it in the next se
tion.Another way of avoiding the problems of depth-�rst sear
h is to rewrite ourprograms so that the sear
h tree no longer 
ontains in�nite bran
hes. For graphsear
hing, we 
an use the te
hnique of loop avoidan
e. We repla
e the relation
onne
ted(a;b) with a new relation 
onn1 (a;b; s), for s a list of nodes, thatholds if a is 
onne
ted to b by a path that does not visit any member of s at anintermediate point. In writing a re
ursive de�nition of this relation, we 
an addea
h node visited to the list s of nodes to avoid later in the sear
h. This ensuresthat no 
y
li
 paths are 
onsidered. Here is the program:
onn1 (a;a; s) :� :
onn1 (a;
 ; s) :�ar
(a;b);notmember(b; s);
onn1 (b;
 ;b:s):The 
onne
ted relation 
an now be de�ned like this:
onne
ted(a;b) :� 
onn1 (a;b;b:nil):



9.2 Avoiding 
y
les 95It is easy to extend this program to 
ompute a path from a to b instead of just�nding whether on exists.With this modi�ed program, the sear
h tree for a �nite graph is �nite, even ifthe graph has 
y
les. This is be
ause the number of nodes in the list s in
reasesby one in ea
h su

essive level of the sear
h tree, until s 
ontains every rea
hablenode in the graph. For example, in the airline 
ight problem shown in Figure 7.6,the beginning goal would be# :� 
onn1 (london; rome; london:nil):Taking the 
ight from London to Paris leads to the new goal# :� 
onn1 (paris; rome; paris:london:nil):There are now two possibilities. Taking the 
ight from Paris to Rome leads tothe new goal# :� 
onn1 (rome; rome; rome:paris:london:nil):that is solved immediately. Taking the 
ight from Paris to Berlin leads to thegoal # :� 
onn1 (berlin; rome; berlin:paris:london:nil):The important point is that it is not now possible to take the 
ight from Berlinto London, be
ause London is on the list of pla
es that have already been visited.Thus Berlin be
omes a dead end in the sear
h tree, and the whole sear
h tree ismade �nite.This te
hnique of loop avoidan
e 
an also be used to solve the `water jugs'problem. We 
an represent a state of the system in whi
h the large jug 
ontainsx litres and the small jug 
ontains y litres by the term state(x ;y ). The ar
relation 
an be de�ned using the built-in arithmeti
 relations of pi
oProlog. Hereis one 
lause that says it is possible to pour water from the large jug into thesmall one until the small jug is full:ar
(state(x ;y ); state(u ; 5)) :�plus(x ;y ; z); plus(u ; 5; z):The two plus literals in the body of this 
lause state that the total amount ofwater z must be the same before and after the transfer. Pi
oProlog allows onlynon-negative integers, so the �nal amount u in the large jug 
annot be negative.Other 
lauses for ar
 model the �lling of the jugs from the tap and their emptyinginto the drain, and other kinds of transfer from one jug to the other.



96 Sear
hing problems9.3 Bounded and breadth-�rst sear
hAnother method for removing in�nite bran
hes from the sear
h tree is to pla
e abound on the number of ar
s to be traversed. The e�e
t is to 
ut o� the sear
htree below a 
ertain depth. Here is the de�nition of a relation 
onn2 (a;b;n), forn a natural number, that holds if there is a path from a to b of at most n ar
s:
onn2 (a;a;n) :� :
onn2 (a;
 ;n) :�plus(n1; 1;n);ar
(a;b);
onn2 (b;
 ;n1):Again, this program 
an easily be extended to return a path instead of just �ndingwhether one exists.To use this program, we have to 
hoose a suitable value for n . If the graphbeing sear
hed has a known diameter, that is, a known upper bound on theshortest path length from one node to another, then that provides a reasonablevalue for n . Otherwise, we 
an use a te
hnique 
alled iterative deepening . Thismeans trying �rst a small value of n . If this does not work, we try su

essivelylarger values until we �nd one that does give a solution. It is possible to writean outer Prolog program that 
alls the sear
hing program iteratively, and stopswhen a solution is found.An attra
tion of iterative deepening is that it 
an be used with any 
ombina-torial sear
h problem, not just graph sear
hing. Any Horn 
lause program 
anbe modi�ed to pla
e a bound on the number of resolution steps. If the bound isex
eeded in exe
uting a goal, the goal is made to fail. The idea is to repla
e ea
hrelation r(x1; : : : ;xk) with a new relation r1 (x1; : : : ;xk ;b0;b) that holds if the
orresponding instan
e of r holds, and it is solved in at most b0 resolution steps,and b is the di�eren
e between b0 and the number of resolution steps a
tuallyused.If the original program 
ontains the 
lauser(x ; z) :� q(x ;y ); r(y ; z):then the modi�ed program will 
ontain the following 
lause:r1 (x ; z ;b0;b) :�plus(b1; 1;b0); q1 (x ;y ;b1;b2); r1 (y ; z ;b2;b):We �rst 
ount one resolution step for using the 
lause, and pass to the q1 subgoalthe number of steps remaining. It returns the number of steps left after it hasbeen solved, and we pass these to the re
ursive r1 subgoal for its use. Finally,



9.3 Bounded and breadth-�rst sear
h 97r1 returns the number of steps still unused, and these are passed ba
k to theoriginal 
aller of r1 .By making this modi�
ation systemati
ally to every 
lause in the program,we obtain a version of the program that performs bounded sear
h. An outerwrapper 
an turn this into a program that sear
hes by iterative deepening.The method of breadth-�rst sear
h 
an be simulated inside a Prolog programif we 
hange slightly the way the graph is represented. In pla
e of the relationar
(a;b), we use a relation next(a; s) that holds if s is the list of immediateneighbours of a, that is, a list that 
ontains in some order all the nodes b su
hthat ar
(a;b). Pure logi
 programming allows us to de�ne the ar
 relation interms of the next relation like this:ar
(a;b) :� next(a; s);member(b; s):However, we 
annot de�ne next in terms of ar
 dire
tly, although many Prologsystems provide a built-in relation listof that makes it possible:next(a; s) :� listof (b; ar
(a;b); s):The listof relation 
annot, unfortunately, be de�ned by a logi
 program.In terms of next , we 
an de�ne a relation rea
h(s;b), for s a list of nodes,that holds if b 
an be rea
hed from any node in the list s:rea
h(b:s;b) :� :rea
h(a:s;b) :�next(a;t);append(s;t ;u);rea
h(u ;b):Given a value for a, there is only one solution to the subgoal next(a;t), so thereis almost no bran
hing in the sear
h tree for this program. Instead, the programmaintains an expli
it list of the nodes that are adja
ent to nodes that it hasvisited, and visits them one by one, adding their neighbours to the list.The sear
h is in breadth-�rst order, be
ause the neighbours of ea
h node areadded to the ba
k of the list of nodes to visit, so all the neighbours of thestarting node will be visited before the nodes that are neighbours of these nodes inturn. Repla
ing the append literal with append(t ; s;u) would reverse this order,making the algorithm perform depth-�rst sear
h instead, visiting the 
hildren ofea
h node before its siblings.



98 Sear
hing problemsSummary� Sear
hing a graph is an instan
e of the problem of 
omputing the transitive
losure of a relation. Depth-�rst sear
h performs badly if the graph has
y
les.� Other sear
h strategies, su
h as loop-avoidan
e, breadth-�rst sear
h andbounded sear
h, perform better for su
h problems.� These sear
h strategies 
an be simulated in Prolog by modifying the pro-gram appropriately.Exer
ises9.1 Augment the loop-avoidan
e algorithm so that ea
h ar
 
an have a name,and the relation ar
(n ;a;b) holds if n is the name of an ar
 from a to b.Rede�ne the 
onn relation so that it assembles a list of ar
s in the path by name.Complete the de�nition of the ar
 relation for the `water jugs' problem, addinga name for ea
h move. What is the shortest method for measuring four litres ofwater, ending in the state state(4; 0)?9.2 Write a logi
 program to solve the following puzzle: A farmer must ferry awolf, a goat and a 
abbage a
ross a river using a boat that is too small to takemore than one of the three a
ross at on
e. If he leaves the wolf and the goattogether, the wolf will eat the goat, and if he leaves the goat with the 
abbage,the goat will eat the 
abbage. How 
an he get all three a
ross the river safely?9.3 Arithmeti
 expressions 
an be represented by terms that use the fun
tionsymbols add=2, subtra
t=2, multiply=2 and divide=2, so that the expression (4 +4 � 4)=4 would be represented by the termdivide(add(4; times(4; 4)); 4):De�ne a relation trial(e) that holds if e represents a well-formed arithmeti
expression in whi
h the operands are four 
opies of the digit 4. How many su
hexpressions are there? [Hint: su
h expressions have a bounded depth and abounded number of operators.℄9.4 The puzzle 
alled `Towers of Hanoi' 
onsists of three spikes, on whi
h �veperforated dis
s of varying diameters 
an be pla
ed. The rules state that no dis
may ever be pla
ed on top of a smaller dis
. The dis
s are initially all on the �rstspike, and the goal is to move the dis
s one at a time so that they all end up (inde
reasing order of size) on the third spike. Formulate this puzzle as a graph-sear
hing problem. Cal
ulate the number of states that the system 
an o

upy,and suggest a sear
h method that will lead to a solution in a reasonable time.



Chapter 10Parsing

Parsing is the problem of determining whether a given string 
onforms to thesyntax rules of a language. It is an good appli
ation for logi
 programming,be
ause the rules of a language 
an be expressed as 
lauses in a logi
 program,and (at least in prin
iple) parsing a string amounts to solving a goal with thatlogi
 program.10.1 Arithmeti
 expressionsAs an example, we shall use the following set of rules for the syntax of arithmeti
expressions in the variables x and y:expr ::= term j term `+' expr j term `-' exprterm ::= fa
tor j fa
tor `*' term j fa
tor `/' termfa
tor ::= `x' j `y' j `(' expr `)'The �rst rule says that an expression (expr) may be either a term, or a termfollowed by a plus sign and another expression, or a term followed by a minussign and another expression. Thus an expression is a sequen
e of terms separatedby plus and minus signs. Similarly, a term is a sequen
e of fa
tors separated bymultipli
ation and division signs. A fa
tor is either a variable (`x' or `y'), or anexpression in parentheses.The simplest way to translate these rules into a logi
 program is to makeea
h synta
ti
 
lass su
h as expr or term 
orrespond to a one-argument relation,arranging that expr(a) is true if and only if the string (list of 
hara
ters) a formsa valid member of the 
lass expr , and so on. Be
ause one form of expression issimply a term, we 
an write down the 
lauseexpr(a) :� term(a): 99



100 Parsingexpr(a) :� term(a):expr(a) :�append(b;
 ;a); term(b);append(\+"; e ;
); expr(e):expr(a) :�append(b;
 ;a); term(b);append(\-"; e ;
); expr(e):term(a) :� fa
tor(a):term(a) :�append(b;
 ;a); fa
tor(b);append(\*"; e ;
); term(
):term(a) :�append(b;
 ;a); fa
tor(b);append(\/"; e ;
); term(
):fa
tor(\x") :� :fa
tor(\y") :� :fa
tor(a) :�append(\(";b;a); append(
 ; \)";b); expr(
):Figure 10.1: First program for parsing expressionsAnother possibility for an expression is a term followed by a plus sign and anotherexpression. This 
an be expressed using the append relation:expr(a) :�append(b;
 ;a); term(b);append(d; e ;
);d = \+"; expr(e):To be a valid expression of this kind, a string a must split into two parts b and
 , where b is a valid term, and 
 
onsists of a plus sign followed by anotherexpression. This last 
ondition is expressed using another instan
e of append .Fixed symbols like `+' and `x' 
an be translated by 
onstant strings. A usefulnotation uses double quotes for strings, so that \+" means `+':nil and \mike"means `m':`i':`k':`e':nil . Using this notation, we 
an translate the whole set ofrules to give the logi
 program shown in Figure 10.1.This translation is 
orre
t in a logi
al sense, but it is very ineÆ
ient when runas a program. For example, to parse the string \x*y+x", we must use the se
ond
lause for expr , splitting the string into a part \x*y" that satis�es term, anda part \+x" that is a plus sign followed by an expr . The Prolog strategy usesba
ktra
king to a
hieve this, splitting the input string at ea
h possible pla
e untilit �nds a split that allows the rest of the 
lause to su

eed. This means testing



10.2 Di�eren
e lists 101ea
h of the strings \ ", \x", \x*" with the relation term, before �nally su

eedingwith \x*y". Testing the subgoal term(\x*y") leads to even more ba
ktra
king,so the whole pro
ess is extremely time-
onsuming.10.2 Di�eren
e listsAn equivalent but more e�e
tive translation uses a te
hnique 
alled di�eren
elists to eliminate the 
alls to append and drasti
ally 
ut down the amount ofba
ktra
king. The idea is to de�ne a new relation expr2 (a;b) that is true if thestring a 
an be split into two parts: the �rst part is a valid expression, and these
ond part is the string b. This relation 
ould be de�ned by the single 
lauseexpr2 (a;b) :� append(
 ;b;a); expr(
):But we 
an do better than this by de�ning expr2 dire
tly, without using appendor expr . For example, the se
ond 
lause for expr leads to this 
lause for expr2 :expr2 (a;d) :� term2 (a;b); eat(`+';b;
); expr2(
 ;d):Here we have used a relation term2 that is related to term as expr2 is relatedto expr , and a spe
ial relation eat . The whole 
lause 
an be read like this: to
hop o� an expression from the front of a, �rst 
hop o� a term to give a stringb, then 
hop o� a plus sign from b to give a string 
 , and �nally 
hop of anexpression from 
 to give the remainder d. The te
hnique is 
alled `di�eren
elists' be
ause the pair (a;d) represents a list of 
hara
ters that is the di�eren
ebetween a and d. The relation eat is de�ned by the single 
lauseeat(x ;a;b) :� a = x :b:It is true if the string b results from 
hopping o� the single 
hara
ter x from thefront of a.Other rules 
an be re-formulated in a similar way. For example, the rulefa
tor ::= `(' expr `)'
an be re-formulated asfa
tor2 (a;d) :� eat(`(';a;b); expr2(b;
); eat(`)';
 ;d):Figure 10.2 shows the 
omplete set of rules translated in this style. In order totest a string su
h as \(x+y)-x" for 
onforman
e to the syntax rules, we formulatethe query# :� expr2 (\x*y+x"; \ "):



102 Parsingexpr2 (a;b) :� term2 (a;b):expr2 (a;d) :� term2 (a;b); eat(`+';b;
); expr2(
 ;d):expr2 (a;d) :� term2 (a;b); eat(`-';b;
); expr2(
 ;d):term2 (a;b) :� fa
tor2 (a;b):term2 (a;d) :� fa
tor2 (a;b); eat(`*';b;
); term2(
 ;d):term2 (a;d) :� fa
tor2 (a;b); eat(`/';b;
); term2(
 ;d):fa
tor2 (a;b) :� eat(`x';a;b):fa
tor2 (a;b) :� eat(`y';a;b):fa
tor2 (a;d) :� eat(`(';a;b); expr2(b;
); eat(`)';
 ;d):Figure 10.2: Se
ond program for parsing expressionsThis asks whether it is possible to 
hop o� an expression from the front of \x*y+x"and leave the empty string; in other words, whether \x*y+x" is itself a validexpression. Solving this goal involves ba
ktra
king among the di�erent rules,but mu
h less than before.10.3 Expression treesIn appli
ations su
h as 
ompilers, it is useful to build a tree that represents thestru
ture of the input program. In our example of arithmeti
 expressions, wemight represent the expression \x*y+x" by the termadd(multiply(vbl(x ); vbl(y)); vbl(x )):Representing the expression like this makes it easy to evaluate it for given valuesof x and y, or to translate it into ma
hine 
ode in a 
ompiler.We 
an extend our parser so that it 
an build a tree like this, in additionto 
he
king that a string obeys the language rules. We extend the relationexpr2 (a;b) into a new relation expr3 (t ;a;b) that is true if the di�eren
e be-tween string a and string b is an expression represented by t . One 
lause in thede�nition of expr3 is this:expr3 (add(t1;t2);a;d) :�term3 (t1;a;b); eat(`+';b;
); expr3(t2;
 ;d):As before, this says that an expression may have the form term `+' expr . Theadded information is that if the term on the left of `+' is represented by the treet1, and the expression on the right is represented by t2, then the whole expressionis represented by the tree add(t1;t2).



10.3 Expression trees 103Other 
lauses in the parser 
an be augmented in similar ways. One 
lauseallows an expression in parentheses to be used as a fa
tor; it turns into the new
lausefa
tor3 (t ;a;d) :�eat(`(';a;b); expr3 (t ;b;
); eat(`)';
 ;d):The tree for the whole fa
tor is the same as the tree for the expression inside. Inthis way, we 
an be sure that parentheses have no e�e
t on the `meaning' of anexpression, ex
ept insofar as they a�e
t the grouping of operators.On
e the whole parser has been augmented in this way, we 
an use it to analysestrings and build the 
orresponding tree. For example, the goal# :� expr3 (t ; \x*(y+x)"; \ "):will su

eed, with the answert = multiply(vbl(x ); add(vbl(y); vbl(x ))):Rather unusually, the parser 
an also be used `ba
kwards', produ
ing a stringfrom a tree. For example, the goal# :� expr3 (add(vbl(x );multiply(vbl(x ); vbl(y)));a; ):has several answers, and the �rst one found by Prolog is a = \x+x*y". Theother answers have extra parentheses added around various sub-expressions. This`unparsing' fun
tion might be useful for generating error messages in a 
ompiler,or for saving expression trees in a text �le so they 
ould be parsed again later.The parser for expressions has an unfortunate 
aw. The expression \x-y-x"would be assigned the treesubtra
t(vbl(x ); subtra
t(vbl(y); vbl(x )));that is, the same tree as would be assigned to the expression \x-(y-x)". This iswrong, be
ause the usual 
onvention is that operators `asso
iate to the left', sothe 
orre
t tree would besubtra
t(subtra
t(vbl(x ); vbl(y)); vbl(x ));the same as for the expression \(x-y)-x". The problem is with the syntax ruleexpr ::= term `-' expr ;and others like it. This rule suggests that where several terms appear interspersedwith minus signs, the most important operator is the leftmost one. The other



104 Parsingminus signs must be 
ounted as part of the expr in this rule, not part of the term,be
ause a term 
annot 
ontain a minus sign ex
ept between parentheses.We 
ould 
orre
t the syntax rules by repla
ing this rule withexpr ::= expr `-' term;but unfortunately this would lead to the 
lauseexpr(a;d) :� expr(a;b); eat(`-';b;
); term(
 ;d):This 
lause behaves very badly under Prolog's left-to-right strategy, be
ause a
all to expr leads immediately to another 
all to expr that 
ontains less infor-mation. For example, the goal expr(\x-y"; \ ") immediately leads to the subgoalexpr(\x-y";b), and so to an in�nite loop. This is 
alled left re
ursion, be
ausethe body of the rule for expr begins with a re
ursive 
all. Left re
ursion 
ausesproblems for top{down parsing methods like the one that naturally results fromProlog's goal-dire
ted sear
h strategy.The solution to this problem is to rewrite the grammar, avoiding left re
ursion.The following syntax rules are equivalent to our original ones, in that they a

eptthe same set of strings:expr ::= term exprtailexprtail ::= empty j `+' term exprtail j `-' term exprtailterm ::= fa
tor termtailtermtail ::= empty j `*' fa
tor termtail j `/' fa
tor termtailfa
tor ::= `x' j `y' j `(' expr `)'The idea here is that an exprtail is a sequen
e of terms, ea
h pre
eded by a plusor minus sign. In order to build the tree for an expression, we translate the rulesfor exprtail into a four-argument relation exprtail(t1;t ;a;b) that is true if thedi�eren
e between a and b is a valid instan
e of exprtail , and t is the result ofbuilding the terms onto the tree t . By building on the terms in the right way,we obtain the 
orre
t tree for ea
h expression. The 
omplete translation of thenew set of rules is shown in Figure 10.3.10.4 Grammar rules in PrologThe te
hnique of building parsers by dire
t translation of syntax rules is so usefulthat many Prolog systems implement a spe
ial notation for it. In this notation,the 
lauseexpr(add(t1;t2);a;d) :�term(t1;a;b); eat(`+';b;
); expr(t2;
 ;d):



10.4 Grammar rules in Prolog 105expr(t ;a;
) :� term(t1;a;b); exprtail(t1;t ;b;
):exprtail(t1;t1;a;a) :� :exprtail(t1;t ;a;d) :�eat(`+';a;b); term(t2;b;
);exprtail(add(t1;t2);t ;
 ;d):exprtail(t1;t ;a;d) :�eat(`-';a;b); term(t2;b;
);exprtail(subtra
t(t1;t2);t ;
 ;d):term(t ;a;
) :�fa
tor(t1;a;b); termtail(t1;t ;b;
):termtail(t1;t1;a;a) :� :termtail(t1;t ;a;d) :�eat(`*';a;b); fa
tor(t2;b;
);termtail(multiply(t1;t2);t ;
 ;d):termtail(t1;t ;a;d) :�eat(`/';a;b); fa
tor(t2;b;
);termtail(divide(t1;t2);t ;
 ;d):fa
tor(vbl(x );a;b) :� eat(`x';a;b):fa
tor(vbl(y);a;b) :� eat(`y';a;b):fa
tor(t ;a;d) :�eat(`(';a;b); expr(t ;b;
); eat(`)';
 ;d):Figure 10.3: Final program for parsing expressionsis written asexpr(add(t1;t2))! term(t1); [`+'℄; expr(t2):An arrow repla
es the usual `:�' sign, and means that the literals in the head andbody of the 
lause are translated spe
ially. Ea
h ordinary literal in the 
lausehas two impli
it arguments for their input and output strings. A
tual symbolsare written in square bra
kets, and translate into 
alls to eat .Many Prolog systems allow grammar rules like this to be in
luded in anyprogram, and perform the translation as the program is loaded into the Prologsystem.



106 ParsingSummary� Syntax rules 
an be represented dire
tly as logi
 programs.� The te
hnique of di�eren
e lists makes them work well as Prolog programsfor parsing.� Parsers written in this way 
an also build a representation of expressions astrees.� Many Prolog systems provide spe
ial notation for building parsers.Exer
ises10.1 Use the te
hnique of di�eren
e lists to write a de�nition of the relation
atten (from Chapter 3) that does not use append .10.2 The parser for expressions in the text does not allow spa
es to appear inexpressions, so that \x*y+x" is re
ognized as a valid expression, but \x * y + x"is not. De�ne a relation spa
e(a0;a) that is true if the di�eren
e between a0 anda 
onsists of zero or more spa
es, and use this relation to write a new parser forexpressions that ignores spa
es before ea
h symbol.10.3 De�ne a relation number(n ;a;b) that holds if the di�eren
e between aand b is a non-empty sequen
e of de
imal digits, and the integer n is the integervalue of this number. Use this relation to extend the parser for expressions toallow integer 
onstants in addition to the existing forms of expressions.10.4 A good sequen
e 
onsists either of the single number 0, or of the number1 followed by two other good sequen
es: thus 1:0:1:0:0:nil is a good sequen
e, but1:1:0:0:nil is not. De�ne a relation good(a) that is true if a is a good sequen
e.Modify your program if ne
essary so that the Prolog goal # :� good(a) willenumerate all good sequen
es in order of in
reasing length.



Chapter 11Evaluating and simplifying expressions

In the pre
eding 
hapter, we saw that algebrai
 expressions 
an be representedby tree-stru
tured terms, and de�ned parsing relations that link the textual formof an expression with its representation as a tree. This representation of expres-sions as trees is an important te
hnique in building 
ompilers, where algorithmsfor 
he
king language rules and generating obje
t 
ode are mu
h more readilyexpressed in terms of the tree than in terms of the textual form of an expression.This 
hapter introdu
es some of the te
hniques that are used to build 
ompil-ers and other programs that manipulate symboli
 expressions, by showing logi
programs that evaluate or simplify algebrai
 expressions represented as trees.11.1 Evaluating expressionsSimple arithmeti
 expressions are made up of operators like addition and mul-tipli
ation, together with integer 
onstants. We 
an represent the operators byfun
tion symbols add and multiply , and the 
onstants dire
tly by integers, so thatthe expression 3 � 4 + 5 would be represented by the term add(times(3; 4); 5).Pi
oProlog provides a built-in relation integer(x ) that is true if x is a (positive)integer, and built-in relations plus(x ;y ; z) and times(x ;y ; z) that are true if zis the result of adding or multiplying the integers x and y . These relations allowus to de�ne re
ursively a relation value(e ;v ) that is true if v is the value ofexpression e :value(x ;x ) :� integer(x ):value(add(e1; e2);v ) :�value(e1;v1); value(e2;v2);plus(v1;v2;v ): 107



108 Evaluating and simplifying expressionsvalue(multiply(e1; e2);v ) :�value(e1;v1); value(e2;v2);times(v1;v2;v ):The value of an expression that is an integer 
onstant is that 
onstant itself,and the value of an expression su
h as add(e1; e2) 
an be found by taking thevalues of the sub-expressions e1 and e2 separately, then adding them together.We 
ould put this program together with a parser built along the lines suggestedin Chapter 10 to de�ne a relation 
al
ulator(s;v ) that holds if v is the value ofthe string s 
onsidered as an arithmeti
 expression:
al
ulator(s;v ) :� expr(e ; s; \ "); value(e ;v ):For example, the goal # :� 
al
ulator(\(3+4)*5";x ) would give the answerx = 35. Our relation for evaluating expressions does not need to deal expli
-itly with expressions that 
ontain parentheses, be
ause these are handled bythe parser. The tree it builds for an expression re
e
ts the grouping that isimplied by parentheses, and the evaluation is done a

ording to this groupingstru
ture.The next step in sophisti
ation is to allow expressions that 
ontain variables aswell as 
onstants. For example, the expression x+ 3 � y, whi
h we 
an representby the term add(vbl(x );multiply(3; vbl(y))). The variables in this expression arerepresented by terms like vbl(x ). Noti
e that, from pi
oProlog's point of view,this term is a 
onstant that 
onsists of the fun
tion symbol vbl applied to theatomi
 
onstant x . The term vbl(x ) represents a 
ompletely known expression,whereas vbl(x ) is an unknown expression that might be either the expressionvbl(x ) or the expression vbl(y).To evaluate an expression that 
ontains variables, we need to know what valueto give to ea
h variable when it appears in the expression. This information 
anbe represented by a list of terms val(x ;v ) where x is a variable name like x ory , and v is an integer, its value. For example, the listval(x ; 3):val(y ; 4):nilrepresents the state of a�airs in whi
h x has value 3 and y has value 4. We 
allsu
h a list an assignment.Here is the de�nition of a relation lookup(x ;a;v ), for a an assignment, thatholds if a gives the value v to variable x :lookup(x ;a;v ) :� member(val(x ;v );a):This de�nition uses the member relation from Chapter 3 in a 
lever way, be
ausetypi
ally the variable x in the term val(x ;v ) will be known when the memberliteral 
omes to be solved, but the value v will not be known. The e�e
t is



11.2 Simplifying expressions 109that val(x ;v ) will be mat
hed with su

essive elements of the list a until anelement is found that has x as its �rst 
omponent, and the value of v is then the
orresponding se
ond 
omponent. We 
ould also de�ne lookup by dire
t re
ursionlike this:lookup(x ; val(x ;v ):a;v ) :� :lookup(x ; val(y ;w ):a;v ) :� lookup(x ;a;v ):This lookup relation gives us the vital ingredient needed to extend the valuerelation de�ned earlier, giving a relation eval(e ;a;v ) that holds if v is the valueof expression e under assignment a:eval(x ;a;x ) :� integer(x ):eval(vbl(x );a;v ) :� lookup(x ;a;v ):eval(add(e1; e2);a;v ) :�eval(e1;a;v1); eval(e2;a;v2); plus(v1;v2;v ):eval(multiply(e1; e2);a;v ) :�eval(e1;a;v1); eval(e2;a;v2); times(v1;v2;v ):The rules for addition and multipli
ation are as before, ex
ept that the assign-ment a supplied for the whole expression is passed on to the re
ursive 
alls ofeval that deal with the operands. The real 
hange is the 
lause that deals withvariables, whose values are found by using lookup and the assignment a.11.2 Simplifying expressionsUsing terms to represent algebrai
 expressions makes it easy to write programsthat manipulate expressions symboli
ally. The aim in this se
tion will be toexplore this idea by de�ning a relation simplify(e1; e2) that holds for expressionse1 and e2 if e1 
an be simpli�ed algebrai
ally to give e2. Su
h a relation mightbe used in a 
ompiler to optimize expressions, redu
ing the number of arithmeti
operations needed to evaluate them. It 
an also be used to 
arry out a simplekind of algebrai
 proof, be
ause we 
an prove that two expressions are equal bysimplifying both of them and 
he
king that the results are the same.In the domain of Boolean expressions, we say that an expression is a tautologyif it has value 1 or true whatever Boolean values are given to the variables it
ontains. One way of 
he
king that an expression is a tautology is to evaluate itfor every 
ombination of values, 
he
king that the answer is 1 ea
h time. Anotherway is to simplify the expression algebrai
ally and 
he
k that the result is thelogi
al 
onstant 1. The pra
ti
al exer
ise at the end of this 
hapter asks you toimplement both these methods.



110 Evaluating and simplifying expressionsSimplifying an expression involves some spe
i�
 information about the oper-ators that may be present in the expression. For example, we might use thefa
t that adding 0 to an expression or multiplying it by 1 leaves the value ofthe expression un
hanged. We 
an express this information by 
lauses like thefollowing:simp(add(e ; 0); e) :� :simp(multiply(e ; 1); e) :� :simp(add(0; e); e) :� :simp(multiply(1; e); e) :� :These 
lauses form part of the de�nition of a relation simp(e1; e2) that holds ife1 
an be simpli�ed in one step to give e2. Later, we shall use simp to de�ne ourdesired relation simplify , taking into a

ount at that stage the possibility thatsimplifying an expression will take several steps, with ea
h step leading to thenext.We might also use the fa
t that multipli
ation distributes over addition, i.e.,that a � (b+ 
) = a � b+ a � 
, by adding the following 
lause to simp:simp(multiply(a; add(b;
));add(multiply(a;b);multiply(b;
))) :� :Su
h a simpli�
ation step might be useful in proving algebrai
 identities, but ina 
ompiler we might 
hoose to use the equation the other way, thereby redu
ingthe number of multipli
ations needed to evaluate the expression.These spe
i�
 rules for simp 
ontain some of the information we need aboutthe algebrai
 properties of the operators, but they are not very useful on theirown. For example, one of the rules will allow us to simplify x � 1 { representedby the term multiply(vbl(x ); 1) { to obtain the result x, but it will not allow usto simplify the expression x � 1 + y, whi
h is represented by the termadd(multiply(vbl(x ); 1); 0):This happens be
ause the left-hand side of our simpli�
ation rule appears not asthe whole expression to be simpli�ed, but only as a sub-expression, and our rulesso far work only on whole expressions.This problem is solved by adding rules that show how to simplify expressionsby simplifying their sub-expressions.simp(add(a;b); add(a1;b)) :� simp(a;a1):simp(add(a;b); add(a;b1)) :� simp(b;b1):simp(multiply(a;b);multiply(a1;b)) :� simp(a;a1):simp(multiply(a;b);multiply(a;b1)) :� simp(b;b1):



11.2 Simplifying expressions 111The �rst 
lause here says that if we 
an simplify the expression a, then we 
analso simplify the expression add(a;b) { we simply repla
e a by its simpli�ed formand leave b un
hanged. The se
ond 
lause says that we 
an simplify the sameexpression by repla
ing b instead of a with a simpli�ed form, and the third andfourth 
lauses say the same things for an expression multiply(a;b).If both a and b 
an be simpli�ed, say to a1 and b1 respe
tively, then the ex-pression add(a;b) 
an undergo two stages of simpli�
ation, giving �rst add(a1;b)then add(a1;b1). Thus it is not ne
essary to allow expli
itly for simplifying theexpression add(a;b) on both sides at on
e, provided we provide the more gen-eral fa
ility of simplifying an expression in several steps. This fa
ility is useful inother 
ontexts. For example, the expression (x+ 1) � y 
an be simpli�ed �rst tox � y + 1 � y using the fa
t that multipli
ation distributes over addition, then inanother step to x�y+y, using the fa
t that 1 is a unit element for multipli
ation.We 
an provide this kind of multi-step simpli�
ation by using the re
exive{transitive 
losure of the simp relation, rather than simp itself. The relation wede�ne should be re
exive, be
ause the original expression may not allow anysimpli�
ation, and it should be transitive, be
ause several steps may be neededto put an expression into its simplest form. Using simply the re
exive{transitive
losure of simp would give a relation that holds between any expression and allits simpli�ed forms, whether they are fully simpli�ed or still subje
t to furthersimpli�
ation. We 
an de�ne a more useful relation by restri
ting the simpli�edexpression to be irredu
ible, so that no more simpli�
ation is possible. Negationas failure is useful for this:simplify(x ;y ) :� simp(x ;x1); simplify(x1;y ):simplify(x ;x ) :� not redu
ible(x ):redu
ible(x ) :� simp(x ;y ):A spe
ial relation redu
ible has been introdu
ed here: redu
ible(x ) holds if thereis any y su
h that simp(x ;y ) is true. The requirement that negated literalsshould be ground is satis�ed in the program, be
ause the variable y is hiddeninside the de�nition of redu
ible.Summary� Algebrai
 expressions 
an be represented as trees.� The value of an algebrai
 expression 
an be obtained by analysing the ex-pression re
ursively, 
al
ulating the value of the expression in terms of thevalues of its sub-expressions.� Algebrai
 expressions 
an be simpli�ed by applying equations as left-to-rightrewriting rules.



112 Evaluating and simplifying expressionsExer
ises11.1 Using the pi
oProlog built-in relations plus, times and integer , extendthe de�nition of the relation value(e ;v ) to allow operators subtra
t(x ;y ) anddivide(x ;y ) for subtra
tion and division without fra
tional or negative results.Combine this with your answer to a previous exer
ise to show how the numbersfrom 0 to 9 
an ea
h be written using exa
tly four 
opies of the digit 4.11.2 The value of an expression let x = e1 in e2 under an assignment a is thesame as the value of e2 under an assignment where x takes the value that e1 isgiven under a, so that the expression let y = x+ 1 in y � y has value 4 � 4 = 16under an assignment that gives x the value 3. De�ne a relation update(a;x ;v ;b)that holds if b is an assignment that agrees with a ex
ept that it gives x thevalue v . Representing let-expressions by terms of the form let(x ; e1; e2), extendthe eval relation of Se
tion 11.1 to handle them.Pra
ti
al exer
iseBoolean expressions 
ontaining operators like ^, _, : and ) 
an be representedby tree stru
tures, just like arithmeti
 expressions. For example, the expressionp _ (q ^ :p) 
ould be represented by the termor(vbl(p); and(vbl(q); neq(vbl(p)))):(neg is used here as the name for : to avoid 
onfusion with pi
oProlog's built-innot.)Write a program that 
he
ks whether a given Boolean expression is a tautology.Part of this program should be a relation eval(e ;a;v ) that holds if the Booleanexpression e has truth-value v (either 0 or 1) when its variables take the valuesgiven by pairs val(x ;u) in the list a. You will also need:� a relation variables(e ;b) that holds if b is the list of variables that appearin expression e , with dupli
ates removed. Example:variables(or(vbl(p); and(vbl(q); neg(vbl(p)))); p:q :nil)� a relation assign(b;a) that holds if a is a list of assignments for the variablesin the list b, ea
h 
hosen from the values 0 and 1. Examples:assign(p:q :nil ; val(p; 0):val(q ; 0):nil)assign(p:q :nil ; val(p; 0):val(q ; 1):nil)assign(p:q :nil ; val(p; 1):val(q ; 0):nil)assign(p:q :nil ; val(p; 1):val(q ; 1):nil)



11.2 Simplifying expressions 113These three relations eval , variables and assign then allow us to build a tautology-
he
ker as follows:tautology(e) :� not falsi�able(e):falsi�able(e ;b) :� variables(e ;b); assign(b;a); eval(e ;a; 0):That is, a formula is a tautology if it is not falsi�able, and a formula is falsi�ableif there is a way of assigning values to the variables that o

ur in it that makes theformula have the value 0. An optional extension to this part of the exer
ise wouldbe to build a parser for Boolean expressions, using the methods of Chapter 10,and integrate it with the tautology 
he
ker.Another possibility is to build a program that simpli�es Boolean expressionsusing algebrai
 rules. Some of the rules that 
ould be in
luded are that 1 is aunit element for ^ and a zero element for _, and vi
e versa:P _ 0 = P = 0 _ PP _ 1 = 1 = 1 _ PP ^ 0 = 0 = 0 ^ PP ^ 1 = P = 1 ^ POther useful rules are that ^ distributes over _, and _ distributes over ^:P ^ (Q _R) = (P ^Q) _ (P ^ R)P _ (Q ^R) = (P _Q) ^ (P _ R)You 
ould also add de Morgan's laws, and the equation ::P = P , but addingthe fa
t that _ and ^ are 
ommutative results in disaster (Why?).Lengthy sequen
es of simpli�
ations will 
ause pi
oProlog to run out of mem-ory, be
ause the program requires too mu
h information to be saved in 
aseba
ktra
king is needed. The following de�nition of the simplify relation is equiv-alent to the one in the text, ex
ept that it produ
es only one simpli�ed form of anexpression, and it does not 
onsume more and more storage spa
e if simplifyingan expression takes many steps:simplify(x ;y ) :� onestep(x ;x1; f); simplify1(f ;x1;y ):onestep(x ;y ; yes) :� simp(x ;y ); !:onestep(x ;x ; no) :� :simplify1 (yes;x ;y ) :� simplify(x ;y ):simplify1 (no;x ;x ) :� :



114 Evaluating and simplifying expressionsSome programming tri
ks have been used to make this program more eÆ
ient.These tri
ks depend on Prolog's 
ut operation (!), whi
h is explained in Se
-tion 14.3.� The 
ut operation redu
es the amount of potential ba
ktra
king in the pro-gram, on the assumption that we are only interested in �nding one simpli-�ed form of a given expression, and not all possible simpli�ed forms. Thismeans that pi
oProlog does not need to store information that is used inba
ktra
king.� Adding the 
ut makes it possible to delete the test that the �nal expressionis irredu
ible, be
ause the 
ontrol behaviour of the program ensures thatsimpli�
ation steps will be taken for as long as they are possible.� Most importantly, the program has been rearranged so that the main rela-tion simplify is re
ognized as being `tail re
ursive'. This makes it possiblefor pi
oProlog to treat the re
ursive de�nition of simplify as if it were a loop,saving the sta
k spa
e that would be needed to exe
ute a truly re
ursiverelation.The eÆ
ient program is less easy to understand than the original one, but thisdoes not matter mu
h, be
ause we 
an keep the original program as a spe
i�
ationfor what the optimized program should do, and the optimization a�e
ts onlyone small part of the whole program for simplifying expressions: all the spe
i�
knowledge about algebra is 
ontained in the relation simp, and that is una�e
tedby this optimization.



Chapter 12Hardware simulation

This 
hapter shows how logi
 programming 
an be used to build simple simu-lations of CMOS logi
 
ir
uits. These 
ir
uits are built from two types of tran-sistors: p{transistors and n{transistors (see Figure 12.1). Ea
h transistor hasthree wires 
alled the sour
e, the gate and the drain. In the simple model of tran-sistor behaviour that we shall use, a p{transistor a
ts as a swit
h that 
onne
tsthe sour
e and drain together if the gate is 
onne
ted to the ground rail (whi
hrepresents logi
 0). If the gate is 
onne
ted to the power rail (representing logi
1), then the sour
e and drain are not 
onne
ted together. With an n{transistor,the roles of logi
 0 and logi
 1 are reversed, and it is when the gate is 
onne
tedto the power rail that the transistor 
onne
ts its sour
e and drain together.This model of CMOS logi
 ignores the fa
t that transistors are really analoguedevi
es that 
an respond to voltages intermediate between the two supply rails.It also ignores dynami
 e�e
ts that depend on timing and the storage of 
harge,modelling only the stable states of a 
ir
uit. All these simpli�
ations mean thatthe simulations we shall build are not very a

urate. The most we 
an hope foris that 
ombinational 
ir
uits that do not work in our simulation are guaranteednot to work in pra
ti
e. This is better than nothing, be
ause it allows us to usesimulation as a way of testing 
ir
uit designs and �nding at least some of themistakes in them.The simplest CMOS 
ir
uit is the inverter shown in Figure 12.2. This 
ir
uit
ontains two transistors, a p{type and an n{type. The n{transistor is arranged sothat it 
onne
ts the output z to logi
 0 when it 
ondu
ts, and it does so when itsgate, 
onne
ted to the input a, is a logi
 1. The p{transistor has a symmetri
alfun
tion, and 
onne
ts z to logi
 1 whenever the input a is at logi
 0. Together,the two transistors ensure that the output is 
onne
ted to the appropriate logi
level whatever level is present at the input.We 
an build a simulation of this 
ir
uit using logi
 programming. The �rststep is to build simulations of individual transistors. A p{transistor is simulatedby de�ning a relation ptran(s;g;d) that is true if there is a stable state of a115
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e draingate gatedrain sour
ep{type n{typeFigure 12.1: p{ and n{transistorspower
groundinput a output z

Figure 12.2: CMOS inverterp{transistor in whi
h the signals at the sour
e, gate and drain are s, g andd respe
tively. There are two stable states for the p{transistor. In one state,the gate is 
onne
ted to ground, so the transistor is 
ondu
ting, and the sour
eand drain have the same voltage. In the other state, the gate is 
onne
ted to thepower rail, so the transistor is not 
ondu
ting, and the sour
e and drain may havedi�erent voltages. These stable states are re
e
ted in the following de�nition ofptran:ptran(x ; 0;x ) :� :ptran(x ; 1;y ) :� :In the �rst 
lause, the requirement that the sour
e and drain have the samevoltage is re
e
ted by using the same variable x for both arguments. An n{transistor is modelled by the relation ntran(s;g;d), de�ned as follows:ntran(x ; 1;x ) :� :ntran(x ; 0;y ) :� :



12 Hardware simulation 117This simply reverses the roles of 0 and 1.Apart from the wires, the only other 
omponents in the inverter 
ir
uit arethe power and ground rails, and we 
an simulate them with two relations pwr(x )and gnd(x ), de�ned like this:pwr(1) :� :gnd(0) :� :A
tually, we 
ould manage without these relations and just substitute 0 and 1wherever they are needed, but using these relations allows a more systemati
 wayof 
onne
ting 
ir
uits together.We are now ready to put the 
omponents together to make a simulation ofthe inverter 
ir
uit. The inverter has two external 
onne
tions, so it is simulatedby de�ning a relation inverter with two arguments, so that inverter(a; z) is trueif there is a stable state of the 
ir
uit in whi
h the input has voltage a andthe output has voltage z . A 
ir
uit is in a stable state if all its 
omponentsare stable, and every wire 
arries the same voltage at all its 
onne
tions. Theinverter relation is de�ned as follows:inverter(a; z) :�pwr(p); gnd(q);ptran(p;a; z);ntran(z ;a;q):The body of this 
lause 
ontains one literal for ea
h 
omponent, and variablesare used instead of wires to join the 
omponents together. For example, point pof the 
ir
uit is 
onne
ted to the power rail and to the sour
e of the p{transistor,so p appears as the argument of the pwr literal and as the �rst argument ofthe ptran literal. Internal 
onne
tions are neatly hidden, be
ause some of thevariables that appear in the 
lause body do not appear as arguments of the
lause head.Having de�ned this relation, we 
an ask questions about the stable states ofthe 
ir
uit. For example, this goal asks what the output may be if the 
ir
uit isstable with input 1:# :� inverter(1; z):The only answer is z = 0, be
ause the n{transistor 
ondu
ts, 
onne
ting theoutput to ground. We 
an also supply a value for the output and ask whatvalues of the input would lead to a stable state:# :� inverter(a; 0):The only answer is a = 1, be
ause if a were zero, then the p{transistor would
ondu
t, 
onne
ting the output to power.
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ground
input a output z
input b

Figure 12.3: NAND gateThis bi-dire
tional behaviour of the simulation is useful in some ways, be
auseit extends the variety of questions we 
an ask about the 
ir
uit. In other waysit is a disadvantage, be
ause it reveals that our model of CMOS 
ir
uits doesnot distinguish properly between inputs and outputs. If we make a the inputand z the output, the 
ir
uit of Figure 12.2 works 
orre
tly as an inverter, withthe transistors driving the output to the opposite logi
 level to the input. But ifwe try to make a the output and z the input, the 
ir
uit fails to work, be
ausetransistors 
annot drive their gates. Our simulation does not re
e
t this fa
t.Nevertheless, it is interesting to build simulations of more 
omplex 
ir
uits.Figure 12.3 shows a NAND gate with two inputs a and b and one output z .The output is logi
 1 unless both inputs are at logi
 1, in whi
h 
ase the outputis logi
 0. The 
ir
uit 
ontains two p{transistors in parallel that are responsiblefor driving the output high when either one input or the other is low. The twon{transistors in series are responsible for driving the output low when both theinputs are high.Here is a 
lause that simulates the NAND 
ir
uit:nand(a;b; z) :�pwr(p); gnd(q);ptran(p;a; z); ptran(p;b; z);ntran(z ;a;r); ntran(r;b;q):Like the inverter simulation, this de�nition of nand(a;b; z) 
an be used forwardsto 
al
ulate the output z from the inputs a and b, or ba
kwards to to �nd whatvalues of the inputs 
an lead to a given output.
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x power

groundFigure 12.5: Short 
ir
uitThe next step in building simulations is to put together small 
ir
uits like ourNAND gate and inverter to make larger 
ir
uits. For example, Figure 12.4 showshow a NAND gate and an inverter 
an be 
onne
ted to make an AND gate, whoseoutput is logi
 1 exa
tly if both inputs are a logi
 1. To build a simulation of theAND gate, we de�ne and(a;b; z) in terms of the nand and inverter relations:and(a;b; z) :�nand(a;b;w );inverter(w ; z):The and relation simulates our 
ir
uit by simulating the individual transistorsthat make it up, but we have 
onstru
ted it by putting together larger buildingblo
ks.What happens if we try to simulate a short 
ir
uit like the one shown inFigure 12.5? The simulation of this 
ir
uit is de�ned byshort(x ) :� pwr(x ); gnd(x ):With this de�nition, the goal # :� short(x ) has no answers. This means thatthe 
ir
uit has no stable states, and 
urrent will always 
ontinue to 
ow. Oursimple physi
al model of CMOS logi
 does not 
over this situation. In reality,the 
urrent that 
ows may be so large that the 
ir
uit overheats.A similar phenomenon o

urs if we try to 
onne
t the output of an inverterba
k to its input, as shown in Figure 12.6. This 
ir
uit is simulated by the goal# :� inverter(x ;x ). Again, this goal has no solutions, indi
ating that the 
ir
uit
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INVinput outputFigure 12.6: Inverter with feedba
kNAND
NAND

a x
by Figure 12.7: A 
ip-
ophas no stable states. In pra
ti
e, the 
ir
uit will either os
illate, or it will enter astate in whi
h both transistors of the inverter are partially 
ondu
ting, and theoutput is at an unpredi
table voltage intermediate between logi
 0 and logi
 1.Neither out
ome is 
overed by our model.Summary� The stable states of a single transistor 
an be modelled by a logi
 program.� Cir
uits that 
ontain many transistors 
an be modelled by de�ning newrelations in terms of the transistor relations, using variables to representthe wires.� Simulations of 
omplex 
ir
uits 
an be made by 
ombining relations in away that re
e
ts the hierar
hi
al stru
ture of the 
ir
uit itself.Exer
ises12.1 Write a program that simulates the 
ir
uit shown in Figure 12.7, in whi
htwo NAND gates are 
onne
ted in a ring. Determine the stable states of the
ir
uit and explain why it 
an be used to build 
omputer memory.
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output z
ground

input a
input b

Figure 12.8: An XOR gate12.2 Figure 12.8 shows a 
lever implementation of an XOR gate using only sixtransistors. (Both transistors in the parallel pair are needed be
ause of ele
tri
ale�e
ts that are not 
aptured in our simulations.) Build a logi
 program thatsimulates the 
ir
uit, and show that the output z is at logi
 1 if exa
tly one ofthe inputs a and b are at logi
 1.



Chapter 13Program transformation

We have seen that only SLD{resolution is needed to exe
ute logi
 programs,and that it involves only resolution steps in whi
h one of the input 
lauses is agoal, and the other is a 
lause from the program. In this 
hapter, we look atan appli
ation for the more general kind of resolution in whi
h both inputs maybe proper 
lauses. The appli
ation is transforming a logi
 program to obtainanother program with the same meaning. The hope is that, if the transformationis 
arried out with the right intuitions, then the new program will be more eÆ
ientthan the old one.Although pure logi
 
annot help us to estimate whether a transformed programis more eÆ
ient than the original one, it 
an guarantee that the transformedprogram gives the same answers. The reason for this is simple; if we derive ea
h
lause in the new program from the 
lauses of the original program, then any
on
lusion derived from the new program 
ould also be derived from the originalprogram by joining the derivations together.13.1 Unfolding and symboli
 exe
utionThe simplest kind of transformation is to unfold a program, repla
ing a 
all toa relation by the body of a 
lause. The following three 
lauses de�ne a relationord(a) that is true if a is an ordered list of numbers:ord(nil) :� : (ord:1)ord(x :nil) :� : (ord:2)ord(x :y :a) :� x < y ; ord(y :a): (ord:3)The �rst two 
lauses deal with the spe
ial 
ases where a has zero or one elements,and the third deals with lists of two or more elements. Su
h a list is ordered ifthe �rst element is less than the se
ond and the tail of the list is also ordered.122



13.2 Fold{unfold transformation 123If this de�nition of ord were used in a program that often tested short lists tosee if they were ordered, then it might be more eÆ
ient to treat lists of length2 as a spe
ial 
ase also. We 
an derive a 
lause that 
overs exa
tly this 
aseby using resolution on the 
lauses in the de�nition. Taking 
lauses (ord.2) and(ord.3), we 
an mat
h them up like this:ord(x :y :a) :� x < y ; ord(y : a )ord(u :nil) :�The mat
hing substitution is fa nil ;u  yg, and the resolvent is the 
lauseord(x :y :nil) :� x < y :This is pre
isely the spe
ial 
ase we wanted.This kind of unfolding is similar to the transformation we 
an do to ordinaryimperative programs by expanding subroutine 
alls in-line. The bene�ts and
osts are the same, in that we save the 
ost of a subroutine 
all or resolution stepat the expense of making the program larger. More radi
al transformations 
anbe a
hieved by unfolding a program, rearranging the result, then folding again.13.2 Fold{unfold transformationHere is a de�nition of the relation elem(a;n ;x ) that is true when the element ofthe list a at position n is x , 
ounting from zero:elem(x :a; 0;x ) :� : (elem:1)elem(x :a; s(n);y ) :� elem(a;n ;y ): (elem:2)In pla
e of the built-in numbers of Prolog, this de�nition uses a number system inwhi
h zero is represented by the term 0, and n+1 is represented by the term s(n){ so 3 would be represented by s(s(s(0))). This number system would be veryineÆ
ient if we a
tually used it in a program, but it will make the transformationwe are about to do more 
onvenient. In terms of elem, we 
an de�ne a relation
onse
(x ;y ;a) that is true if x and y are 
onse
utive elements of a:
onse
(x ;y ;a) :� elem(a;n ;x ); elem(a; s(n);y ): (
onse
:1)Now the 
hallenge is this: to design a version of 
onse
 that does not use elem.We 
an begin by resolving (
onse
.1) with a variant of (elem.1):
onse
(x ;y ;a) :� elem( a; n ;x ); elem(a; s(n);y ):elem(z :b; 0; z ) :�



124 Program transformationThis generates the resolvent
onse
(x ;y ;x :b) :� elem(z :b; s(0);y ):Two more resolution steps, one with (elem.2) and another with (elem.1) allow usto derive the 
lause
onse
(x ;y ;x :y :
) :� :This 
lause is one of the 
lauses in our desired de�nition of 
onse
, 
overing the
ase that the �rst element sele
ted is the very �rst element of the list.Another 
lause 
an be obtained by resolving (
onse
.1) with (elem.2):
onse
(x ;y ;a) :� elem( a; n ; x ); elem(a;n ; s(x ))elem(z :b; s(m);w ) :� elem(b;m ;w )The resolvent is
onse
(x ;y ; z :b) :� elem(b;m ;x ); elem(z :b; s(s(m));y ):Now we resolve again with (elem.2), this time 
hoosing the se
ond elem literal.The result is
onse
(x ;y ; z :b) :� elem(b;m ;x ); elem(b; s(m);y ):The body of this 
lause is just a variant of the body of (
onse
.1), so we make a�nal folding step, repla
ing the body with a 
all to 
onse
:
onse
(x ;y ; z :b) :� 
onse
(x ;y ;b):We have now derived two 
lauses that together make up a new de�nition of
onse
:
onse
(x ;y ;x :y :
) :� : (
onse
:2)
onse
(x ;y ; z :b) :� 
onse
(x ;y ;b): (
onse
:3)This new de�nition is more eÆ
ient than the old one, even ignoring the inef-�
ien
y 
aused by using terms to represent numbers. To �nd two 
onse
utiveelements of a list, the old de�nition would 
ount the position of one element,then 
ount again to �nd the other one, requiring two traversals of the list. Thenew de�nition �nds both elements in a single traversal, saving about half thework.



13.3 Improving the reverse program 125The steps in deriving the new program from the old one have, with one ex
ep-tion, been steps of resolution between 
lauses drawn from the old program. Theex
eption is the folding step, whi
h uses the de�nition of 
onse
 ba
kwards. Ourde�nition of 
onse
 tells us that the 
lause
onse
(x ;y ; z :b) :� elem(b;m ;x ); elem(b; s(m);y ):follows from the 
lause
onse
(x ;y ; z :b) :� 
onse
(x ;y ;b):But we want to know the 
onverse! Although there are models of the program inwhi
h the �rst of these 
lauses is true but the se
ond is false, we are interested inthe least model of the program, where the ground atoms that are true are exa
tlythose that 
an be derived from the program. In this model, the folding step isjusti�ed, be
ause we know that an atom 
onse
(x ;y ;b) 
an be derived only byusing the 
lause (
onse
.1).Logi
ally speaking, what we have done is this: if T0 is the program 
ontaining(
onse
.1) together with the de�nition of elem, and T1 is the program 
ontaining(
onse
.2) and (
onse
.3), we have shown that any ground atom P that 
an bederived from T1 
ould also be derived from T0. In short, we have shown that T1gives no answers that would not also be given by T0. The new program is at leastpartially 
orre
t, in that all the answers it gives are 
orre
t.We 
an 
he
k that the new program is totally 
orre
t, giving all the answersthat 
ould be given by the original program, by examining the sear
h tree in theold program for the goal # :� 
onse
(x ;y ;a), shown in Figure 13.1. At ea
hnode of the tree all mat
hing 
lauses are shown, and we 
an 
he
k that everypath has been 
overed by the 
lauses we have derived. So if any pair of elementsX and Y 
an be shown to satisfy 
onse
(x ;y ;a) using the old program, they
an be shown to do so using the new program also.13.3 Improving the reverse programSo far, our transformations have used only unfolding and folding, staying entirelywithin the logi
 of Horn 
lauses. More sophisti
ated transformations may needus to apply laws that 
annot be expressed purely as Horn 
lauses.The reverse program from Se
tion 5.1 provides an example:reverse(nil ; nil) :� : (rev:1)reverse(x :a;
) :� reverse(a;b); append(b;x :nil ;
): (rev:2)append(nil ;b;b) :� : (app:1)append(x :a;b;x :
) :� append(a;b;
): (app:2)
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onse
(x ;y ;a):# :� elem(a;n ;x ); elem(a; s(n);y ):
# :� elem(b; 0;y ):# :� :

n = 0;a = z :b# :� elem(z :b; s(0);y ):
b = y :


n = s(m);a = z :b
# :� elem(b;m ;x ); elem(z :b; s(s(m));y ):# :� elem(b;m ;x ); elem(b; s(m);y ):

Figure 13.1: Sear
h tree for # :� 
onse
(x ;y ;a).Although it is a simple de�nition of reverse, this program is rather ineÆ
ient,be
ause it repeatedly uses append to add elements to the end of the reversed list.This makes the running time of the program quadrati
 in the length of the inputlist. We 
an derive a more eÆ
ient program for reverse by transformation.The �rst step is to introdu
e a new relation revapp that 
ombines reverse andappend , perhaps inspired by the body of 
lause (rev.2):revapp(a;
 ;d) :� reverse(a;b); append(b;
 ;d):We 
an now start to unfold. Resolving the de�nition of revapp with (rev.1) givesthe new 
lauserevapp(nil ;
 ;d) :� append(nil ;
 ;d):in whi
h the mat
hing substitution has �lled in the �rst argument with thespe
i�
 value nil . We 
an resolve this with (app.1) to obtain the 
lauserevapp(nil ;
 ;
) :� :that deals dire
tly with the 
ase that revapp's �rst argument is nil .What if the �rst argument is non-nil? We 
an resolve the de�nition of revapp
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iativity of appendwith (rev.2) to obtainrevapp(x :e ;
 ;d) :�reverse(e ; f); append(f ;x :nil ;b); append(b;
 ;d):So far we have used just Horn 
lause reasoning, but the next step uses the fa
tthat provided p and q do not appear elsewhere in the 
lause, the two literalsappend(u ;v ; p); append(p;w ; z)
an be repla
ed by the two literalsappend(v ;w ;q); append(u ;q; z):As Figure 13.2 shows, this transformation uses the fa
t that appending lists is anasso
iative operation. A formal proof of this fa
t would need indu
tion on lists.Applying the transformation results in the following 
lause:revapp(x :e ;
 ;d) :�reverse(e ; f); append(x :nil ;
 ;g); append(f ;g;d):The term x :nil now appears as the �rst argument of append , so we 
an use thede�nition of append to unfold the literal and solve it. In two resolution steps, wederive �rstrevapp(x :e ;
 ;d) :�reverse(e ; f); append(nil ;
 ;h); append(f ;x :h ;d):and thenrevapp(x :e ;
 ;d) :�reverse(e ; f); append(f ;x :
 ;d):



128 Program transformationThe �nal step is to noti
e that the body of this 
lause is an instan
e of the bodyof the 
lause de�ning revapp, so we 
an fold to obtainrevapp(x :e ;
 ;d) :� revapp(e ;x :
 ;d):The �nal part of the transformation pro
ess is to show that reverse 
an be de�nedin terms of revapp. This requires another law, that the literal append(a; nil ;b)
an be inter
hanged with a = b, in other words, that nil is a right unit for theappend operation. We apply this law as follows: start with the (evidently true)
lausereverse(a;b) :� reverse(a;
);
 = b:Now repla
e 
 = b by the equivalent append literal:reverse(a;b) :� reverse(a;
); append(
 ; nil ;b):Finally, fold with the de�nition of revapp:reverse(a;b) :� revapp(a; nil ;b):This 
ompletes the derivation of a de�nition of reverse that does not use append :reverse(a;b) :� revapp(a; nil ;b): (rev:3)revapp(nil ;b;b) :� : (revapp:1)revapp(x :a;b;
) :� revapp(a;x :b;
): (revapp:2)This program 
an solve a goal # :� reverse(a;b), where a is a list of length n,in n + 2 resolution steps: (rev.3) is applied �rst, followed by n appli
ations of(revapp.2) that redu
e a to nil , and �nally an appli
ation of (revapp.1). This ismu
h more eÆ
ient than the quadrati
 version of reverse we began with.Summary� Unfolding allows spe
ial-
ase 
lauses to be derived from a program by sym-boli
 exe
ution.� Folding, 
ombined with unfolding, allows programs to be transformed toimprove their pattern of re
ursion.� More general transformations 
ombine folding and unfolding with the useof algebrai
 properties of the relations involved.
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ises13.1 Use unfolding to derive a 
lause for the ord relation that deals with listsof length 3.13.2 Write a de�nition of 
onse
 in terms of append , and use program trans-formation to derive from it the same dire
t re
ursive de�nition of 
onse
 thatwas derived in the text.13.3 Use program transformation to show the equivalen
e of the �rst and se
-ond de�nitions of 
onne
ted given in Se
tion 9.1.13.4 A path in a binary tree is a list of tokens, ea
h l or r . For example, thepath r :l :nil is a path in the treefork(tip(1);fork(fork(tip(2); tip(3));tip(4)))that leads to the sub-tree fork(tip(2); tip(3)).a. De�ne by re
ursion a relation sele
t(t ; p;u) that holds if p is a path in thetree t that leads to sub-tree u .b. De�ne a relation repla
e(t ; p;u ;t 0) that holds if t 0 is the result of repla
ingin t the sub-tree sele
ted by p with the new sub-tree u .
. Find a non-re
ursive de�nition of sele
t in terms of repla
e.d. The relation 
hange is de�ned by
hange(t ;u ;u 0;t 0) :�sele
t(t ; p;u); repla
e(t ; p;u 0;t 0):By unfolding and folding, transform this de�nition of 
hange into a re
ursivede�nition that does not use the auxiliary relations sele
t and repla
e.



Chapter 14About pi
oProlog

The remainder of this book 
ontains a des
ription of pi
oProlog, a simple but
omplete implementation of a logi
 programming language similar to Prolog.The main di�eren
es are that real Prolog has a more 
exible { and thus more
ompli
ated { syntax, and that implementations of real Prolog 
ome with a largersele
tion of `built-in' relations. Many of these relations have no real meaning interms of logi
, but perform useful fun
tions 
onne
ted with input/output and soon. Despite the small size of the pi
oProlog implementation presented here (it
onsists of about 2000 lines of Pas
al), it runs at a useful speed, and 
an be usedto run all the logi
 programs 
ontained in earlier 
hapters of the book.The implementation is an interpreter, that is, a program that inputs a logi
program and 
arries out dire
tly the a
tions required to exe
ute it. Many Pro-log implementations also in
lude a 
ompiler, a program that translates a logi
program into ma
hine 
ode that when it is run 
arries out the a
tions des
ribedby the logi
 program. As with any language implementation, 
ompiling logi
programs instead of interpreting them 
an provide an immense improvement inexe
ution speed, be
ause the analysis of what a
tions are needed to exe
ute theprogram is 
arried out on
e and for all by the 
ompiler, and obje
t 
ode thatis generated spe
ially for ea
h program 
an a
hieve these a
tions faster thanthe general-purpose 
ode in an interpreter. For simpli
ity, in this book we 
on-sider only an interpreter, although many of the data stru
tures used to representlogi
 programs and states of exe
ution would be the same in a 
ompiler-basedimplementation.There are several reasons to present an implementation of logi
 programmingin a book that also dis
usses the theory behind logi
 programs and the pra
ti
eof writing them. One reason is to 
omplete the story behind the proof theoryof Horn 
lause programs 
ontained in Chapters 5 to 7, by showing that SLD{resolution 
an be used as the basis of an eÆ
ient exe
ution me
hanism, and
on�rming that the a
tions of a Prolog system 
an (with a few reservations) beviewed as symboli
 reasoning using resolution.130



14.1 The pi
oProlog language 131Another purpose is to give the reader some understanding of the 
ost in spa
eand time of exe
uting typi
al logi
 programs. Too many Prolog programs areunne
essarily 
ramped in style, be
ause their designers suspe
t that any pro-gram that does not 
losely resemble a 
onventional, imperative program will behopelessly ineÆ
ient. Often, the reverse is true, and a program that exploits theunique features of logi
 programming 
an be made to work well. Su
h a programis often faster than an equivalent program written in a more imperative style.This is parti
ularly likely if the `imperative' program relies on the non-logi
alfeatures of many Prolog systems, whi
h 
an be used to simulate the e�e
t of theassignment 
ommand of imperative programming, but only in a very ineÆ
ientway.The �rst part of this 
hapter is a summary of the pi
oProlog language, and
an be used as a manual for the pi
oProlog system. Chapters 15 and 16 des
ribein more detail the most interesting parts of the system, the part that implementsdepth-�rst sear
h of the SLD{tree of a goal, and the part that implements substi-tutions and uni�
ation. Chapter 17 
ontains notes on the Pas
al diale
t in whi
hthe interpreter is written and the ma
ro pro
essor that is used to extend Pas-
al for present purposes. The 
hapter also des
ribes the supporting parts of thepi
oProlog system, su
h as the syntax analyser that parses pi
oProlog programs.Chapter 18 des
ribes three optimizations that are in
luded in the pi
oProloginterpreter. Though not essential to a working Prolog system, these optimiza-tions greatly redu
e the exe
ution time and memory needs of Prolog programs.In parti
ular, they allow programs that have a simple iterative form to run in
onstant spa
e.14.1 The pi
oProlog languageThe input to pi
oProlog is a program written in an as
ii variant of the notationwe have been using throughout this book. Here is a summary of the syntax ofthe language:program ::= f 
lause g
lause ::= [ atom j `#' ℄ `:-' [ literal f `,' literal g `.'literal ::= [ `not' ℄ atomatom ::= 
ompound j term `=' termterm ::= primary [ `:' term ℄primary ::= 
ompound j variable j number j string j 
har j `(' term `)'
ompound ::= ident [ `(' term f `,' term g `)' ℄As in our earlier dis
ussion of parsing (Chapter 10), ea
h equation de�nes a
ertain 
lass of phrases in the language. Here we use a few extra notations for
onvenien
e: [ stu� ℄ stands for an optional o

urren
e of stu� , and the notation
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oPrologf stu� g stands for `zero or more' o

urren
es of stu� . In parti
ular, the notationterm f `,' term g stands for one or more instan
es of term separated by 
ommas.Various sorts of primitive symbols are not de�ned by the syntax summary above:� an ident is any non-empty sequen
e of letters, digits and unders
ore 
har-a
ters that begins with a lower-
ase letter.� a variable is any non-empty sequen
e of letters, digits and unders
ore 
har-a
ters that begins with an upper-
ase letter or an unders
ore.� a number is any non-empty sequen
e of digits.� a string is any sequen
e of 
hara
ters other than the double-quote 
hara
ter("), en
losed in double-quotes.� a 
har is any single 
hara
ter, en
losed in single quotes.Numbers and 
hara
ters are atomi
 obje
ts in pi
oProlog. Strings are equivalentto lists of 
hara
ters, so that the string "mike" is a shorthand for the list written'm':'i':'k':'e':nil. This means that ordinary list-pro
essing relations likeappend and reverse work equally well on strings. The routine that prints answersto queries in the pi
oProlog system examines ea
h list to see if it is a
tually astring, and if so it uses string notation to print it.Another thing not shown in the syntax summary is the fa
t that 
omments
an appear in pi
oProlog programs. Like the 
omments of Pas
al, they beginwith /* and end with */. Comments do not nest, and may appear anywhere ablank spa
e would be allowed.14.2 Built-in relationsThe pi
oProlog language has a number of built-in relations.� The relation plus(x ;y ; z) holds if x , y and z are numbers and x +y = z .The relation times(x ;y ; z) holds if x , y and z are numbers and x�y = z .These relations are implemented in su
h a way that any two of x , y andz 
an be spe
i�ed, and pi
oProlog will �nd the third number (if any) that
ompletes the equation. If fewer than two values are known at the timepi
oProlog tries to solve the goal, a run-time error o

urs.� The relation integer(x ) is true if x is a known integer, and the relation
har(x ) is true if x is a known 
hara
ter. Both relations are judged false ifx is an unknown variable at the time of solving the goal, even though thereare many substitutions for x that would make them true.� If p is a term that would be a valid literal, then the relation notp is trueif attempting to prove p results in failure, and it is false if attempting toprove p results in su

ess. Provided p is a ground literal at the time ofsolving the goal, this is an implementation of negation as failure. If p isnot a valid literal (for example, if it is a number or an unknown variable),



14.3 The 
ut symbol 133a run-time error o

urs. If p is a valid literal but is not ground, the resultsare unpredi
table.� The relation x = y is de�ned exa
tly as if the pi
oProlog program 
ontainedthe 
lause x = x :� . It is provided as a built-in relation for the sake of
onvenien
e.� The relation false (with no arguments) is de�ned to be always false, just asif it were de�ned by the empty set of 
lauses. It is provided as a built-inrelation for 
onvenien
e. Pi
oProlog reports an error if a program 
ontains a
all to any other relation with no 
lauses, be
ause that is usually a mistake.� The relation `!' (with no arguments) is the 
ut symbol. Its e�e
t is des
ribedin the next se
tion.Most Prolog implementations have many more built-in relations than are pro-vided by pi
oProlog. The small number of built-in relations in pi
oProlog providea guide to the way others are implemented.14.3 The 
ut symbolThe 
ut symbol `!' may appear as a literal in the body of a goal or 
lause. It istreated by pi
oProlog as if it is logi
ally true, but it has the side-e�e
t of 
ausingpi
oProlog to dis
ard 
ertain alternatives to the derivation that lead to the 
ut.This e�e
t is most easily explained through an example:p(x ) :� q(x ):p(x ) :� r(x ;y ); !; s(y ):p(x ) :� t(x ):This de�nition has three 
lauses, and pi
oProlog's top-to-bottom rule for trying
lauses means that they will be tried in the order that they are written. In solvingthe goal # :� p(fred), pi
oProlog will rea
h the se
ond 
lause only if the �rst
lause has failed be
ause q(fred) is false. If it rea
hes the 
ut symbol, then it hasjust found the �rst solution to the literal r(fred ;y ), and if the 
ut symbol werenot there, it would be just about to attempt the literal s(y ) for some value of y .At this point, pi
oProlog is exploring a parti
ular derivation, but it is keepingseveral alternatives for later exploration if this one fails. There may be othersolutions of r(fred ;y ); there may be derivations that use the third 
lause in thede�nition of p, and there may be alternatives to the derivation that lead to thegoal # :� p(fred) in the �rst pla
e.The 
ut symbol dis
ards all but the last group of alternatives; that is, itdis
ards all the alternatives that have been 
reated sin
e the p(fred) literal wassele
ted for exe
ution. This means that if the p(fred) literal is going to be solvedat all, it will be by solving s(y ), with the 
urrent value for y that was obtained bysolving r(fred ;y ). Alternative derivations that were 
reated before the sele
tion
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oPrologof the p(fred) literal are not dis
arded by the 
ut, and neither are alternatives(su
h as alternative ways of solving s(y )) that are 
reated after the 
ut has beenexe
uted.There are several reasons for introdu
ing 
ut symbols into a program. Dis-
arding alternatives to the 
urrent derivation 
an allow pi
oProlog to re
laim thestorage spa
e that is used to save them, and to save the time that would be spentin exploring them. It may be that we know these alternatives 
annot lead to asolution, so that dis
arding them does not a�e
t the set of solutions generatedby the program, or it may be that we are interested only in the �rst solutionfound by the program, and do not 
are if other solutions are dis
arded. In that
ase, adding 
uts to the program 
an make it more eÆ
ient without a�e
ting itsproper fun
tioning.For example, in the program for p(x ), we might know that the value of xwould always be supplied, and that no value of x 
an lead to both a solutionof r(x ;y ) and a solution of t(x ). Perhaps r(x ;y ) 
an be satis�ed only if xis an even number (and for only one value of y ), and t(x ) is satis�ed onlyif x is odd. In that 
ase, the 
ut symbol shown in the program would notdis
ard any alternatives that 
ould possibly lead to a solution. When the 
utsymbol is rea
hed, we know that x is even, and in that 
ase the third 
lausefor p 
annot possibly be used. Dis
arding this alternative instead of exploringit saves the time that would be wasted in trying to solve t(x ) for an even valueof x , and allows the spa
e needed to re
ord the alternative to be re
laimedand re-used.A 
ommon use of 
uts is in re
ursive de�nitions that de�ne a relation on listsby pattern mat
hing. For example, here is a version of append that has a 
ut inone of its 
lauses:append(x :a;b;x :
) :� !; append(a;b;
):append(nil ;b;b) :� :This de�nition is useful if append is always used in su
h a way that the �rstargument is known (i.e., it is not a variable). If the head of the �rst 
lausemat
hes the goal, we know that the �rst argument of append is of the formx :a, so it 
annot mat
h the nil that appears in the head of the se
ond 
lause.This makes the 
ut harmless, be
ause we know that the se
ond 
lause will onlybe dis
arded if it 
annot mat
h the goal. It is also bene�
ial, be
ause it savesthe time needed to mat
h the se
ond 
lause, and it allows storage spa
e to bere
overed. In fa
t, the 
ut makes it possible for pi
oProlog to re
over all theworking spa
e needed for append . We 
an also see that if the se
ond 
lausemat
hes a goal, then the �rst 
lause 
annot mat
h. However, there is no need fora 
ut in the se
ond 
lause, be
ause if pi
oProlog rea
hes the se
ond 
lause, thenit has already tried and dis
arded the �rst one.Adding a 
ut like this spoils the generality of the append program, be
ause we
annot use the version that 
ontains a 
ut to split a list into two parts. The 
ut



14.3 The 
ut symbol 135dis
ards all but the �rst solution to a goal like# :� append(a;b; 1:2:3:4:nil):That is, it dis
ards all but the solution with a = 1:2:3:4:nil and b = nil . Anappli
ation that needed to do both jobs would need two versions of append , onewith the 
ut and one without.Whether it is a
tually ne
essary to in
lude 
uts like this one depends on thesophisti
ation of the Prolog implementation being used. Many systems are ableto determine by analysing the program that the se
ond 
lause 
annot mat
h ifthe �rst argument of append is known and the �rst 
lause mat
hes, so they areable to a
hieve the same eÆ
ien
y without an expli
it 
ut. With su
h systems,the same version of append 
an be used both to join lists and to take them apart,without any loss of eÆ
ien
y. Even in pi
oProlog, the indexing feature des
ribedin Chapter 18 means that (at least in simple situations like this one) the 
ut isnot needed.The use of 
uts to improve the eÆ
ien
y of a program is easy to defend onpra
ti
al grounds. A less defensible use of 
uts is to 
over up a logi
al error inthe program. For example, suppose we de�ne max (x ;y ; z) to be true if z is themaximum of x and y :max (x ;y ;x ) :� geq(x ;y ):max (x ;y ;y ) :� lt(x ;y ):(where geq means `greater or equal' and lt means `less than'). This program isdesigned to be used when the �rst two arguments are known integers, and thethird is an unknown variable, intended to re
eive the output. As a �rst step inimproving the eÆ
ien
y, we noti
e that it is pointless to try the se
ond 
lause ifthe test geq(x ;y ) has su

eeded. So we 
an add a 
ut like this:max (x ;y ;x ) :� geq(x ;y ); !:max (x ;y ;y ) :� lt(x ;y ):This 
ut improves the eÆ
ien
y of the program without a�e
ting its logi
al mean-ing. But now we see that if the se
ond 
lause is tried at all, then it must bebe
ause the test geq(x ;y ) has failed. In that 
ase, the test lt(x ;y ) is bound tosu

eed, and we may as well delete it, like this:max (x ;y ;x ) :� geq(x ;y ); !:max (x ;y ;y ) :� :This last 
hange improves the speed of the program a little more, but it meansthat we 
an no longer read and understand the meaning of ea
h 
lause separately,be
ause the se
ond 
lause says something that is true only if we have already tried
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oPrologand reje
ted the �rst 
lause. Also, the program works properly only if the �rstand se
ond arguments of max are known and the third is unknown at the timethe 
lauses are used. If we ask# :� max (4; 3; 3):then the exe
ution goes like this: the goal does not mat
h the head of the �rst
lause, be
ause the �rst and third arguments in the goal are di�erent. So the �rst
lause is dis
arded, and we try the se
ond 
lause. This mat
hes, so we produ
ethe answer `yes'. Of 
ourse, the 
orre
t answer is `no', be
ause the maximum of4 and 3 is not 3 but 4.Cuts of the �rst kind, whi
h dis
ard no solutions at all, or dis
ard only solutionsthat are a
tually 
orre
t but not of any interest, are often 
alled green 
uts.Cuts of the se
ond kind, like the one in our max program, are 
alled red 
uts.They dis
ard solutions that would otherwise be found by the program, but arein
orre
t in terms of the problem to be solved. Red 
uts tend to make programsmore diÆ
ult to understand, and it is best to avoid them if the eÆ
ien
y gainis minor, as it would be in the max example. In other situations, the saving ofwork may be mu
h larger than avoiding a super
uous test lt(x ;y ), and then theuse of a red 
ut may be justi�ed.14.4 Implementation overviewPi
oProlog is implemented by a program of about 2000 lines, written in a subsetof standard Pas
al. The program is divided into 20 modules that are largelyindependent of ea
h other (see Table 14.1). Be
ause the pi
oProlog program iswritten in Pas
al, the boundaries of these modules are not marked formally inthe sour
e 
ode, and they 
annot be 
he
ked by the 
ompiler, but this does notredu
e the bene�ts of designing the program in a modular way.Some of these modules implement general-purpose fa
ilities that are either notprovided in standard Pas
al, or are provided in a form that is not quite the onewe need. Among these, the string bu�er module provides storage for variable-length 
hara
ter strings, and the 
hara
ter input module provides simple inputof 
hara
ters from text �les and the keyboard. The memory allo
ation modulemanages the blo
ks of storage that are used to store the pi
oProlog program andthe data stru
tures that represent an exe
uting goal.Other modules use standard 
ompiler te
hniques to analyse the syntax ofa pi
oProlog program and build a data stru
ture that represents it internally.There is a symbol table that stores information about ea
h identi�er or vari-able name that appears in the program, and an additional table of variablenames that re
ords information about the variables that appear in the presentgoal or 
lause. The pi
oProlog program is divided into meaningful tokens bythe s
anner, and the tokens are assembled into goals and 
lauses by a parser,



14.4 Implementation overview 1371. Coding 
onventions2. Error handling3. String bu�er4. Representation of terms5. Memory allo
ation6. Chara
ter input7. Representation of 
lauses8. Sta
k frames and interpreter registers9. Symbol table10. Building terms on the heap11. Printing terms12. S
anner13. Variable names14. Parser15. Trail16. Uni�
ation17. Interpreter18. Built-in relations19. Garbage 
olle
tion20. Main program Table 14.1: Modules of pi
oPrologwhi
h 
onstru
ts an internal representation of the program that is later used toexe
ute it.The most interesting parts of the implementation are those that exe
ute goals.At ea
h stage, the state of exe
ution is re
orded in a sta
k, and there is a modulethat de�nes the layout of sta
k frames, ea
h representing a goal that has beenderived from the original goal by SLD{resolution. The main interpreter manip-ulates this sta
k in order to exe
ute the goal by depth-�rst sear
h, and 
alls theuni�
ation algorithm to mat
h goal literals against the heads of 
lauses. An extrasta
k, 
alled the trail , re
ords whi
h variables in the pi
oProlog program havehad values assigned to them by the unifying substitution in ea
h resolution step,so that these assignments 
an be removed when the exe
ution ba
ktra
ks.A few more modules 
omplete the implementation. There is a 
olle
tion ofpro
edures for building terms that is used by the parser, and a pro
edure forprinting terms that is used to display the answers when exe
ution su

eeds.Another module implements the built-in relations. Finally, there is a garbage
olle
tor that re
y
les storage that has been allo
ated but is no longer a

essible.The next few 
hapters des
ribe the implementation of pi
oProlog in moredetail. Chapter 15 explains how to use a sta
k to represent the state of a depth-�rst sear
h, and Chapter 16 explains how substitution and uni�
ation are im-plemented. The 
ru
ial question in both these 
hapters is how the abstra
t
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oPrologstru
tures of logi
 
an be made 
on
rete in 
omputer memory in an eÆ
ient way,so that ea
h step in the exe
ution of a pi
oProlog program has a 
ost that isproportionate to the progress it a
hieves.Chapter 17 is a more 
on
rete a

ount of pi
oProlog, in
luding notes on thema
ro pro
essor that is used to implement small extensions to Pas
al, and in-formation about the supporting routines (su
h as the parser) that 
omplementthe exe
ution me
hanism des
ribed in the earlier 
hapters. Chapter 18 des
ribessome re�nements that make pi
oProlog more eÆ
ient: the garbage 
olle
tor, anindexing s
heme and the optimization of tail re
ursion.A 
omplete listing of the sour
e 
ode of pi
oProlog appears in Appendix C,and Appendix D 
ontains a 
ross-referen
e listing that lists the line numberswhere ea
h identi�er is used. For details of how to get a ma
hine-readable 
opyof the sour
e 
ode, see the Prefa
e.



Chapter 15Implementing depth-�rst sear
h

The basis of the pi
oProlog interpreter is an implementation of a depth-�rstsear
h in the sear
h tree of a goal. This 
hapter 
ontains an outline of the algo-rithms and data stru
tures used in the implementation. We begin by showing thevery simple sear
h algorithm as a logi
 program, then des
ribe how the algorithm
an be translated into Pas
al, and how the state of the sear
h 
an be representedso that ea
h resolution step has a small, �xed 
ost. Finally, we dis
uss someoptimizations to the algorithm and some details of the 
hoi
e of data stru
tures.15.1 Depth-�rst sear
hGiven a logi
 program P , we 
an de�ne a binary relation ` on goals as follows:G ` G0 if and only if G0 is obtained from G by a step of SLD{resolutionwith a 
lause from the program.The problem solved by the pi
oProlog interpreter is this: given a goal G0, �ndwhether there is an SLD{refutation of G0; that is, whether G0 `� ~, where~ = (# :�) is the empty goal, and `� is the re
exive{transitive 
losure of `.A
tually, we are also interested in the answer substitutions 
omputed by SLD{refutations of G0, but we 
an add them later. Thus the problem to be solvedby the pi
oProlog interpreter is an instan
e of the graph-sear
hing problemsdis
ussed in Chapter 9, and it uses one of the sear
hing methods studied there,depth-�rst sear
h. We begin with a version of the program from Se
tion 9.3, inwhi
h we imagine that the goals of one logi
 program have been represented byterms that 
an be manipulated by another logi
 program:exe
(g0) :� dfs(g0:nil): 139
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hdfs(g:s) :� su

ess(g):dfs(g:s) :� next(g;a); append(a; s; s1); dfs(s1):Here exe
(g0) is the relation that is true if the goal represented by g0 has anSLD{refutation, and dfs(s) is true of a list of goals s if any one of them hasan SLD{refutation. The program uses the two relations su

ess(g), true if grepresents the empty goal, and next(g;a), true if a is the list of goals g 0 su
hthat g ` g 0.We shall begin our development of pi
oProlog by translating this logi
 programinto Pas
al. At �rst, we shall use an extended version of Pas
al that has sequen
esas a data type, with a number of built-in operations. Later we shall explainhow these sequen
es 
an be represented and manipulated using the data typesand operations of standard Pas
al. The advantage of presenting the pi
oPrologsystem in this way is that it allows us to separate the explanation of the broadstrategy for implementing logi
 programming from the details of how to �t thedata stru
tures into 
omputer memory.We shall use a number of simple operations on sequen
es in our initial designs.We write hx1; x2; : : : ; xni for the sequen
e s that 
ontains the n elements x1, x2,: : : , xn in that order. We write length(s) for its length n, and for 1 � i � n, wewrite s(i) for the element xi that appears in position i of s, 
ounting from 1. If sis non-empty, then head(s) = x1 is the �rst element of s, and last(s) = xn is itslast element. The sequen
e tail(s) = hx2; : : : ; xni 
ontains all elements of s butthe �rst, and front(s) = hx1; : : : ; xn�1i 
ontains all elements of s but the last. Wewrite s � t for the 
on
atenation of sequen
es s and t, a sequen
e that 
ontainsall the elements of s in their original order, followed by all the elements of t.Figure 15.1 shows a translation of this logi
 program into our extended diale
tof Pas
al. The program uses a Boolean fun
tion su

ess(G) that returns true ifG is the empty goal, and a sequen
e-valued fun
tion next(G) that returns { insome order { the list of goals G0 su
h that G ` G0. There are two invariants thatare maintained in the program:� Every goal G in the sequen
e s is derivable from the original goal G0, thatis, G0 `� G.� If G0 has a refutation, so does some goal G in the sequen
e s, that is, ifG0 `� ~ then G `� ~ for some G 2 s.These invariants are �rst established by the initialization s := hG0i, and they aremaintained by the assignments := next(G) � tail(s)in the loop body, so they are true throughout exe
ution of the loop, and remaintrue at its end. If the loop terminates, then either found is true, or s = hi. Iffound is true, then head(s) is the empty goal, and the �rst invariant tells us that
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tion Exe
ute(G0: goal): boolean;var s: sequen
e of goal ;G: goal ;found : boolean;begins := hG0i; found := false;while (s 6= hi) ^ : found do beginG := head(s);if su

ess(G) thenfound := trueelses := next(G) � tail(s)end;Exe
ute := foundend; Figure 15.1: Depth-�rst sear
hG0 `� ~, so the sear
h has su

eeded. If s is empty, then the se
ond invarianttells us that G0 has no refutation, so the sear
h has ended in failure.This reasoning from invariants allows us to 
on
lude that the depth-�rst sear
hpro
edure is partially 
orre
t, in the sense that if the pro
edure terminates, thenthe answer { yes or no { that it gives is the right one. Unfortunately, depth-�rstsear
h is not totally 
orre
t, be
ause it may fail to terminate even if the goal G0has a solution. The sear
h may be
ome stu
k in an in�nite bran
h of the sear
htree, and never �nd solutions that are present in other bran
hes.15.2 Representing the goal listIn the depth-�rst sear
h algorithm, the sequen
e s 
ontains goals that are waitingto be investigated. Solving any one of these goals would 
omplete a solution of theoriginal goal. The sequen
e variable behaves like a sta
k, in that ea
h step in thesear
h involves `popping' the �rst element of s, and `pushing' in its pla
e the list ofgoals that 
an be derived in a single resolution step. An eÆ
ient implementationof pi
oProlog must make the operations needed in ea
h resolution step as 
heapas possible, so we must look for an appropriate way of representing s to makethis pushing and popping qui
k.The representation used in pi
oProlog (and in most other Prolog implementa-tions) depends on the insight that s is always made up of fragments of next(G)for various goals G. For example, suppose that initially s = hG0i, and sup-pose that next(G0) = hG1; G2; G3; G4i, next(G1) = hi, next(G2) = hH1; H2i, andnext(H1) = hK1; K2; K3i. Then su

essive values of s after ea
h iteration of the
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hloop will behG0ihG1; G2; G3; G4ihG2; G3; G4ihH1; H2; G2; G3; G4i = hH1; H2i � hG2; G3; G4ihK1; K2; H2; G2; G3; G4i = hK1; K2i � hH2i � hG2; G3; G4i:At ea
h stage, the value of s is made up by 
on
atenating suÆxes of the varioussequen
e next(G) where G = G0, G2, or H1. By a suÆx of a sequen
e t, we meana sequen
e v su
h that t = u � v for some u. In general, the sequen
e s 
an bewritten in the forms = sn � sn�1 � : : : � s1;where ea
h si is a suÆx of next(G) for some goal G. If s has this form, so doesthe new sequen
e next(G) � tail(s) that is assigned to s in the loop body. If snis non-empty, then this new sequen
e 
an be written asnext(G) � tail(sn) � sn�1 � : : : � s1:This insight suggests that, instead of representing s dire
tly (say by a linked list),we should store the sequen
e of sequen
es ss = hs1; : : : ; sn�1; sni of whi
h s ismade up, be
ause this grows or shrinks by only one element per resolution step.This indire
t way of representing s will be an e
onomi
al one provided that we
an �nd a good way of representing the sequen
es si that are suÆxes of next(G)for a goal G, and we turn to this problem next.For any goalG, let pro
(G) be the list of program 
lauses for the relation that isnamed in the �rst literal of G. These are the 
lauses that 
an potentially be usedin the �rst step of solving G. Then next(G) is the sequen
e of 
lauses obtainedby resolving G with su

essive elements of pro
(G), and 
olle
ting the resolventsfrom those resolution steps that do not fail. This allows us to represent next(G)and its suÆxes by ordered pairs (G; t), where t is a suÆx of pro
(G). Buildinga pair like this does not require that we immediately 
ompute the resolvents ofG with ea
h program 
lause, as would be required if we represented next(G)dire
tly. Also, there are very few possible sequen
es pro
(G) { just one for ea
hrelation in the program { so these sequen
es 
an be 
omputed in advan
e. Weshould use a representation for these lists of 
lauses that makes it easy to takesuÆxes, for example, linked lists.Combining these two de
isions { to represent s as a sequen
e of sequen
es,and to represent the individual sequen
es as (G; t) pairs { leads us to 
onsiderrepresenting s as a sta
k of frames, with ea
h frame 
ontaining a goal and a listof 
lauses. As we develop the implementation further, we shall add more �elds
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h frame, but the essential meaning of a sta
k frame will remain the same:it represents the sequen
e of goals that 
an be obtained by resolving a 
ertaingoal with ea
h member of a list of 
lauses, and solving any one of these goals
ompletes the solution of the original goal G0.A parti
ular bene�t of this representation is that resolution steps are delayeduntil their results are needed. It may happen that a solution is found beforesome of the goals in next(G) are rea
hed in the sear
h. In this 
ase, any e�ortspent in 
omputing these goals would be wasted, and our representation avoidsthis waste.Resolution is still needed when we need to know expli
itly what goal is thehead of the sequen
e s, so that it 
an be stored as part of a new frame, or testedto see if it is the empty goal. To allow for this, we introdu
e a new variable
urrent that represents expli
itly the �rst element of s, and a 
ag ok to saywhether 
urrent is valid. If ok is true, then the sequen
e s 
onsists of the expli
itgoal 
urrent , followed by all the goals stored in sta
k . Otherwise, s 
onsists ofjust the goals in sta
k , disregarding the 
ontents of 
urrent . Adding the 
urrentvariable also makes it possible to represent the initial state, where s = hG0i: wejust set 
urrent to G0 and sta
k to the empty sequen
e.15.3 Representing goalsIn the pre
eding se
tion we 
hose a way of representing sequen
es of goals thatallowed the operations we needed to be implemented 
heaply. But goals arethemselves sequen
es of literals, and we must also 
hoose a representation forthem that makes resolution eÆ
ient.When a goal # :� P1; P2; : : : ; Pn takes part in a resolution step, the �rst literalP1 is repla
ed by the body of a program 
lause to give a new goal, say# :� Q1; : : : ; Qm; P2; : : : ; Pn:If we 
onsider the �rst goal to be (in e�e
t) the sequen
e hP1; P2; : : : ; Pni, thenwe 
an write this new goal ashQ1; : : : ; Qni � hP2; : : : ; Pni:The unifying substitution must be applied to this new goal, but let us ignorethat for the moment. Substitution apart, the operation of repla
ing the head ofa sequen
e with another sequen
e is the same one that we saw with lists of goals.Just as the list of goals waiting to be solved is made up of suÆxes of pro
edures,so ea
h goal is made up of suÆxes of 
lause bodies.We 
an exploit this fa
t as follows: instead of storing a 
omplete goal in ea
hframe, we store just the �rst few literals, together with dire
tions for where tolook for the rest of the goal. The literals that are stored dire
tly are the remaining
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hFrame 3: goal = hQ2; : : : ; Qmiparent = 1pro
 = pro
edure for Q2parent = 1Frame 2: goal = hQ1; Q2; : : : ; Qmipro
 = rest of pro
edure for Q1Frame 1: goal = hP1; P2; : : : ; Pniparent = 0pro
 = rest of pro
edure for P1Figure 15.2: Sta
k layoutpart of the �rst 
lause body that makes up the goal. The rest of the goal is madeup of parts of 
lause bodies from further down the sta
k, so the `dire
tions' leadto a parent frame, another sta
k frame where the next part of the goal 
an befound.To 
ontinue the example, suppose the �rst resolution step (using the 
lauseP1 :� Q1; Q2; : : : ; Qm) is followed by another one that uses the unit 
lause Q1 :� .Then the sta
k will look like Figure 15.2. Frame 3 
ontains a representation ofthe goal# :� Q2; : : : ; Qm; P2; : : : ; Pn:The �rst few literals are stored in the frame itself, and the rest are found inframe 1, the parent of frame 3.Frame 1 
ontains the sequen
e hP1; P2; : : : ; Pni, but P1 is the literal that tookpart in the resolution step that 
reated frame 2 and lead to frame 3. So in thegoal that is represented by frame 3, this literal is repla
ed by the subgoals Q1,Q2, : : : , Qm, and we 
an ignore it. The parent of frame 1 is shown as frame 0,be
ause there are no more literals in the goal.In general, a goal will 
onsist of pie
es from many 
lauses, and there will bea longer 
hain of pointers to parent frames. The goal 
onsists of all the literalsfrom its own frame, followed by all literals but the �rst from ea
h su

eedingparent frame.
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t that the unifying substitution must be applied tothe new goal after ea
h resolution step. This means that the result of a resolutionstep 
annot be formed just by 
on
atenating pie
es of the goal and 
lauses thatwere the inputs of the resolution step, and our representation will need to be
hanged to re
e
t this fa
t. A solution to this problem is not to store the goalitself, but to store separately the 
urrent answer substitution and a goal to whi
hthe substitution should be applied to get the 
urrent goal. At ea
h resolutionstep, we add the unifying substitution to the a

umulated answer by 
omposingthem, but leave for the future the task of applying the substitution to the newgoal. The answer substitution 
ould be applied to ea
h literal just before it takespart in a future resolution step, or (as we shall see in the next 
hapter) the task ofapplying the substitution 
ould be merged with the task of 
omputing a uni�er,so that the substitution does not have to be 
arried out separately.To use this idea, we must add another �eld to ea
h sta
k frame that will 
ontainthe answer substitution built up so far, whi
h should be applied to the goal aspart of future resolution steps. Frames nearer the top of the sta
k represent theresults of 
arrying out more resolution steps than those further down the sta
k,so they will 
ontain more spe
i�
 answer substitutions. For the present, we willpostpone the question of how substitutions are represented, and just imaginethat our programming language has a type subst of substitutions, and also hasthe operations on substitutions that we need, su
h as applying a substitution toa term, unifying two terms to give a substitution, or 
omposing two substitutionsto give a third one.15.5 Depth-�rst sear
h revisitedWe now apply the ideas we have dis
ussed so far by showing a version of thedepth-�rst sear
h algorithm that uses the data stru
tures we have designed. Itdi�ers from the 
ode shown in Appendix C in several respe
ts:� Substitutions are treated here as an abstra
t data type provided with theoperations we need. We dis
uss the implementation of this data type inChapter 16, and that implementation is used in the 
ode.� Sequen
es or lists, whi
h we use to represent goals, 
lauses and sta
ks,are also treated as an abstra
t data type, with operations like head , tailand 
on
atenation (�). The 
hoi
e of appropriate representations of thesesequen
es, say as arrays or linked lists, is dis
ussed in Se
tion 15.7.� The program fragments given here use the re
ord types of Pas
al to repre-sent obje
ts with several 
omponents. In the 
ode of Appendix C, ma
rosare used in pla
e of these re
ord types. We shall later de�ne these ma
rosso that re
ords 
an be represented as segments of a large array.
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hThe interpreter operates on a sta
k of frames, ea
h one a re
ord with this type:type frame = re
ordf goal : goal ; f answer : subst ;f parent : integer ;f retry : sequen
e of 
lause;end;The program uses several variables:varsta
k : sequen
e of frame;ok : boolean;
urrent : goal ; answer : subst ;goalframe: integer ;pro
: sequen
e of 
lause;The sequen
e sta
k is the sta
k of frames. The Boolean 
ag ok indi
ates whetherthe other variables have any signi�
an
e; it is true just after a su

essful resolutionstep, and false if a resolution step has just failed. When ok is true, 
urrent
ontains the �rst part of the goal 
urrently being solved, and answer 
ontainsthe answer substitution built up so far. The rest of the 
urrent goal is found in a
hain of sta
k frames linked by their parent �elds, starting at sta
k(goalframe).The variable pro
 has signi�
an
e only within the main loop of the interpreter;there, it 
ontains a list of 
lauses that have yet to be tried on the 
urrent goal.The top level of the interpreter algorithm is 
ontained in pro
edure Exe
ute:pro
edure Exe
ute(G0: goal);beginsta
k := hi; ok := true;
urrent := G0; answer := I; goalframe := 0;while true do beginif ok then beginif 
urrent = hi then return;pro
 := Pro
(
urrent)endelse beginBa
ktra
k ;if : ok then return;end;Step;if ok then Unwindendend;
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h iteration of the main loop 
arries out one resolution step. The �rst partof the loop body �nds the goal that should take part in the step and the list of
lauses pro
 that have yet to be tried on it. If ok is true, this is the new goal thatwas generated in the last resolution step, and all the 
lauses from its pro
edurehave yet to be tried. Otherwise, there is no 
urrent goal, and the pro
edureBa
ktra
k is 
alled to reset the sta
k to a previous state. It resets 
urrent to apreviously saved value, and sets pro
 to the list of 
lauses that were not triedbefore. On return from Ba
ktra
k , the value of ok indi
ates whether it su

eededin �nding a pla
e to begin sear
hing again.The next part of the loop body is a 
all to the pro
edure Step, whi
h 
arriesout a resolution step between the goal and the �rst 
lause of pro
. It sets ok tofalse if the step fails, and true if it su

eeds. In that 
ase, it updates 
urrent ,goalframe and answer to represent the new goal and answer substitution. Finally,if the step su

eeds, a pro
edure 
alled Unwind is 
alled. This unwinds the 
hainof parent pointers, until it �nds a frame where there are still literals to be solved,or it rea
hes the end of the 
hain. This ensures that the variable 
urrent 
ontainsthe empty sequen
e only if the 
urrent goal is itself empty.There are two ways that Exe
ute 
an return. One way is if 
urrent be
omesempty, indi
ating su

ess. The other way is if Ba
ktra
k fails to �nd an unex-plored alternative after a resolution step has failed. This means that the entiresear
h tree for the goal has been explored without �nding a solution, so the wholeexe
ution has ended in failure.We now look at the details of 
arrying out a resolution step, as implementedby the pro
edure Step.pro
edure Step;var uni�er : subst ;beginif pro
 = hi thenok := falseelse beginPushFrame;ok := Uni�er(Apply(head(
urrent); answer);Apply(head(pro
):
 lhs ; answer); uni�er);if ok then begin
urrent := head(pro
):
 rhs;answer := answer . uni�erendendend;On entry to this pro
edure, 
urrent 
ontains the �rst part of a goal, and pro

ontains a list of 
lauses that have not yet been tried on it. Our job here is totry the �rst of these 
lauses, saving the rest in a sta
k frame to be tried later.
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hThe pro
edure �rst deals with the 
ase that the pro
 is empty; in that 
ase,the attempt at resolution fails. Otherwise, it 
alls PushFrame to 
reate a newframe on the sta
k. This frame will 
ontain the 
urrent values of the interpretervariables, together with the tail of pro
. Then it 
al
ulates the results of applyingthe 
urrent answer substitution to the �rst literal of the goal and the head of the�rst 
lause in pro
, and tries to unify them. If the uni�
ation su

eeds, the newgoal is the right-hand side of 
lause, followed by the rest of the previous goal. Thenew answer substitution is obtained by 
omposing the old answer substitutionwith the uni�er that was just 
omputed.Creating a new frame on the sta
k is simple, be
ause we just need to make aframe re
ord that 
ontains 
opies of the 
urrent values of the interpreter variablesand add it to the end of sta
k :pro
edure PushFrame;var f : frame;beginf:f goal := 
urrent ;f:f answer := answer ;f:f parent := goalframe;f:f retry := tail(pro
);sta
k := sta
k � hfi;goalframe := length(sta
k);end;If a resolution step fails, we need to �nd an earlier goal that still has untried
lauses. This is a
hieved by the Ba
ktra
k pro
edure:pro
edure Ba
ktra
k ;beginwhile (sta
k 6= hi) ^ : ok do begin
urrent := last(sta
k):f goal ;answer := last(sta
k):f answer ;goalframe := last(sta
k):f parent ;pro
 := last(sta
k):f retry ;sta
k := front(sta
k);ok := (pro
 6= hi)endend;The loop repeatedly dis
ards the top frame from the sta
k until either the sta
kis empty, or a frame is found with a non-empty f retry �eld.After a su

essful resolution step, Unwind is 
alled. The new goal is repre-sented as the literals in 
urrent , followed by the un
ompleted parts of goals ina 
hain of an
estor frames, linked together by their parent �elds. If the 
lause
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e points 149used in the resolution step was a unit 
lause, 
urrent will now be empty, eventhough there are still unsolved literals further along the 
hain. Unwind sear
hesthe 
hain until either it �nds a frame that 
ontains some literals that are stillto be solved, or it rea
hes the end of the 
hain, meaning that the new goal isa
tually empty.During the sear
h, it may be that a frame that has been 
ompleted is the topone on the sta
k, and that it 
ontains no alternative 
lauses that have yet to betried. If so, then we say that the 
orresponding 
lause has su

eeded determi-nately, and the top frame 
an be dis
arded, be
ause it will be never be neededagain. This `su

ess-popping' gives an important eÆ
ien
y improvement, be
auseit means that solving a subgoal will leave nothing behind on the sta
k unless thereis a possibility of ba
ktra
king. In e�e
t, subgoals that su

eed determinatelybehave like subroutine 
alls in 
onventional programming languages. One wayof ensuring that a subgoal su

eeds determinately is to pla
e appropriate 
uts inthe 
lauses that are used solve it.pro
edure Unwind ;var parent : integer ;beginwhile (
urrent = hi) ^ (frame > 0) do begin
urrent := tail(sta
k(goalframe):f goal);parent := sta
k(goalframe):f parentif (goalframe = length(sta
k)^ (sta
k(goalframe):f retry = hi) thensta
k := take(sta
k ; goalframe � 1);goalframe := parentendend;This 
ompletes the implementation of depth-�rst sear
h.15.6 Choi
e pointsIn the Ba
ktra
k pro
edure, frames are removed from the sta
k one at a time,until a frame is un
overed that 
ontains untried 
lauses. Several frames may bethrown away in this pro
ess, and it is pointless to remove them one at a time ifthey 
ould all be removed together. This suggests that it might be worth keepingtra
k of the latest 
hoi
e point, that is, the nearest frame to the top of the sta
kthat 
ontains some untried 
lauses. Then Ba
ktra
k 
ould go straight to the rightframe.We 
an do this by adding an interpreter variable 
hoi
e that 
ontains the indexof the 
hoi
e point, or zero if there have been no 
hoi
es so far. To enable thevalue of this variable to be restored on ba
ktra
king, we also add a �eld 
hoi
e
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hto ea
h frame that re
ords the value of 
hoi
e when the frame was 
reated. TheBa
ktra
k pro
edure 
an now be rewritten like this:pro
edure Ba
ktra
k ;var prev : integer ;beginok := (
hoi
e > 0);if ok then begin
urrent := sta
k(
hoi
e):f goal ;answer := sta
k(
hoi
e):f answer ;goalframe := sta
k(
hoi
e):f parent ;pro
 := sta
k(
hoi
e):f retry ;prev := sta
k(
hoi
e):f 
hoi
e;sta
k := take(sta
k ; 
hoi
e � 1);
hoi
e := prevendendThe take fun
tion is de�ned so that take(s; k) 
ontains the �rst k elements ofsequen
e s. If s = hx1; x2; : : : ; xni and 0 � k � n thentake(s; k) = hx1; x2; : : : ; xki:Take is used here to dis
ard the part of the sta
k that has been added sin
e thelast 
hoi
e point.Keeping tra
k of the latest 
hoi
e point 
osts some time and some spa
e, and itwould not be worthwhile if the only bene�t were a slight in
rease in the eÆ
ien
yof ba
ktra
king. The real bene�ts will be revealed in the next 
hapter, wherewe dis
uss the representation of terms and substitutions. In short, we shall beable to treat variables in an espe
ially eÆ
ient way on ba
ktra
king of they havebeen 
reated sin
e the last 
hoi
e point. Re
ording the last 
hoi
e point alsoprovides a way to implement the 
ut symbol. When a 
ut is exe
uted, the 
hoi
evariable is simply reset to the value it had when the frame for the 
urrent goalwas 
reated. This 
auses any 
hoi
e points that have o

urred sin
e then to beignored in ba
ktra
king, thereby �xing the 
hoi
es that have been made.15.7 Choosing representationsThe de
isions we have made about representing states of the interpreter haveintrodu
ed several kinds of sequen
es and lists. The entire state of the interpreteris a sequen
e of sta
k frames, ea
h frame 
ontains a list of untried 
lauses, andea
h goal or 
lause body is a list of literals. Be
ause the sequen
e types wehave used are not really part of Pas
al, we must 
hoose a real Pas
al data type
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h kind of sequen
e. There are several Pas
al types to 
hoosefrom: a sequen
e 
an be represented by an array, or a linked list, or even by a�le. Ea
h 
hoi
e makes some operations on the sequen
e eÆ
ient, and some lesseÆ
ient. For example, an array makes it easy to �nd an element of the sequen
eby numeri
al index, but hard to add a new element at the front. A linked listmakes it easy to add new elements in any position, but harder to �nd an elementby number.Here are the 
hoi
es of representation that pi
oProlog uses for ea
h kind ofsequen
e:� Interpreter states are represented by linked lists of sta
k frames. We addto ea
h sta
k frame a pointer to the immediately pre
eding frame, so thewhole sta
k is linked by pointers from the ba
k to the front. This makes iteasy to add and delete frames at the end of the sta
k.We have des
ribed the parent and 
hoi
e �elds of sta
k frames as thenumeri
 indexes of frames in the sta
k, and �nding elements by number isnot very eÆ
ient with linked lists. To avoid this problem, we 
an repla
ethese �elds by pointers to sta
k frames.It would also be possible to represent the sta
k as an array of frames, andthe parent and 
hoi
e �elds 
ould then remain as simple indexes. Pi
oPrologdoes not use this solution, be
ause it would mean allo
ating a �xed amountof storage for the array, whereas using a linked list allows storage for sta
kframes to be allo
ated from the same pool that is used for other kinds ofobje
t.� Lists of 
lauses are represented by linked lists. This makes it eÆ
ient to takethe head and tail of a list of 
lauses. In a resolution step, we try mat
hingwith the 
lause at the head of the list, and save the tail of the list for use onba
ktra
king. This representation also makes it easy to add more 
lausesto the pro
edure for a relation as pi
oProlog reads in its program from a�le.� The lists of literals in goals (and 
lause bodies) are represented by segmentsof a large array A. Ea
h segment 
ontains a series of pointers to the literalsof a goal, and is terminated by a null pointer. A goal is represented by astarting index s in the large array, and the literals of the goal extend fromthat point as far as the next null pointer. The literals in the goal startingat s areA[s℄; A[s+ 1℄; : : : ; A[s+ n� 1℄;where A[s+ n℄ is the �rst null pointer following A[s℄. This representationmakes it easy to �nd the head and tail of a goal: the head of the goalstarting at s is A[s℄, and its tail is the goal starting at s + 1. The emptygoal is represented by an index s su
h that A[s℄ is a null pointer.
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hSummary� Prolog uses depth-�rst sear
h, implemented using a sta
k.� For eÆ
ien
y, resolution steps are delayed until their results are needed.� Goals and lists of 
lauses 
an be represented in a way that allows resolutionto use little time and storage.



Chapter 16Representing terms and substitutions

The dis
ussion of depth-�rst sear
h in Chapter 15 ignored the question of howterms and substitutions should be represented, pretending that data types ofterms and substitutions were available in our extended diale
t of Pas
al, togetherwith operations su
h as unifying two terms to give a substitution, or applying asubstitution to a term. We now turn to the problem of implementing these datatypes.In pi
oProlog, terms are represented as referen
e-linked tree stru
tures. Spa
efor these stru
tures is allo
ated from two storage pools:� the heap area holds the 
lauses that make up the pi
oProlog program. The
ontents of this area do not 
hange as a goal is exe
uted.� the global sta
k area holds terms that are 
reated during exe
ution of a goal.Spa
e is allo
ated from this area as new terms are 
reated in resolution steps,and spa
e is released when ba
ktra
king happens, and terms that have been
reated during re
ent resolution steps are no longer needed.In addition to these two storage pools, there is also a lo
al sta
k area, used toallo
ate storage for sta
k frames.16.1 Representing termsThe 
onventional te
hniques of Pas
al programming provide a natural way torepresent terms as referen
e-linked tree stru
tures. Ea
h term is represented bya variant re
ord with a tag that identi�es the kind of term, and other �elds thatgive information relevant to terms of that kind (see Figure 16.1).� Compound terms have kind = fun
 ; they have a fun
tion symbol fun
and a number of arguments, ea
h one a term itself. The arguments are153
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ord
ase kind : (fun
 ; int ;
hr
tr;
ell;ref) offun
 :(fun
: symbol ;arg : array [1 : :max ℄ of term);int :(ival : integer);
hr
tr:(
val : 
har);
ell:(val : term);ref :(index : integer);end; Figure 16.1: Representation of termsrepresented by an array arg of pointers to other re
ords. Ideally, this arrayof pointers would have a di�erent size in di�erent re
ords, be
ause di�erentfun
tion symbols may have di�erent numbers of arguments, but Pas
al doesnot allow that, so the array is shown here as always having a �xed size max .� Other kinds of term like integers (with kind = int) and 
hara
ters (withkind = 
hr
tr) have a �eld that 
ontains the value, a simple integer or
hara
ter.� Variables are represented by two kinds of re
ords. Those with kind = refare the variables that appear in program 
lauses, and those with kind =
ell are variables that have been introdu
ed during exe
ution of a goal.The interpretation of the index and val �elds of these re
ords is explainedlater, in Se
tion 16.2. Together, these two kinds of re
ord allow an eÆ
ientrepresentation of the answer substitution for the derivation 
urrently beingexplored, and eÆ
ient renaming of variables in a program 
lause that isused to extend the derivation.As we shall see in Chapter 17, the pointers and re
ord stru
tures of Pas
al donot provide quite what we need for implementing pi
oProlog, be
ause there isno provision for variable-size arrays, and be
ause Pas
al for
es on us a storageallo
ation me
hanism for pointers (via new and dispose) that is not adequate forour needs. For the present, we ignore these diÆ
ulties; later, I shall explain howthey 
an be over
ome by repla
ing re
ords and pointers by segments of a largearray and indexes into the array, thereby getting round the limitations of Pas
al.



16.2 Substitutions 15516.2 SubstitutionsAlthough substitutions were de�ned in Chapter 4 as in�nite fun
tions from vari-ables to terms, the substitutions we en
ounter in exe
uting pi
oProlog programsa
tually a�e
t only a �nite number of variables, so it is suÆ
ient to represent thesubstitution as a �nite mapping, ignoring all the variables that have not so farbeen used in the exe
ution.There are several ways in whi
h these �nite mappings 
ould be stored. Forexample, we 
ould use an array a[1::maxvars℄ of terms to represent a mapping,so that a[i℄ is the term that should be substituted for the variable numbered i.This representation 
an be made to work, but it does not take into a

ount themain operation on substitutions that is needed in pi
oProlog. That operation is
omposition, and spe
i�
ally the operationr := r . fx  u[r℄gwhere r is a Pas
al variable that holds the 
urrent answer substitution, andfx  u[r℄g is a fragment of a uni�er that is being 
omputed during a resolutionstep. This operation is 
ostly if the substitution r is represented by an arraya, be
ause it requires the new fragment of substitution w = fx  u[r℄g to beapplied to ea
h element a[i℄:for i := 1 to maxvars do a[i℄ := Apply(a[i℄; w)This takes time that is (at the very best) proportional to the number of variablesin use.A better way of representing substitutions takes into a

ount the fa
t thatthe uni�
ation algorithm builds them up by su

essive 
omposition. Instead ofdire
tly storing the fun
tion that maps variables to the terms that are substi-tuted for them, we store a binding fun
tion from whi
h this information 
an bere
overed. Like a substitution, a binding fun
tion maps variables to terms, but itis used di�erently. The di�eren
e is most easily seen by 
omparing the operationt[r℄ of applying a substitution r to a term t with the operation thbi of applyinga binding fun
tion b to the same term. Here is the de�nition of t[r℄, 
opied fromSe
tion 4.4: v [r℄ = r(v )f(t1; : : : ; tk)[r℄ = f(t1[r℄; : : : ; tk[r℄):Compare this with the following de�nition of thbi:v hbi = � b(v )hbi; if v 2 dom bv ; otherwisef(t1; : : : ; tk)hbi = f(t1hbi; : : : ; tkhbi):
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e is in the way variables are treated. The substitution r givesdire
tly the term to be substituted for a variable v , but the binding fun
tiongives a term b(v ) that needs to be subje
ted to substitution by b again to obtainthe �nal answer b(v )hbi. This re
ursive substitution stops with variables that areoutside the domain of the fun
tion b, sin
e for them v hbi is simply equal to v .We say a substitution r is represented by a binding fun
tion b if t[r℄ = thbi forall terms t. It is not immediately obvious that all the substitutions we need 
anbe represented by binding fun
tions, nor that the de�nition of thbi is suÆ
ientlywell-founded to serve as an implementation of the operation t[r℄. The 
al
ulationsinvolved in verifying this are too 
ompli
ated to give here, but it is neverthelesstrue that every answer substitution 
omputed in pi
oProlog 
an be representedby a binding fun
tion, and that the de�nition of thbi 
an be used to extra
tanswer substitutions from the binding fun
tions that represent them.The major advantage of using binding fun
tions rather than using substitu-tions dire
tly is that the operationr := r . fx  u[r℄gthat is used in the uni�
ation algorithm 
an be repla
ed byb := b [ fX 7! ug;the operation of extending the fun
tion b so that it maps x to the term u. If bitself is represented (say) by an array, then this operation 
an be 
arried out by
hanging a single element of the array, whi
h is mu
h 
heaper than applying thenew substitution to every element. The 
onditions under whi
h this represen-tation works 
an be expressed in terms of the substitution r that b represents.They are as follows: that r is idempotent, i.e., r . r = r, that x [r℄ = x , andthat x does not o

ur in u[r℄. Lu
kily, all three 
onditions are met whenever thisoperation is needed in pi
oProlog.Another advantage of binding fun
tions is that the operation b := b[fx 7! ugis reversible by removing x from the domain of b again, an operation we maywrite asb := bnfxg:If b is represented by an array, this 
orresponds to resetting the appropriateelement of the array to a null value.In the algorithm for depth-�rst sear
h developed in Chapter 15, we kept asubstitution in ea
h sta
k frame, so that the 
urrent answer substitution 
ouldbe restored to its former value on ba
ktra
king. The fa
t that extending a bind-ing fun
tion is a reversible operation makes this unne
essary, and we need keeponly the 
urrent answer substitution itself. If we need them, previous answersubstitutions 
an be re
overed by undoing the intervening binding operations,
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ord of whi
h variables have been added to the bindingfun
tion at ea
h stage. In pi
oProlog, this set of variables is re
orded in a spe
ialsta
k 
alled the trail.Keeping only one answer substitution means that we need to represent onlya single binding fun
tion b. This means that b 
an be stored by having a singleterm-valued �eld val in the re
ord for ea
h variable v . If v is in the domain ofb, then this �eld 
ontains b(v ); otherwise it 
ontains nil .16.3 RenamingSo far, we have been ignoring the problem of renaming the variables in program
lauses. Before a 
lause 
an be used in a resolution step, its variables must berenamed, so that they are di�erent from the variables that have appeared inearlier steps of the derivation. This is parti
ularly obvious if the same 
lause isused more than on
e in a derivation, be
ause without renaming the variables inthe 
lause would have to take the same values ea
h time the 
lause was used.A naive way of implementing renaming would be to 
opy out ea
h 
lause beforeit was used, systemati
ally repla
ing ea
h variable with a fresh one. This wouldbe time-
onsuming, taking a time that was proportional to the size of the 
lause.What is worse, the e�ort of 
opying out the 
lause might be 
ompletely wasted,be
ause the head of the 
lause might fail to mat
h the 
urrent goal, 
ausing theresolution step to fail and the 
lause to be dis
arded immediately.We need a way to implement renaming without 
opying, with a 
ost that isproportional to the number of di�erent variables in the 
lause, rather than thesize of the whole 
lause. This is a
hieved by the following plan: before saving a
lause as part of the program, we repla
e all its variables by numbered markers,represented by nodes with kind = ref . For example, the familiar 
lauseappend(x :a;b;x :
) :� append(a;b;
)would be stored asappend(�1:�2;�3;�1:�4) :� append(�2;�3;�4);where the symbol �i means a ref node with index = i. To make a renamedvariant of a 
lause stored in this way, we make an array of n fresh variables(where n is the number of variables in the original 
lause), and pair it up withthe stored form of the 
lause.Storage for this array of fresh variables 
an 
onveniently be allo
ated as partof a sta
k frame, sin
e renaming always takes pla
e as part of a resolution stepthat 
reates a new frame. The lo
al variables are elements of an array lo
al thatwe now add to ea
h sta
k frame. Thus a variant of the 
lause is represented bya pair (
; f), where 
 is the stored skeleton of the 
lause { with ref nodes in
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e of the variables { and f is the address of a lo
al sta
k frame that 
ontainsthe fresh variables f":lo
al [1℄, : : : , f":lo
al [n℄. Creating su
h a pair is relatively
heap, sin
e the skeleton 
an be shared by all instan
es of the 
lause.Using 
lauses that are represented by (
; f) pairs requires a 
hange throughoutthe interpreter. Every 
lause, and every term that may be part of a 
lause, mustbe a

ompanied by a pointer to the sta
k frame that 
ontains its variables. Partsof the interpreter su
h as the uni�
ation algorithm, or the subroutine that printsout a term, need a frame pointer as an extra argument. Whenever they en
ountera ref node, they look up the 
orresponding variable in the sta
k frame and usethat instead.A problem arises when a term that is part of a 
lause is to be assigned as thevalue of a variable, be
ause we have not provided spa
e to store the frame thatgoes with the term. There are two solutions to this problem: one is to add a �eldto ea
h variable for storing the frame part of the (
; f) pair. This approa
h is
alled `full stru
ture-sharing'. Its advantage is that it is never ne
essary to makea 
opy of a term, but making it work well requires a 
areful analysis of the Prologprogram to determine whi
h variables need spa
e on the global sta
k, and whi
h
an exist purely on the lo
al sta
k.We shall adopt the other approa
h, 
alled `
opy-on-use'. In this s
heme, vari-ables have only a single �eld that 
ontains a term. If a term that 
omes witha frame pointer is to be assigned to the variable, it is ne
essary to make a 
opyof the term in the global sta
k, with ref nodes repla
ed by the a
tual variablesfrom the sta
k frame. This approa
h requires some 
opying of terms, but formany programs it is as e�e
tive as full stru
ture-sharing, without the need for a
omplex analysis of the Prolog program.16.4 Printing termsThe subroutine PrintTerm prints a readable representation of a term. It ni
elyillustrates the 
ombined e�e
t of our two me
hanisms for representing substitu-tions, using binding fun
tions and val �elds to represent answer substitutions,and using skeletons and frames to implement renaming. This subroutine is usedby the pi
oProlog system to print the answer substitution after exe
ution of agoal has su

eeded, by printing ea
h variable that appeared in the goal togetherwith its image under the answer substitution.Figure 16.2 shows a simpli�ed version of PrintTerm that prints all 
ompoundterms using the basi
 notation f(t1; : : : ; tn). The version in
orporated into pi
o-Prolog itself is more 
ompli
ated, be
ause it attempts to use notations like in�x`:' and `=' for appropriate terms, and to display strings in double quotes ratherthan as lists of 
hara
ters.Like many pro
edures that manipulate terms, PrintTerm uses the fun
tionDeref to handle substitution and renaming. The name of this fun
tion re
e
tsthat fa
t that it `dereferen
es' terms by following the pointers asso
iated with
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edure PrintTerm(t: term; e: frame);var t1 : termbegint1 := Deref (t; e);
ase t1":kind offun
 :PrintCompound(t1 ; e);int :write(t1":ival : 1);
hr
tr:write(''''; t1":
val ; '''');
ell:PrintVar(t1 )endend;pro
edure PrintCompound(t: term; e: frame);var f : symbol ; i: integer ;beginf := t":fun
;WriteString(name(f));if arity(f) > 0 then beginwrite('(');PrintTerm(t":arg[1℄; e);for i := 2 to arity(f) do beginwrite(', ');PrintTerm(t":arg[i℄; e)end;write(')')endend; Figure 16.2: Code for printing terms
ell and ref nodes. The arguments to Deref are a term and a frame. Its resultis also a value of type term that represents the same term as the arguments, butthe result is never a ref node, and if it is a 
ell node, then its val �eld is nil ,so it represents a variable that is not a�e
ted by the 
urrent answer substitution.Thus the rest of the 
ode for PrintTerm need not be 
on
erned with renamingvariables and applying the answer substitution.On
e Deref has been applied to the argument t, we 
an examine its kind�eld to determine what kind of term it is. Integers and 
hara
ters are easy toprint. Compound terms are printed by the PrintCompound routine, whi
h 
alls
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tion Deref (t: term; e: frame): term;var t1 : termbegint1 := t;if t1":kind = ref thent1 := e":lo
al [t1":index ℄;while (t1":kind = 
ell) ^ (t1":val 6= nil) dot1 := t1":val ;Deref := t1end Figure 16.3: Code for DerefPrintTerm re
ursively to print ea
h argument. Variables that survive Deref arenot a�e
ted by the answer substitution. Pi
oProlog prints them using names like`L106' that are 
al
ulated from the address of the variable.The 
ode for Deref (Figure 16.3) reveals the steps that may need to be followedin renaming variables and applying the answer substitution. First, a term maybe a ref node that refers to a variable in the frame. Be
ause of the 
opy-on-userule, the value of a variable 
annot 
ontain any ref nodes, so the frame need beused at most on
e. On the other hand, the val �elds that represent the answersubstitution 
an make a 
hain of many links that must be followed before the �nalvalue is found. These long 
hains 
an be made if several variables have been madeto `share' before one of them is eventually assigned a non-variable term as value.16.5 The trailThe depth-�rst sear
h algorithm of Chapter 15 saved an answer substitution inea
h frame. We have now de
ided to represent substitutions as binding fun
tions,and have observed that the operation of extending a binding fun
tion is reversible.This means that we need keep only one answer substitution, provided we 
an keeptra
k of whi
h variable bindings must be undone in order to return to a previousstate.A good way to keep tra
k of variable bindings is to add another sta
k, the trail,to the interpreter. It 
ontains pointers to variables that have be
ome bound,and we re
ord the position of the sta
k pointer for the trail when ea
h sta
kframe is 
reated on the lo
al sta
k. When ba
ktra
king be
omes ne
essary, theprevious binding state 
an be restored by popping variables o� the trail sta
kand resetting them until the sta
k pointer is ba
k where it was when the 
hoi
eframe was 
reated.Items are added to the trail sta
k as variables be
ome bound, and are removedon ba
ktra
king, so the trail sta
k grows and shrinks in the same way as the global
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k. In pi
oProlog, the trail is implemented as a linked list using spa
e allo
atedin the global sta
k area. Sin
e ea
h variable appears in the trail at most on
e,the total amount of spa
e used for the trail is at most linear in the number ofvariables used in the exe
ution.Some variables that be
ome bound during exe
ution do not need to be re
ordedon the trail. There is no need to re
ord the binding of variables that havethemselves been 
reated sin
e the last 
hoi
e point, sin
e these variables willbe dis
arded when ba
ktra
king happens, and it does not matter whether theyare reset before being dis
arded or not. We 
all other variables 
riti
al. They willsurvive ba
ktra
king, so they need to be re
orded on the trail when they be
omebound. Ea
h time a variable be
omes bound, we test whether it is 
riti
al and(if so) re
ord it on the trail.When a 
ut is exe
uted, the latest 
hoi
e point may be removed, so that the
hoi
e point reverts to an earlier frame. This means that variables that were
riti
al before the 
ut may no longer be 
riti
al afterwards, and part of the workof exe
uting a 
ut is to remove entries for these variables from the trail.16.6 Uni�
ationThe uni�
ation algorithm used by pi
oProlog is similar to the one des
ribedin Se
tion 6.1, but uses re
ursion in pla
e of an expli
it sta
k to store pairsof terms waiting to be uni�ed. We present the algorithm here as operating onabstra
t substitutions by 
omposition, though the a
tual program a
ts on bindingfun
tions by extension, as was des
ribed in Se
tion 16.2.The fun
tion Unify takes two terms as arguments, and returns a Boolean valuethat indi
ates whether the two terms 
an be uni�ed. As a side e�e
t, the value ofthe global variable answer is augmented by 
omposing it with the most generaluni�er of the two terms. The initial value of answer is also applied to the twoterms before uni�
ation, so that the statementok := Unify(t1; t2)sets ok to true if t1[answer ℄ and t2[answer ℄ are uni�able, and in that 
ase, the�nal value of answer is answer0 . r, where answer0 is the initial value of answer ,and r is a most general uni�er of t1[answer0℄ and t2[answer0℄. This dependen
eon the answer variable makes our version of Unify rather spe
ialized, but thisversion is exa
tly the one needed in the pro
edure Step of Se
tion 15.5, and ithas the eÆ
ient implementation shown in Figure 16.4.The fun
tion begins by applying Deref to both arguments. After Deref hasdone its work, the rest of the task amounts to a 
ase analysis. If either term is avariable, then the most general uni�er simply substitutes the other term for it.If neither term is a variable and they are not both integers or both 
hara
ters orboth 
ompound terms, they 
annot be uni�ed. Two integers or two 
hara
ters
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tion Unify(t1 ; t2 : term): boolean;var u1 ; u2 : term;i: integer ;mat
h: boolean;beginu1 := Deref (t1 ; answer); u2 := Deref (t2 ; answer);if u1 = u2 thenUnify := trueelse if u1":kind = 
ell then beginanswer := answer . fu1  u2 [answer ℄g;Unify := trueendelse if u2":kind = 
ell then beginanswer := answer . fu2  u1 [answer ℄g;Unify := trueendelse if u1":kind 6= u2":kind thenUnify := falseelse
ase u1":kind offun
 :if u1":fun
 6= u2":fun
 thenUnify := falseelse begini := 1; mat
h := true;while mat
h ^ (i � arity(u1":fun
)) do beginmat
h := Unify(u1":arg[i℄; t2":arg[i℄);i := i+ 1end;Unify := mat
hend;int :Unify := (u1":ival = u2":ival);
hr
tr:Unify := (u1":
val = u2":
val)endend; Figure 16.4: Code for uni�
ation
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an be uni�ed (by the identity substitution) if they have the same value, and nototherwise. Two 
ompound terms 
an be uni�ed if they have the same fun
tionsymbol, and the arguments 
an be uni�ed 
umulatively, with the uni�er fromthe �rst pair of arguments being applied to the rest of the arguments beforeuni�
ation, and so on. Be
ause the answer substitution is impli
itly applied tothe arguments of Unify , this 
umulative e�e
t is a
hieved by making a series ofre
ursive 
alls of Unify, one for ea
h pair of 
orresponding arguments.A vital element that is missing here is the `o

ur 
he
k', that the variable vdoes not o

ur in the term w when an element fv  wg is added to the answersubstitution. Omitting the o

ur 
he
k is a tradition in Prolog implementation,and it means that Prolog does not implement the logi
 of Horn 
lauses 
orre
tly.This is a great weakness, but it is partly justi�ed by the observation that thefastest 
orre
t uni�
ation algorithms known are still too slow to be used in apra
ti
al Prolog implementation. We want the 
ost of mat
hing a pattern su
has x :a against input data su
h as 3:1:4:1:nil to be proportional to the size of thepattern alone. Corre
t uni�
ation requires an o

ur 
he
k that also s
ans thewhole of the input data, and this data may be arbitrarily large. In the example,before binding a to the term 1:4:1:nil , it is ne
essary to 
he
k that this list 
on-tains no o

urren
es of a, and that would be bound to take proportionally morework if the list 
ontained 1000 elements instead of just three. This explains whyProlog implementors �nd the 
ompromise of omitting the o

ur 
he
k impossibleto resist.Summary� Substitutions are represented in Prolog systems in a way that allows eÆ-
ient 
omposition of an existing answer substitution with a new substitution
omponent.� Clauses are kept as skeletons, allowing their variables to be renamed simplyby allo
ating a frame on the sta
k.� The o

ur 
he
k, whi
h is needed for a 
orre
t uni�
ation algorithm, isusually omitted in Prolog implementations for the sake of speed.



Chapter 17Implementation notes

In this 
hapter are 
olle
ted some notes on the parts of pi
oProlog that surroundand support the exe
ution me
hanism dis
ussed in the pre
eding two 
hapters.There is a parser that reads pi
oProlog programs and builds the internal stru
-tures that represent them, with a lexi
al analyser and symbol table, all builtusing 
onventional 
ompiler te
hniques. There are also routines that managethe di�erent areas of storage that are used to store and exe
ute pi
oProlog pro-grams. The purpose of this 
hapter is to provide information that will be usefulin proje
ts that extend or improve the pi
oProlog system.Pi
oProlog is implemented in a tiny subset of Pas
al that avoids nested pro-
edures and fun
tions, pro
edures and fun
tions that take other pro
edures orfun
tions as arguments, 
onformant array parameters, arrays indexed by typesother than integer , sets, typed �le I/O, 
oating-point numbers, pointers, enu-merated types, variant re
ords, non-lo
al goto statements and with statements.By keeping to this small subset, the author hopes to make the program easierto translate into other languages, and easier to understand by those who do notknow Pas
al very well.On the other hand, we extend the Pas
al subset by using ma
ros. The sour
e
ode of the pi
oProlog system must be passed through a simple ma
ro pro
essorbefore it is submitted to the Pas
al 
ompiler. The primary reason for this is thatPas
al's re
ord and pointer types are almost useless for the kind of programminginvolved in eÆ
ient implementation of Prolog. In Pas
al, re
ords have a �xed size,and there is no alternative to the primitive storage allo
ation fa
ility provided bynew and dispose. So instead of using re
ords and pointers, most of the data inpi
oProlog is kept in a big array mem . Instead of re
ords, we allo
ate 
ontiguoussegments of mem, and instead of pointers, we use indexes into the array. The seg-ments of mem allo
ated for di�erent re
ords of the same kind 
an have di�erentsizes, provided we take 
are that one re
ord does not overlap another one.There is a big disadvantage of this de
ision to ignore the data stru
turingfeatures of Pas
al, be
ause in pla
e of the usual notation p":val for the val �eld164
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ros 165of the re
ord pointed to by p, we are for
ed to write something like mem[p+ 2℄.This is obs
ure, and likely to 
ause bugs if the layout of re
ords is ever 
hanged,espe
ially if di�erent kinds of re
ord have di�erent information at o�set 2. Apartial solution to this problem would be to de�ne a family of Pas
al fun
tionsfor a

essing the �elds of ea
h kind of re
ord. For example, one of them wouldbe a fun
tion Val that takes a pointer value p (represented by an integer), andreturns the 
ontents of the re
ord's val �eld, taken from the mem array:fun
tion Val(p: integer): integer ;beginVal := mem [p+ 2℄end;This is a little ineÆ
ient, sin
e ea
h a

ess to a �eld of a re
ord would require afun
tion 
all. More seriously, it does not provide a way of 
hanging the �elds ofa re
ord, be
ause you 
annot write an assignment like Val(p) := 3 and hope thatit will be equivalent to mem[p+ 2℄ := 3. A better solution is to use ma
ros. We
ould de�ne t val as a ma
ro so that the expression t val(p) is textually repla
edby mem [p + 2℄ before the program is 
ompiled. This avoids the ineÆ
ien
yof a fun
tion 
all, and works whether the expression appears on the left-handside of an assignment or one the right-hand side. For example, the assignmentt val(p) := t val(q) is textually expanded into mem[p+ 2℄ := mem[q+ 2℄, a legalPas
al statement that has the desired e�e
t.17.1 Ma
rosThe ma
ro pro
essor used for 
ompiling pi
oProlog is 
alled `ppp' (for Pas
alPre-Pro
essor). Pas
al sour
e 
ode for ppp is in
luded in the distribution kitfor pi
oProlog. It is a simpli�ed version of the ma
ro pro
essor des
ribed inChapter 8 of the book Software Tools in Pas
al by B. W. Kernighan and P.J. Plauger (Addison{Wesley, 1981).A ma
ro 
all looks very mu
h like a Pas
al fun
tion 
all: it 
onsists of anidenti�er, possibly followed by a list of arguments in parentheses. To make iteasier to distinguish ma
ros from fun
tions, most of the ma
ros in the pi
oProlog
ode have been given names that 
ontain an unders
ore 
hara
ter. Not all Pas
al
ompilers allow identi�ers that 
ontain an unders
ore, but this does not matter,be
ause all ma
ro names are eliminated during the ma
ro pro
essing stage beforethe 
ode rea
hes the Pas
al 
ompiler.Whenever ppp �nds an identi�er that has been de�ned as a ma
ro, it 
ol-le
ts the arguments of the ma
ro as follows: if the identi�er is immediately fol-lowed by an left parenthesis, then ppp reads the following text without expandingma
ros until it �nds a mat
hing right parenthesis. Thus the whole argumentlist is a text in whi
h left and right parentheses are properly nested. Inside the
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h argument is separated from the next by a 
omma that is noten
losed in parentheses. For example, if t_arg is de�ned as a ma
ro, then thetext t_arg(t_arg(p,1),i) is a ma
ro 
all with arguments t_arg(p,1) and i.The �rst 
omma does not separate two arguments be
ause it appears inside aninner set of parentheses.Ea
h ma
ro is asso
iated with a de�nition, a text that may 
ontain the argu-ment markers $1, $2, and so on up to $9. After 
olle
ting the arguments of ama
ro, ppp repla
es the whole ma
ro 
all with a 
opy of the de�nition, expand-ing ea
h argument marker with a 
opy of the 
orresponding argument. Missingarguments are repla
ed by the empty text.Continuing the example, if the t_arg ma
ro is de�ned as mem[$1+$2+2℄, thenthe ma
ro 
all t_arg(t_arg(p,1),i) will be repla
ed by the text mem[t_arg(p,1)+i+2℄. The fa
t that one of the arguments 
ontains another ma
ro 
all doesnot a�e
t the expansion pro
ess at this stage.After the repla
ement has been made, ppp examines the whole text againto look for further ma
ro 
alls. It is at this point that ma
ro 
alls are re
-ognized within the repla
ement text of a ma
ro, or inside the arguments of ama
ro 
all. In the example, the nested 
all t_arg(p,1) is now expanded. Itsarguments are p and 1, so the 
all is repla
ed by mem[p+1+2℄, giving the resultmem[mem[p+1+2℄+i+2℄. This text no longer 
ontains any ma
ro 
alls, so it isoutput as the �nal result of ma
ro expansion.In the example, the expression that results from ma
ro expansion 
ould besimpli�ed a little by repla
ing the sub-expression p+1+2 by p+3. This simpli-�
ation is not attempted by ppp. Although the simpli�ed expression might beevaluated a little more qui
kly, the e�e
t is not big enough to have a noti
eablee�e
t on performan
e. In any 
ase, simpli�
ations like this one are often doneautomati
ally by optimizing 
ompilers, so there is some hope that the ineÆ
ien
ywill be eliminated at a later stage in the 
ompilation pro
ess.There are two ma
ros that are not expanded in the usual way, but are built-into ppp. One of these is the define ma
ro that is used to de�ne other ma
ros.It takes two arguments, and has the e�e
t as de�ning the �rst argument as thename of a ma
ro, with the se
ond argument as its de�nition. The t_arg ma
rothat we have been using as an example would be de�ned like this:define(t_arg, mem[$1+$2+2℄)Ea
h 
all of the define ma
ro is repla
ed by the empty text, so no tra
e of thede�nition is left after ma
ro expansion. If the same ma
ro is de�ned several times,it is the most re
ent de�nition that is used at ea
h point. The define ma
ro 
analso be used with only one argument. The e�e
t is to de�ne the argument as thename of a ma
ro, with the empty text as its de�nition.The other built-in ma
ro is ifdef. It is 
alled with either two or three ar-guments. If the �rst argument is the name of a ma
ro, then a 
all of ifdefis repla
ed by its se
ond argument. If the �rst argument is not the name of a
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ro, then the 
all is repla
ed by the third argument if present, and otherwiseby the empty text. It is parti
ularly useful to 
ombine ifdef with define. Forexample, the textdefine(abort, goto 999)ifdef(turbo, define(abort, halt))has the e�e
t of de�ning abort as an abbreviation for goto 999 in most versionsof pi
oProlog. To install the program using Turbo Pas
al, we add the de�ni-tion define(turbo) at the beginning of the program. This 
auses abort to berede�ned as a 
all to Turbo Pas
al's built-in halt pro
edure.A 
ouple of extra rules about argument expansion should be mentioned. Oneis that the spe
ial argument marker $0 is repla
ed by the list of all the argumentsof the ma
ro, separated by 
ommas. This allows a limited kind of ma
ro witha variable number of arguments, like the following pani
 ma
ro that prints amessage and stops the program:define(pani
, begin writeln('Pani
: ', $0); abort end)Calls like pani
(n, ' is too large') 
an be used to print a message that ismore than a simple string. It expands to the textbegin writeln('Pani
: ', n, ' is too large'); abort endThis provides a 
onvenient way around Pas
al's limitations that prohibit variable-length strings and variable numbers of arguments to pro
edures. Another spe
ialargument marker is $$, whi
h expands to a single dollar sign.Ma
ro 
alls are not expanded inside Pas
al string 
onstants or inside 
om-ments delimited by 
urly bra
kets. This prevents surprises when a ma
ro nameis a

identally used inside a string, and even makes it possible to `
omment out'ma
ro de�nitions.In addition to providing a more readable way to a

ess data stru
tures, ma
rosare used in the 
ode of pi
oProlog to get round a few other small limitations ofPas
al. We have already seen one of these, the pani
 ma
ro. Ma
ros also let usget round the silly restri
tion that labels must be numbers instead of meaningfulnames. We simply de�ne a few ma
ros that have meaningful labels as their namesand expand to plain numbers:define(found, 1)define(exit, 2)define(done, 3)Then we 
an write goto found instead of goto 1. Many implementations ofPas
al allow identi�ers as labels, but using ma
ros makes this feature availablein all implementations.
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k of using ma
ros is that the 
ompiler reads a di�erent text fromthe one that the programmer wrote, making its error messages a little morediÆ
ult to understand. Also, if any ma
ro 
alls or repla
ement texts 
ontainnewline 
hara
ters, then lines in the output of the ma
ro pro
essor may notmat
h up with lines in the original program text, so 
ompiler error messages thatmention line numbers may be misleading. This 
an be frustrating, espe
ially ifthe error messages are otherwise unhelpful.17.2 String handlingStandard Pas
al provides only very weak fa
ilities for handling 
hara
ter strings.Many implementations of Pas
al 
ontain better fa
ilities as extensions, but usingthese extensions would make pi
oProlog more diÆ
ult to move from one Pas
alimplementation to another. Instead, pi
oProlog in
ludes its own simple 
olle
tionof routines for handling strings.There are two representations for strings: either as a �xed-length array of 
har-a
ters (a tempstring), or as a segment of the global array 
harbuf (a permstring).The tempstring representation is used to store the 
hara
ters of a string as theyare input, and the fun
tion SaveString (line 96) 
an then be used to allo
ate a seg-ment of the 
harbuf array and turn the string into a permstring, where the stringis represented by the index in 
harbuf of its �rst 
hara
ter. In both representa-tions, the end of a string is indi
ated by a spe
ial 
hara
ter endstr. In the as
ii
hara
ter set, endstr 
an be de�ned as the otherwise unused 
hara
ter 
hr(0)with numeri
 value 0.The te
hnique of allo
ating segments of a large 
hara
ter array is useful be-
ause it makes it possible to store long strings, without wasting spa
e if thestrings turn out to be short. If most strings are stored in the 
harbuf array, thenwe 
an a�ord to be generous with the maximum length of a tempstring, and thisis the only �xed limit on the length of a string.17.3 Memory allo
ationSpa
e for the data stru
tures des
ribed in previous 
hapters is allo
ated fromthree parts of a single large array mem. The areas are de�ned by the globalvariables hp, lsp and gsp:� The heap area is used to store the 
lauses of a pi
oProlog program. Itextends from mem[1℄ to mem [hp℄. During exe
ution of a goal, the programis �xed and so the size of the heap does not 
hange, but the heap growsupwards when the program is being input.� The lo
al sta
k area is used for sta
k frames and their lo
al variables. Itextends from mem[hp + 1℄ to mem [lsp℄, and grows upwards.
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gsp:memsize:
lsp:hp:1:

GlobalSta
k
Lo
alSta
kHeapFigure 17.1: Layout of the mem array� The global sta
k area is used for terms 
onstru
ted during exe
ution of agoal. It extends from mem[gsp℄ to mem[memsize ℄ and grows downwards.The portion of the array from mem[lsp+1℄ to mem[gsp�1℄ is free, and both thesta
ks 
an grow by o

upying parts of the free portion at opposite ends. Sin
ethe heap does not 
hange as a goal is exe
uted, there is no need for a free spa
ebetween it and the lo
al sta
k.As the pi
oProlog program runs, both sta
ks expand and 
ontra
t. The lo
alsta
k expands as frames are added for su

essive resolution steps, and 
ontra
tswhen a 
lause body is 
ompleted determinately. The global sta
k grows as newterms are 
reated, and both sta
ks 
ontra
t on ba
ktra
king. Most of the time,this sta
k-like behaviour is enough to ensure that some free memory is alwaysavailable. However, if the sta
ks ever grow so large that the free area vanishes,then exe
ution must stop for la
k of memory spa
e.If this happens, one last possibility remains. Some of the spa
e that hasbeen allo
ated on the global sta
k may store terms that are no longer needed,be
ause the lo
al variables that pointed to them have been dis
arded. Pi
oPrologin
ludes a garbage 
olle
tor that tra
es pointers to determine whi
h storage isreally needed. It re
laims any `garbage' spa
e that is no longer needed, and makesit available for re-use by 
ompa
ting together all the needed obje
ts in the globalsta
k area. More details of the garbage 
olle
tor appear in Chapter 18.



170 Implementation notes17.4 Symbol tableThe symbol table 
ontains an entry for ea
h identi�er or variable name used inthe pi
oProlog program. It is organized as a hash table, with 
ollisions handledby sear
hing adja
ent elements of the table. The symbol table has two purposes.One is to allow symbols to be represented in the rest of pi
oProlog by simplenumbers rather than the strings that are their names, so that 
omparing sym-bols for equality is a 
heap operation. Ea
h identi�er appears just on
e in thesymbol table, so its index 
an be used as a unique representation of the identi-�er. Two identi�ers are equal if and only if they o

upy the same entry in thesymbol table.The other purpose of the symbol table is to store 
ertain information aboutea
h identi�er. A fun
tion or relation symbol has a �xed number of argumentsthat is kept in the arity �eld of its entry in the symbol table. Relation symbolseither have a list of 
lauses stored in the pro
 �eld, or have an a
tion 
ode thatidenti�es them as built-in relations.The primary interfa
e to the symbol table is the fun
tion Lookup (line 344),whi
h takes a name represented as a tempstring and returns the index of theentry for that name in the symbol table, 
reating a new entry if ne
essary. It �rst
omputes a hash fun
tion from the string, and this determines the starting pointfor a sequential sear
h of the table. The sear
h �nishes when it rea
hes eitherthe desired symbol, or a va
ant slot, indi
ated by a name �eld that 
ontains �1instead of a valid permstring value. If the symbol is not found, then it is enteredinto the va
ant slot.Good performan
e for this kind of hash table depends on having plenty of va-
ant re
ords where unsu

essful sear
hes 
an be stopped, so Lookup does not allowthe table to be
ome more than hashfa
tor per 
ent full, where hashfa
toris about 90. It is better to stop immediately than to let the system grind slowlyto a halt be
ause the table is too full.The pro
edure InitSymbols (line 394) puts all the built-in symbols of pi
oProloginto the hash table using the same look-up me
hanism. A few moments 
ouldbe saved ea
h time pi
oProlog starts by pre-
omputing the lo
ations of thesesymbols, but the time saved would not be worth the risk of getting the lo
ationswrong.17.5 Lexi
al analysisThe parts of pi
oProlog that read the input program are built using similarte
hniques to those used in most 
ompilers. The job is split into two parts: lexi
alanalysis, whi
h divides the input into meaningful groups of 
hara
ters 
alledtokens, and synta
ti
 analysis or parsing, whi
h assembles the stream of tokensinto 
lauses, 
he
king them against the grammar of the pi
oProlog language andbuilding the internal stru
tures that represent the 
lauses.
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al analysis 171The job of pro
edure S
an (line 694) is to break the pi
oProlog program intotokens. For example, if the program begins with the 
lauseappend(X:A, B, X:C) :- append(A, B, C).then the �rst few tokens will beappend ( X : A , B , X : C ) :- ...A token may 
onsist of an identi�er like append or X, or a pun
tuation symbol ofone or more 
hara
ters, like ( or :-. The spa
es between tokens are dis
arded asthe input is split into tokens, as are any 
omments that appear in the pi
oPrologprogram.When S
an is 
alled, it reads the next token from the input and sets the globalvariable token to a value that indi
ates what kind of token it is. Continuing, theexample, if S
an were 
alled repeatedly, the values returned in token would beident , lpar, varble , 
olon , varble , 
omma, varble , 
omma,varble , 
olon , varble , rpar, arrow , : : :The value of token indi
ates only the kind of token that was found, so all identi-�ers are represented by the same value ident ; but there is another global vari-able tokval that S
an �lls with the symbol value asso
iated with the identi�er.Variables (starting with an upper-
ase letter), numbers, 
hara
ter 
onstants andstrings are treated in similar ways. Ea
h 
lass is represented by a single value oftoken, but there are other global variables that return more pre
ise informationin ea
h 
ase. The value of a number or the as
ii 
ode of a 
hara
ter 
onstantare put in tokival , and there is a tempstring bu�er 
alled toksval that holds thea
tual 
hara
ters of ea
h string 
onstant. The implementation of S
an is lengthybut fairly simple. We 
an usually tell from the �rst 
hara
ter of a token whatkind of token it is, so S
an 
ontains a big 
ase statement that examines one
hara
ter from the input. Ea
h arm reads the remaining 
hara
ters of a token,setting token and the other global variables appropriately.It is 
onvenient to let the lexi
al analyser read the input �le as a simple streamof 
hara
ters, rather than as the sequen
e of separate lines that is provided by theinput fa
ilities of Pas
al. To perform the translation (whi
h probably reverses atranslation done by the Pas
al run-time library), there is a pro
edure GetChar(line 230). The end of a line is marked by a spe
ial 
hara
ter endline , de�nedto be the as
ii 
ode for newline, and the end of an input �le is indi
ated by thespe
ial 
hara
ter endfile .GetChar also deals with swit
hing between input from a �le and input fromthe keyboard, and allows a single 
hara
ter to be `pushed ba
k' onto the inputstream using the pro
edure PushBa
k (line 240). Sometimes the lexi
al analyser
annot re
ognize the end of a token without seeing the next 
hara
ter beyond it.



172 Implementation notesFor example, the end of a number 
annot be re
ognized ex
ept by seeing that thefollowing 
hara
ter is not a digit. In su
h 
ases, the PushBa
k me
hanism 
anbe used to save the extra 
hara
ter to be read again as part of the next token.17.6 Syntax analysisThe job of parsing or synta
ti
 analysis is to take the stream of tokens produ
edby lexi
al analysis, 
he
k it against the grammar of the language, and build theinternal data stru
tures that represent ea
h 
lause in the program. The methodused in pi
oProlog is 
alled re
ursive des
ent, be
ause it is based on a set ofmutually re
ursive pro
edures, ea
h responsible for re
ognizing a 
ertain 
lass ofphrases. This is the easiest way to 
onstru
t a parser by hand, without the aid ofspe
ial software tools. Sin
e the pi
oProlog language has a fairly simple syntax,it is quite easy to build a parser from s
rat
h in this way.In the method of re
ursive des
ent, the parser 
ontains one pro
edure for ea
hkind of phrase in the grammar given in Se
tion 14.1: one pro
edure ParseClausefor 
lauses, another 
alled ParseTerm for terms, one 
alled ParseFa
tor for fa
-tors, and so on. The job of ea
h pro
edure is to `
onsume' the tokens that makeup one instan
e of its kind of phrase. The pro
edure is 
alled in a situation wherethe token variable 
ontains the �rst token of a phrase. It fet
hes more tokens by
alling S
an, and when it returns, token 
ontains the �rst token after the phrase.Just as a phrase belonging to one 
lass is made up from elements that arephrases of other kinds, so the analysis pro
edures 
all ea
h other in a mutu-ally re
ursive way to analyse sub-phrases. For example, a 
ompound term mayhave arguments that are themselves terms, so the pro
edure ParseCompound
alls ParseTerm to analyse ea
h argument. Ea
h of these arguments may be a
ompound term itself; if so, then ParseTerm 
alls ParseCompound re
ursivelyto analyse it. The pattern of re
ursive 
alls in the parser exa
tly mirrors thepattern of re
ursion on the grammar it is designed to re
ognize.Here is a simple implementation of the ParseCompound pro
edure:f ParseCompound { parse a 
ompound term gpro
edure ParseCompound ;beginEat(ident);if token = lpar then beginEat(lpar);ParseTerm;while token = 
omma dobegin Eat(
omma); ParseTerm end;Eat(rpar)endend;
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edure 
orresponds to the grammar rule
ompound ::= ident [ `(' term f `,' term g `)':Ea
h item in the rule that 
orresponds to a single token has been repla
ed bya 
all to the pro
edure Eat (line 851), whi
h 
he
ks that the 
urrent value oftoken is as expe
ted, and uses S
an to get the next token. The two o

urren
esof term have been repla
ed by 
alls to the ParseTerm pro
edure. The squarebra
kets (meaning an optional phrase) 
orrespond to an if statement, and the
urly bra
kets (meaning a repeated phrase) 
orrespond to a while loop in theanalysis pro
edure. In both 
ases, the 
ondition is expressed in terms of the nexttoken from the input.There are two di�eren
es between this way of building parsers and the trans-lation of grammar rules into logi
 programs that we dis
ussed in Chapter 10.First, the sequen
e of tokens that makes up the input is not represented by anexpli
it list, but by the sequen
e of values taken by the token variable as theS
an pro
edure is 
alled repeatedly. Se
ond, Pas
al has nothing 
orrespondingto the ba
ktra
king of Prolog, so ea
h de
ision about whi
h rule to use has tobe made irrevo
ably, knowing only the �rst token of a phrase. For example, inParseCompound , the de
ision whether the term has arguments is made by test-ing whether the next token is an opening parenthesis, and the de
ision whetherthere are further arguments is made ea
h time by testing whether the next tokenis a 
omma. Not all grammars allow all ne
essary de
isions to be made just bylooking at the next token, but pi
oProlog (by design if not by a

ident) doesallow this, making re
ursive des
ent an appropriate 
hoi
e of analysis method.Full Prolog implementations typi
ally use a di�erent parsing method 
alledoperator pre
eden
e parsing, be
ause the full syntax of Prolog in
ludes manykinds of in�x operators, and even allows the Prolog programmer to de�ne newoperators. It is diÆ
ult to handle this using re
ursive des
ent alone.There are a 
ouple more things to explain about the parser in pi
oProlog:how it builds the internal stru
tures that represent the 
lauses it has read, andwhat happens if there is a syntax error in the input. The data stru
tures arebuilt by making ea
h analysis pro
edure into a parameterless fun
tion that re-turns a representation of its phrase. Ea
h fun
tion re
eives representations of itssub-phrases as the results of the other analysis pro
edures it 
alls, and re
eivesinformation about identi�ers and 
onstants from the lexi
al analyser in the globalvariables tokval , et
. It uses these to 
onstru
t the representation of the wholephrase, whi
h it returns as its own result. For 
omparison with the simple 
odeabove, the full version of ParseCompound appears at line 863 of Appendix C.The parser builds ea
h 
lause in the heap area, and repla
es the variables in theinput 
lause with ref nodes, ready for the 
lause to be used with the renamings
heme explained in Chapter 16. The pro
edure VarRep (line 811) manages alittle table of variable names that gives the 
orre
t index for ea
h variable in thepresent 
lause. If the 
lause is a goal, this table is saved during the exe
ution of
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tion ShowAnswer (line 821) to display the answersubstitution in the familiar `var = value' form.If an input 
lause 
ontains syntax errors, the parser adopts a simple strategyfor re
overy, implemented by pro
edures ShowError (line 666) and Re
over (line676). After printing an error message, they set a 
ag err
ag to prevent a 
as
adeof further error messages, then dis
ard 
hara
ters up to the next full stop (or,if input is from the keyboard, the end of the line). The token variable is set todot , the 
ode for a full stop.To make this strategy work, the analysis routines are written in su
h a waythat they will not s
an past a full stop. The result is that all the a
tive analysispro
edures will exit without 
onsuming any more tokens, and 
ontrol returns tothe pro
edure ReadClause (line 963), the outermost layer of the parser. Hereerr
ag is reset, and the pro
ess of reading a 
lause is tried again. This re
overystrategy is not perfe
t, be
ause it dis
ards the whole of any 
lause that 
ontainsan error, and it 
an be 
onfused by stray full stop, espe
ially full stops insidestrings, but it is easy to implement and fairly e�e
tive in pra
ti
e.17.7 TrailThe trail sta
k is kept as a linked list using storage allo
ated from the globalsta
k area. The global variable trhead points to the top item on the sta
k, andea
h item t 
ontains a pointer x reset(t) to a variable that has be
ome bound,and a pointer x next(t) to the item below it.As dis
ussed in Se
tion 16.5, a variable need be added to the trail only is itis 
riti
al, that is, if it will still exist after ba
ktra
king. This observation isimportant for eÆ
ient use of storage, be
ause a large fra
tion of bindings a�e
tonly `lo
al' variables of a 
lause that will be thrown away if the 
lause fails. Thetest whether a variable is 
riti
al is implemented in the ma
ro 
riti
al (line 988)by 
omparing its address with the values of the lo
al and global sta
k pointersat the last 
hoi
e point.There are three pro
edures that a
t on the trail. Save (line 990) tests if avariable is 
riti
al, and if so adds it to the trail; it is 
alled whenever a variablebe
omes bound. Restore (line 999) undoes the bindings that have been re
ordedon the trail sin
e the last 
hoi
e point, restoring all variables to their previousstate. Commit (line 1009) is 
alled as part of exe
uting a 
ut, and removes fromthe trail any variables that are no longer 
riti
al. This is ne
essary be
ause thespa
e o

upied by non-
riti
al variables may be re
laimed as part of su

ess-popping, and leaving them on the trail would result in dangling pointers.



17.8 Uni�
ation 17517.8 Uni�
ationThe uni�
ation algorithm is implemented in the fun
tion Unify (line 1083). Itis exa
tly the algorithm explained in Se
tion 16.6, but there are a few details ofthe 
oding that should be explained here.To allow for su

ess-popping, it is important that no variable is ever bound toan obje
t with a shorter lifetime. Variables on the global sta
k must not pointto items on the lo
al sta
k, and no variable on either sta
k may point to otheritems nearer to the top of the same sta
k. Consequently, if two variables are to bebound together, it is ne
essary to 
ompare their lifetimes and bind the one thatwill be dis
arded �rst. This is done in pro
edure Share (line 1075), whi
h uses atri
ky ma
ro lifetime to 
ompute a numeri
 measure of an obje
t's lifetime.17.9 InterpreterPro
edure Exe
ute (line 1306) and its subroutines implement the depth-�rstsear
h pro
edure dis
ussed in Chapter 15. It in
orporates a 
ouple of re�nementsthat are des
ribed in more detail in Chapter 18, but we give a brief summaryhere.The �rst re�nement is that the 
lauses that are tried against a goal are not allthe 
lauses for the relevant relation, but only those that pass an initial `�ltering'test, 
hosen so that 
lauses that fail the test are 
ertain not to solve the goal.This is implemented by a fun
tion Sear
h that takes a goal and a list of 
lauses,and dis
ards from the beginning of the list any 
lauses that fail the test. TheSear
h fun
tion is used in pro
edure Resume (line 1279) to 
ompute the initialpro
edure for a goal, and also in pro
edure Step (line 1227) to 
ompute the listof 
lauses to be used on ba
ktra
king.The se
ond re�nement is that a di�erent method 
an sometimes be used tosolve the last subgoal in a 
lause body. This method, 
alled the tail re
ursionoptimization (TRO), allows some programs to be exe
uted in less storage spa
ethan would otherwise be needed. The re�nement is implemented by adding atest to the Step pro
edure that dete
ts when TRO 
an be used, and a pro
edureTroStep (line 1191) that 
arries out a resolution step using the improved method.The main loop of the exe
ution me
hanism is in pro
edure Resume (line 1279).It is made into a separate pro
edure be
ause the exe
ution me
hanism is 
alledre
ursively as part of the implementation of the built-in relation not.17.10 Built-in relationsEa
h built-in relation is implemented as a Boolean fun
tion with no parameters.When one of these fun
tions is 
alled, the arguments of the relation are availablein the global array av . The job of the Boolean fun
tion is to return true if the



176 Implementation notesrelation is true of these arguments, and false if not; the fun
tion may also set thevalues of variables in the arguments. If the fun
tion returns true, it should set
urrent to point to the next subgoal to be solved, usually g rest(
urrent). Therefollow brief notes on the implementation of ea
h built-in relation:� The 
ut symbol ! is implemented in DoCut (line 1352) by resetting the
hoi
epoint variable to the value it had when the 
alling frame was 
reated,thereby freezing all 
hoi
es made sin
e that time. The Commit operationis used to dis
ard from the trail any bindings that are no longer 
riti
al.� If p is a valid literal, then the subgoal 
all(p) behaves as if p itself appearedin pla
e if the subgoal. This behaviour is implemented in DoCall (line 1361)by a tri
k, using a dummy 
lause whose body 
onsists of a single variable.� Negation as failure, notp, is implemented in DoNot (line 1377) by 
allingthe exe
ution me
hanism re
ursively to solve p. If the re
ursive 
all ends infailure, then DoNot returns true; otherwise, it 
ommits to the �rst solutionand returns false.� The arithmeti
 relations plus and times are implemented by DoPlus (line1409) and DoTimes (line 1431). Ea
h involves a 
ase analysis a

ording towhi
h arguments are known integers and whi
h are unknown, and in ea
h
ase, the unknown arguments are 
al
ulated from the known ones.� The relation x = y is implemented in DoEqual (line 1457) by unifying xand y . If this su

eeds then the unifying substitution be
omes part of theanswer substitution of the exe
uting goal. This gives exa
tly the same e�e
tas if the relation were de�ned by the 
lausex = x :� :so making it a built-in relation is purely a matter of 
onvenien
e.� The tests integer(x ) and 
har(x ) are implemented by DoInteger (line 1464)and DoChar (line 1471). They are implemented by a straightforward testof the t kind �eld of the argument.17.11 Main programThe main program of pi
oProlog deals with the 
ommand-line arguments and theopening of input �les. Pas
al provides no standard way of doing these things,so the main program uses a small 
olle
tion of pro
edures that are not standardPas
al, but 
an be implemented easily with most 
ompilers. The parameterlessfun
tionfun
tion arg
: integer ;should return the number of 
ommand-line arguments, in
luding the program
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oProlog were started with the 
ommand$ pprolog motel.ppthen the arg
 fun
tion would return 2. The arguments themselves are a

essedusing the pro
edurepro
edure argv(i: integer ; var arg : tempstring);This should store the string that is argument number i in the arg parameter,terminating it with the 
hara
ter 
hr(0). Arguments are numbered from zero,with argument number zero being the program name.To open a named �le for reading, the main program uses the fun
tionfun
tion openin(var f : text ; var name: tempstring): boolean;This fun
tion is passed the name of the �le (terminated by 
hr(0)) as its nameargument. It should attempt to open the �le for reading and asso
iate it withthe Pas
al �le variable f , returning true if the �le is su

essfully opened. If the�le 
annot be opened, the program should not 
rash, but openin should returnfalse.The main program uses these pro
edures in a straightforward way to read inthe 
lauses from ea
h of the �les named on the 
ommand line, and �nally readsa sequen
e of goals from the keyboard.



Chapter 18Interpreter optimizations

In this 
hapter, we des
ribe brie
y three improvements that are in
orporated inthe pi
oProlog interpreter:� Garbage 
olle
tion for the global sta
k re
overs storage spa
e that has be-
ome ina

essible, but is not re
overed by the usual sta
k-like behaviour ofthe storage me
hanism.� Indexing qui
kly dis
ards from a pro
edure those 
lauses that `obviously' failto mat
h a goal literal. This saves the time needed to 
arry out uni�
ationfor those 
lauses, and enables the interpreter to dete
t that some goals aredeterminate without the help of 
uts.� Tail re
ursion is treated spe
ially. When the last literal in a 
lause bodyis rea
hed, it is sometimes possible to re
laim the sta
k spa
e used by the
lause before exe
uting the literal. This allows re
ursive relations of a simpleform to be exe
uted in 
onstant spa
e.The three re�nements work well together: indexing makes more goals determi-nate, so their working spa
e 
an be re
overed early by the garbage 
olle
tor, andit also makes more tail 
alls amenable to spe
ial treatment. These re�nementsare important, be
ause they allow a Prolog system with a �nite amount of storageto exe
ute programs that have a simple pattern of re
ursion without any limiton the re
ursion depth. Broadly speaking, if a program 
ould be written with aloop in a 
onventional programming language, the same program 
an naturallybe written in Prolog in su
h a way that a Prolog system with these re�nements
an exe
ute it in 
onstant spa
e.
178
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olle
tion 17918.1 Garbage 
olle
tionAs pi
oProlog programs are exe
uted, mu
h of the storage that is allo
ated isre
laimed by the usual pro
ess of 
ontra
ting the sta
ks on ba
ktra
king or deter-minate su

ess. But some storage may not be re
laimed in this way, even thoughit has be
ome ina

essible to the program. An example is a program like this:translation(x ; z) :� analyse(x ;y ); !; synthesize(y ; z):All the global sta
k spa
e allo
ated during exe
ution of analyse(x ;y ) that isnot part of the immediate result y will no longer be a

essible after the 
ut,be
ause even ba
ktra
king 
annot then return to analyse(x ;y ). The purpose ofthe garbage 
olle
tor is to re
laim this storage.The garbage 
olle
tor is the most subtle and 
ompli
ated part of the pi
oPrologsystem. Be
ause it has to analyse the whole network of pointers in the systemstate, it breaks all the abstra
tion boundaries that keep other parts of the systemsimple. It must do so, be
ause it must dis
over what parts of the allo
ated storageare a

essible from any part of the state.Another sour
e of 
omplexity, even 
ompared to other garbage 
olle
tors, isthe kind of garbage 
olle
tion that Prolog demands. We do not want to lose theadvantages of sta
k-like re
lamation of global sta
k spa
e on ba
ktra
king, so thegarbage 
olle
tor must work by 
ompa
ting all the a

essible storage in a waythat preserves the order of data in memory. This makes the task of the garbage
olle
tor more diÆ
ult than it would be if it simply linked the garbage into a freelist, as some storage allo
ation s
hemes do.For garbage 
olle
tion to work, it must be possible to �nd all the pointersthat lead into the global sta
k from outside. These pointers may be stored inthe interpreter's `register' variables su
h as 
all or trhead , or in the �elds of alo
al sta
k frame. During a resolution step, pointers into the global sta
k are alsoheld in the lo
al variables of interpreter pro
edures like Unify. This would 
ausegreat problems if we allowed garbage 
olle
tion to take pla
e in the middle ofa resolution step, espe
ially be
ause items in the global sta
k are moved duringgarbage 
olle
tion. Consequently, we arrange that the garbage 
olle
tor is 
alledonly at `quiet' times, when the only pointers into the global sta
k are held ininterpreter registers or lo
al sta
k frames.The main loop of the interpreter in
ludes a test whether the amount of freestorage left is less than a 
ertain threshold g
low . If so, the garbage 
olle
toris 
alled before the next resolution step begins. If storage runs out during aresolution step, exe
ution of the goal is abandoned without mu
h gra
e. Thiss
heme is reasonable, be
ause the amount of storage 
onsumed during a resolutionstep is bounded by the size of the largest program 
lause, for global sta
k spa
eis 
onsumed by 
opying out parts of the 
lause. In theory, we 
ould 
al
ulatethis bound for ea
h Prolog program and use it in pla
e of the 
onstant valueg
low , but pi
oProlog does not bother with this. When the garbage 
olle
tor



180 Interpreter optimizationsruns, it must �nd at least g
high words of free spa
e, otherwise exe
ution stopsimmediately. This prevents the situation where a program 
alls the garbage
olle
tor many times in qui
k su

ession before �nally running out of spa
e.The garbage 
olle
tor is implemented as the pro
edure Colle
t (line 1686),and is based on the `LISP 2 garbage 
olle
tor' des
ribed in the answer to anexer
ise on page 602 of the book Fundamental Algorithms by Donald E. Knuth(Addison{Wesley, 1973). Its work is divided into four phases:1. Mark all a

essible storage in the global sta
k.2. Compute the new lo
ation of that ea
h a

essible blo
k will have afterstorage has been 
ompa
ted.3. Adjust internal and external pointers to global sta
k items to point to thenew lo
ations of the items.4. Compa
t the a

essible storage towards the top of the mem array.During phase 1, the a

essible storage is marked by modifying the t kind �eldof ea
h node. During phase 2, the distan
e that a node will move relative tothe bottom of the sta
k is stored in a spe
ial �eld t shift that is added to ea
hnode for use by the garbage 
olle
tor. This information is used in phase 3 toadjust pointers to the node. Further details of the implementation are 
ontainedin 
omments in the 
ode.18.2 IndexingIn solving a goal literal P , the usual method is to take the list of 
lauses forsame relation as P (the pro
edure for P ), and try them in sequen
e until a 
lausemat
hes P . The other 
lauses may be tried later after ba
ktra
king. The indexingoptimization works by �ltering out from the pro
edure some of the 
lauses thatdo not mat
h, so in
reasing the likelihood that ea
h of the remaining 
lauses doesmat
h. There are two bene�ts in this: �rst, the test applied in �ltering the listof 
lauses is mu
h 
heaper than allo
ating a frame and performing uni�
ation,so time is saved if some of the 
lauses for a relation 
an be �ltered out. These
ond bene�t is obtained after a mat
hing 
lause has been found. If there areno remaining alternatives in the pro
edure, there is no need to mark the sta
kframe as a 
hoi
e point, and no need to visit it again on ba
ktra
king. Filteringthe list of 
lauses makes it more likely that there will be no alternatives that havenot been dis
arded, and so in
reases the 
han
e of avoiding ba
ktra
king.An implementation of indexing requires a qui
k and e�e
tive test that 
om-pares a goal literal with the head of a 
lause. This test must say `yes' when thetwo literals 
an be uni�ed, but may say `no' otherwise. It does not matter mu
hif the test says `yes' when the two literals 
annot a
tually be uni�ed, but it mustnot say `no' if they 
an be uni�ed. Sin
e all the 
lauses in a pro
edure share thesame relation symbol as the goal, it is pointless to use the relation symbol for
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ursion 181�ltering. Instead, pi
oProlog (and many other Prolog implementations) �lter the
lauses a

ording to an index 
omputed from the �rst argument of the relation.The fun
tion Key (line 1120) 
omputes an integer index key(t) from a 
om-pound term t. The fun
tion is 
hosen so that if two terms t1 and t2 are uni�ablethen key(t1) = key(t2) or key(t1) = 0 or key(t2) = 0. This is a
hieved by mak-ing key(t) depend on the outermost fun
tion symbol in the �rst argument of t,and putting key(t) = 0 if the �rst argument of t is a variable. If a goal literaland a 
lause head are mapped to di�erent non-zero integers by the key fun
-tion, then they are not uni�able, so there is no point in trying to use the 
lauseto solve the goal. Ea
h 
lause 
 has the key value of its head stored in a �eld
 key(
), and the fun
tion Sear
h (line 1143) uses these values to �nd the �rst
lause in a pro
edure that is not dis
arded by indexing. Sear
h is used both to�nd the �rst 
lause to try when a new goal is adopted, and also to determinethe list of 
lauses that are saved in a sta
k frame for use on ba
ktra
king. Thee�e
t of using Sear
h in this way is the same as �ltering the whole pro
edureall at on
e.It is unfortunate that the 
hoi
e of key fun
tion introdu
es an asymmetryamong the arguments of a relation by treating the �rst argument spe
ially, butthis �ts in well with the natural programming style in whi
h the �rst few ar-guments of a relation are its usual inputs and the last few are its outputs. Arelation that is de�ned by re
ursion on lists will often have a 
lause that applieswhen the �rst argument is nil , and one that applies when the �rst argument isx :a. Indexing on the outermost fun
tion symbol allows pi
oProlog to 
hoose theright 
lause ea
h time, and avoid ba
ktra
king to try the other 
lause.18.3 Tail re
ursionWhen the interpreter exe
utes the last literal in a 
lause body, the resolutionstep repla
es the literal by the body of the mat
hing 
lause. Normally, this isrepresented by adding a new frame to the sta
k, with the 
urrent frame as itsparent. The new frame 
ontains the 
lause body as its goal, and the 
urrentframe 
ontains no further subgoals to be solved. If exe
ution of the 
lause bodysu

eeds, the next subgoal to be solved will 
ome from the parent frame of theoriginal frame.Under 
ertain 
onditions, it is possible to release the storage o

upied bythe 
urrent frame before starting to solve the subgoals in the new frame, andto arrange that the new frame shares the same parent as the 
urrent frame.If exe
ution of the subgoals in the new frame su

eeds, 
ontrol will then passdire
tly to the parent of the 
urrent frame. This is known as the tail re
ursionoptimization.The advantage of this optimization is parti
ularly great in the 
ase of relationsthat are de�ned in a `tail re
ursive' way, that is, where the only re
ursive 
allsin the de�nition appear as the last literals in 
lause bodies, as in the following



182 Interpreter optimizationsde�nition of revapp, taken from Se
tion 13.3:revapp(nil ;b;b) :� :revapp(x :a;b;
) :� revapp(a;x :b;
):In this de�nition, the re
ursive 
all of revapp appears as the only literal in a
lause body, so it is 
ertainly the last one. Reversing a list with n elements leadsto n re
ursive 
alls of revapp, and normally this would lead to n frames being
reated on the lo
al sta
k. With the tail re
ursion optimization, however, the �rstof these frames is released at the same time that the se
ond one is 
reated, andthe se
ond one is released at the same time that the third one is 
reated, and soon. The program needs no more than a 
ertain �xed amount of lo
al sta
k spa
e,however long the list that is being reversed. The tail re
ursion optimization hasturned the re
ursive behaviour of the program into a loop-like behaviour.The tail re
ursion optimization 
annot always be used when the last literalof a 
lause is being solved, be
ause sometimes the frame that would be dis-
arded might still be needed later for ba
ktra
king. So before de
iding to usethe optimization, the interpreter must 
he
k that both the 
alling relation andthe relation being 
alled are free from non-determinism. If there are still 
lausesfor the 
alling relation that have not been tried, then ba
ktra
king may returnto the 
urrent frame to try those 
lauses. Also, if there are alternatives to the
lause that is being used to solve the tail 
all, then ba
ktra
king will return tothe 
urrent frame to �nd the goal to whi
h those alternatives should be applied.In pi
oProlog, a ma
ro tro test (line 1180) 
he
ks that these 
onditions are satis-�ed before the tail re
ursion optimization is used. It also 
he
ks that the 
urrentframe is not the bottom one on the sta
k, be
ause the variables in that frame areneeded to print the answer.If the test su

eeds, then the 
urrent frame will not be visited by ba
ktra
king.Before dis
arding it, we also need to make sure that there are no outside referen
esto its lo
al variables. Be
ause the 
urrent frame is on top of the sta
k, and linksbetween variables are always dire
ted downwards in the lo
al sta
k, we 
an besure that any referen
es to the 
urrent frame must 
ome from the new frame. We
an avoid su
h referen
es by a dirty tri
k: before unifying the 
urrent subgoalwith the head of the 
lause, we slide the 
urrent frame upwards on the sta
k,and allo
ate spa
e for the new frame underneath it. That way, any referen
esfrom one frame to the other will lead from the old frame to the new one, andthe old frame 
an then be dis
arded safely. This rather 
onvoluted manoeuvre isa

omplished by the pro
edure TroStep (line 1191).In an interpreter, the tail re
ursion optimization 
osts some time, be
ause itis ne
essary to test whether it 
an be applied, and if so, to make the 
omplexmoves needed to dis
ard the old frame early. In 
omparison, the time bene�t ofgoing straight from the new frame to the parent of the 
urrent frame on su

essis negligible. The real bene�t of this optimization is the spa
e it saves, be
auseit allows simple programs { those that 
ould be written as loops in 
onventional
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on
luding example 183programming languages { to be exe
uted in 
onstant sta
k spa
e. In a Prologimplementation based on a 
ompiler, the bene�t of the tail re
ursion optimizationis even 
learer, be
ause the test whether it 
an be applied 
an be 
arried out on
eand for all by the 
ompiler, and need not be repeated every time a relation isused by the running program.Additional spa
e may be saved in an implementation that also in
ludes agarbage 
olle
tor, be
ause storage on the global sta
k 
an be re
laimed as soonas the sta
k frames that referen
e it have been dis
arded. The tail re
ursionoptimization also 
ombines well with indexing, be
ause part of the test whetherthe optimization 
an be applied involves 
he
king that there are no untried 
lausesfor either the 
alling or the 
alled relation, and indexing makes this more likelyby dis
arding alternatives earlier.18.4 A 
on
luding exampleThe three re�nements we have des
ribed work well together. For example, let us
onsider the problem of 
omputing the sum of a list of numbers. We 
an de�nea relation sum(a; s) that holds if s is the sum of list a:sum(nil ; 0) :� :sum(x :a; s) :� sum(a; s1); plus(x ; s1; s):Using the te
hniques of Chapter 13, we 
an transform the program into thefollowing tail re
ursive form:sum(a; s) :� sum1 (a; 0; s):sum1 (nil ; s0; s0) :� :sum1 (x :a; s0; s) :� plus(s0;x ; s1); sum1 (a; s1; s):The relation sum1 is de�ned so that sum1 (a; s0; s) holds if s is equal to s0 plusthe sum of the elements of a. The transformed program is 
alled tail re
ursivebe
ause the re
ursive 
all of sum1 o

urs at the end of its 
lause.Indexing of the �rst argument of sum1 allows pi
oProlog to determine whi
h ofthe two 
lauses for sum1 applies to ea
h goal, and 
alls to sum1 exe
ute withoutba
ktra
king and without 
reating any 
hoi
e points, even without in
ludingany 
uts in the program. Be
ause there are no 
hoi
e points, the tail re
ursionoptimization applies, and the program exe
utes in a 
onstant amount of sta
kspa
e: the sta
k spa
e needed to sum a list of 1000 elements is no bigger than thatneeded to sum a list of 3 elements. Ea
h re
ursive 
all of sum1 repla
es one sta
kframe by another one that di�ers only in the values of its variables, as a subgoalof the form sum1 (x :a; s0; s) is repla
ed by one of the form sum1 (a; s1; s), wheres1 = s0+x . Finally, after a 
all to sum has su

eeded, the asso
iated frames are
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al sta
k, and the only global sta
k data that is a

essible isthe result. Any spa
e allo
ated to hold intermediate results 
an be re
laimed bythe garbage 
olle
tor.If we were to write a Pas
al fun
tion to sum a list of numbers, it would probablylook rather like this:fun
tion Sum(a0: list): integer ;var a: list ; s: integer ;begina := a0; s := 0;while a 6= nil do begins := s+ head(a);a := tail(a)endend;In ea
h iteration of the loop, the values of variables s and a 
hange as follows: the�rst element of a is added to s, then the �rst element is removed from a. This isexa
tly the same 
hange as takes pla
e in the Prolog program as one sta
k frameis repla
ed by another.What we have just shown is that a simple Prolog program for the same taskis exe
uted in essentially the same way. The di�eren
e in eÆ
ien
y between thePas
al program and the pi
oProlog program is the di�eren
e between a programthat is 
ompiled and one that is interpreted. With a Prolog 
ompiler that usesthe re�nements dis
ussed in this 
hapter, this di�eren
e 
an be eliminated too,and Prolog programs 
an run at the almost the same speed as a Pas
al programfor the same problem.



Chapter 19In 
on
lusion

In this book, we have looked at logi
 programming from three 
omplementarypoints of view: as a mathemati
al theory based on logi
, as a medium for express-ing the solutions of problems and as a programming language that is implementedon 
omputers. Ea
h of these three points of view is important in the history oflogi
 programming.The mathemati
al theory of logi
 programming draws on 
on
epts from math-emati
al logi
, and the theorems of soundness and 
ompleteness for Horn 
lauseresolution mirror results that 
an be proved using similar methods in the moregeneral setting of �rst order predi
ate 
al
ulus. It was Alan Robinson who �rstdis
overed that the single rule of Resolution was 
omplete for the 
lausal formof predi
ate 
al
ulus, and invented the uni�
ation algorithm that is an essentialpart of resolution. These results were reported in the 
lassi
 paper `A ma
hine-oriented logi
 based on the resolution prin
iple'. (Details of books and papers
ited here may be found in the Further Reading se
tion below.)Kowalski's book Logi
 for Problem Solving opened up the �eld by showing thatmany 
ommon problems from arti�
ial intelligen
e had a natural representationas logi
 programs. As we have seen, problems like 
ombinatorial sear
hing andparsing have natural expressions as logi
 programs.New ideas in programming are of little use unless they lead to 
omputer pro-grams that really work. In the 
ase of logi
 programming, this means that thereis a need for implementations of Prolog that work at speeds 
omparable to otherlanguages. David H. D. Warren did important work here, by showing how to im-plement Prolog for the DEC{10 
omputer in a demonstrably eÆ
ient way. Thedata stru
tures used in all Prolog implementations to represent goals and 
lausesare based on his early work. His famous arti
le with Luis and Fernando Pereira,`Prolog: the language and its implementation 
ompared with Lisp', showed thatProlog programs 
ould a
hieve the same order of speed as 
omparable programswritten in Lisp, but with a versatility and elegan
e that the Lisp programs 
ouldnot mat
h. High-performan
e Prolog implementations use 
ompilers instead of185
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on
lusionthe interpreter te
hniques we studied in pi
oProlog. Nevertheless, the data stru
-tures are the same, and re�nements like garbage 
olle
tion, indexing and opti-mized tail 
alls 
arry a
ross to implementations based on 
ompilers.In the author's view, the true importan
e of logi
 programming should notbe seen as depending solely on Prolog. Although Prolog is undeniably the mostsu

essful realization of logi
 programming ideas, it is weak as a programminglanguage. It does not support notions like modularity and strong 
ompile-timetyping that help with the 
onstru
tion of large and reliable software, and pra
ti
aldetails like input/output are not well integrated with the logi
 programming partof Prolog: hen
e our avoidan
e of them in this book. One solution to theseproblems with Prolog is to design new and better logi
 programming languagesthat remedy the defe
ts and de�
ien
ies. Re
ent developments in this dire
tionhave been made by P. M. Hill and J. W. Lloyd at the University of Bristol andare des
ribed in their book, The G�odel Programming Language.Another view is that logi
 programming is just one of a network of ideas that
an be used in understanding and building 
omplex systems. Prolog 
an beused for prototyping, and for 
onstru
ting appropriate parts of a larger system,other parts of whi
h may be built using more traditional te
hniques. From thispoint of view, the links between logi
 programming and other ideas in 
omputers
ien
e are as important as its strength as a programming paradigm in its ownright. In this book, we have tou
hed on links with databases, the theory ofprogramming languages, theorem proving and hardware design. The te
hniquesthat we have studied in the implementation of pi
oProlog provide other links:with other de
larative programming paradigms su
h as fun
tional programming,with the type systems of programming languages like ML and with the te
hnologyof automati
 theorem proving.



Further reading

Rather than attempt a 
omprehensive bibliography, whi
h would run into manythousands of entries, I will restri
t myself here to re
ommending some of thebooks and papers I have found helpful in studying logi
 and logi
 programming.These works themselves 
ontain referen
es to more sour
es. Besides these, thereare several journals and periodi
 
onferen
es that are entirely devoted to thesubje
t. First, two book on the the theory of logi
 programming; the �rst ofthese is the standard a

ount, and the se
ond is a more a

essible textbook.� J. A. Lloyd, Foundations of Logi
 Programming, se
ond edition, Springer-Verlag, 1987.� C. J. Hogger, Essentials of Logi
 Programming, Oxford University Press,1990.The following book by Kowalski 
on
entrates on the expression of typi
al arti�
ialintelligen
e problems in Horn 
lause logi
.� R. Kowalski, Logi
 for Problem Solving, North Holland, 1979.For programming in Prolog itself, two useful texts are� W. F. Clo
ksin and C. S. Mellish, Programming in Prolog, Springer-Verlag,1981.� L. Sterling and E. Y. Shapiro, The Art of Prolog: Advan
ed ProgrammingTe
hniques, MIT Press, 1986.A lot of information about Prolog implementation te
hniques is 
ontained in� D. Maier and D. S. Warren, Computing with Logi
: Logi
 Programming withProlog, Benjamin Cummings, 1988. 187



188 Further readingThe te
hniques used in building Prolog 
ompilers (rather than interpreters) are
overed in� H. A��t-Ka
i, Warren's Abstra
t Ma
hine: A Tutorial Re
onstru
tion, MITPress, 1991.Considered as a programming language, Prolog is relatively primitive. Somepossible dire
tions for future development are shown by the language G�odel,des
ribed in� P. M. Hill and J. W. Lloyd, The G�odel Programming Language, MIT Press,1994.For a book on logi
, with almost no referen
e to 
omputer programming, theauthor re
ommends� H. B. Enderton, A Mathemati
al Introdu
tion to Logi
, A
ademi
 Press,1972.This book follows the standard development of mathemati
al logi
, from whi
hmany 
on
epts are borrowed in the theory of logi
 programming. Rather 
harm-ingly, the book 
ontains a single Fortran statement on page 16.Finally, some of the primary literature on logi
 programming is quite easy toread, and worth looking up. A good pla
e to start are the papers� J. A. Robinson, `A ma
hine-oriented logi
 based on the resolution prin
iple',J. ACM., 12, 1 (January 1965), pp. 23{41.� M. H. van Emden and R. A. Kowalski, `The semanti
s of predi
ate logi
 asa programming language', J. ACM., 23, 4 (O
tober 1976), pp. 733{42.� D. H. D. Warren, L. M. Pereira and F. Pereira, `Prolog: the language and itsimplementation 
ompared with Lisp', Pro
. Symp. on AI and ProgrammingLanguages, SIGPLAN Noti
es, 12, 8 (August 1977), pp. 109{15.



Appendix AAnswers to the exer
ises

1.1 Modify the lounge relation to allow two bedroom doors, but leave the bedroom relationun
hanged:suite(fd; lw ;bd1;bd2;bw1;bw2) :�lounge(fd; lw ;bd1;bd2); bedroom(bd1;bw1); bedroom(bd2;bw2):lounge(fd; lw ;bd1;bd2) :�opposite(fd; lw ); adja
ent(lw ;bd1); adja
ent(lw ;bd2):bedroom(bd;bw ) :�adja
ent(bd;bw );bw = east :There are eight solutions to the goal# :� suite(fd; lw ;bd1;bd2;bw1;bw2):However, some of these des
ribe suites that 
annot be built with re
tangular rooms inside are
tangular boundary.2.1 a. Join the manager and bill relations on the name �eld, sele
t the re
ords that satisfyamount > 10, and then proje
t on the name �eld:answer(name) :�manager(name); bill(name ;number;amount);amount > 10:b. Join the bill relation with itself on the name �eld, sele
t the re
ords that satisfy number1 6=number2, then proje
t on the name �eld:answer(name) :�bill(name ;number1;amount1);bill(name ;number2;amount2);number1 6= number2: 189
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ises
. Join the bill and paid relations on the number �eld, sele
t the re
ords in whi
h the amountpaid is less than amount of the bill, and �nally proje
t on the name �eld:answer(name) :�bill(name ;number;amount1);paid(number;amount2;date);amount2 < amount1:d. De�ne a relation prompt(number) that holds if number is the number of a bill that waspaid before February 1st. This relation 
an be de�ned by sele
ting from the paid relationand proje
ting on the number �eld:prompt(number) :� paid(number;amount ;date); before(date ; feb1 ):Now de�ne a relation issued(number) that is true if someone has been given a bill numberednumber. De�ne it by proje
ting the bill relation on the number �eld:issued(number) :� bill(name ;number;amount):The di�eren
e of these two relations gives a relation late(number) that holds if the billnumbered number has been issued, but has not been paid promptly:late(number) :� issued(number);not prompt(number):Finally, we 
an obtain the names of late payers by joining with the bill relation on thenumber �eld and proje
ting on the name �eld:answer(name) :� bill(name ;number;amount); late(number):3.1 The goal fails be
ause their is no solution to the subgoal member(x ;nil). This a

uratelyre
e
ts that fa
t that only non-empty lists have a maximum element.3.2 The solution x = 3 is displayed twi
e if we use the de�nition of maximum in terms ofmember and dominates . This is be
ause their are two ways of deriving the fa
t that 3 is amember of the list 3:1:3:2:nil . With the dire
t de�nition of maximum, the solution is displayedonly on
e.3.3 In terms of append and other relations:a. pre�x (a;b) :� append(a;
 ;b):b. suÆx (a;b) :� append(
 ;a;b):
. segment(a;b) :� pre�x (
 ;b); suÆx (a;
):e. delete(a;x ;b) :� append(
 ;x :d;a); append(
 ;d;b):By re
ursion:a. pre�x (nil ;b) :� :pre�x (x :a;x :b) :� pre�x (a;b):b. suÆx (b;b) :� :suÆx (a;x :b) :� suÆx (a;b):
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. segment(a;b) :� pre�x (a;b):segment(a;x :b) :� segment(a;b):d. sublist(nil ;nil) :� :sublist(a;x :b) :� sublist(a;b):sublist(x :a;x :b) :� sublist(a;b):e. delete(x :a;x ;a) :� :delete(y :a;x ;y :b) :� delete(a;x ;b):f. perm(nil ;nil) :� :perm(x :a;b) :� delete(b;x ;
); perm(a;
):3.4 a. By re
ursion:last(x :nil ;x ) :� :last(x :a;y ) :� last(a;y ):b. In terms of append :last(a;x ) :� append(b;x :nil ;a):The goal # :� last(a; 3) has in�nitely many solutions of the form a = x1:x2: : : : :xn :3:nil .3.5 With the �rst de�nition of maximum (the one in terms of member and dominates), theanswer x = 3 is displayed twi
e, be
ause there are two ways of showing that 3 is a member of thelist 3:1:3:2:nil , and pi
oProlog is enumerating proofs rather than the answers themselves. Withthe other de�nition of maximum, the answer is only displayed on
e, be
ause there is only oneway of deriving the answer in this 
ase.3.6 Be
ause of Prolog's left-to-right rule, the 
lause
atten(fork(l;r);
) :� 
atten(l;a);
atten(r;b); append(a;b;
):does not work well if only the list 
 is given, be
ause it 
auses the subgoal 
atten(l;a) to besolved �rst, and that subgoal does not 
ontain any of the given information. The result is thatProlog blindly tries all trees l and r, looking for pairs of trees whose 
attened forms join togive 
 . This sear
h will go on forever, �nding only some of the 
orre
t solutions.For this use of 
atten, it is better to rewrite the 
lause as
atten(fork(l;r);
) :� append(a;b;
);
atten(l;a);
atten(r;b):This leads to a systemati
 sear
h of the ways of splitting 
 into two parts a and b, followed bysystemati
 sear
hes for ways of building trees for the two parts.There is a further problem: one of the ways of splitting a list into two parts is to have onepart be nil , and the other part be the whole list. Choosing this split results in an attempt tosolve the original problem as a sub-problem of itself, and hen
e to an in�nite sear
h. A solutionto this problem is to require both parts of the split to be non-empty, like this:
atten(fork(l;r);
) :� append(x :a;y :b;
);
atten(l;x :a);
atten(r;y :b):4.1 The problem involves the �ve literals valuable, metal , yellow , heavy and gold , so the truthtable has 32 = 25 rows. We present it here in a 
ompa
t form, allowing `�' to stand for both T
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isesand F, and using `?' to stand for an unknown result:valuable metal yellow heavy gold (1) (2) (3)T � � � � T ? TF F � � � T T ?F T F � � T T ?F T T F � T ? ?F T T T T F T FF T T T F F F TFor example, the �rst line of this 
ompa
t table stands for 16 lines of the full table, and re
ordsthe fa
t that (1) is true whenever valuable is true, regardless of the values of the other literals.The table shows that (1) is false only if either (2) or (3) is false, so demonstrating that (1) followsfrom (2) and (3) together.4.2 If C is a ground 
lause then C[g℄ = C for any substitution g; so if j=M C then j=M C[g℄.Conversely, suppose that j=M C[g℄ for all ground substitutions g, and let g0 be any groundsubstitution. Then j=M C[g0℄, so j=M C. We need to assume that the alphabet 
ontains at leastone 
onstant, for otherwise there are no ground terms, and so no ground substitutions g0.4.3 If t is a variable y , then y is di�erent from x , sin
e x does not appear in t. Consequentlyt[x  u℄ = y [x  u℄ = y = t:If t is a 
ompound term f(t1; : : : ; tk) and x does not appear in t, then x does not appear inany of the ti. So we may assume as indu
tion hypotheses that ti[x  u℄ = ti for ea
h i. Wededu
e thatt[x  u℄ = f(t1; : : : ; tk)[x  u℄ = f(t1[x  u℄; : : : ; tk[x  u℄)= f(t1; : : : ; tk) = t:This 
ompletes the proof.4.4 We use stru
tural indu
tion on t. If t is a variable x , we 
al
ulatex [I ℄ = I(x ) = x :If t is a 
ompound term f(t1; : : : ; tk), and ti[I ℄ = ti for ea
h i, thenf(t1; : : : ; tk)[I ℄ = f(t1[I ℄; : : : ; tk[I ℄) = f(t1; : : : ; tk):This 
ompletes the proof.4.5 We prove that the two substitutionss1 = fx  u℄g . fy  wg;s2 = fy  wg . fx  u[y  w℄gare equal by showing that they have the same e�e
t on any variable v .
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ises 193If v is di�erent from both x and y , then 
learly s1(v ) = s2(v ) = v . If v is the same as x ,we �nds1(x ) = x [x  u℄[y  w℄ = u[y  w℄;s2(x ) = x [y  w℄[x  u[y  w℄℄ = x [x  u[y  w℄℄ = u[y  w℄:And if v is the same as y , we �nds1(y ) = y [x  u℄[y  w℄ = y [y  w℄ = w;s2(y ) = y [y  w℄[x  u[y  w℄℄ = w[x  u[y  w℄℄ = w:5.1 Let M be a stru
ture, and suppose j=M C, where C = (P :� Q1; Q2). Let g be any groundsubstitution; then j=M C[g℄, so either P [g℄ is true in M , or one of Q1[g℄, Q2[g℄ is false in M .Putting this another way, either P [g℄ is true, or one of Q2[g℄, Q1[g℄ is false. In other words,j=M C 0[g℄, where C 0 = (P :� Q2; Q1). Sin
e this is so for any ground substitution g, it followsthat j=M C 0.5.2 From the given 
lause P :� Q1; Q2, we may derive the 
lause P [s℄ :� Q1[s℄; Q2[s℄ by therule of substitution. But Q1[s℄ = Q2[s℄, so this is the same as P [s℄ :� Q1[s℄; Q1[s℄. The desiredresult P [s℄ :� Q[s℄ may be derived from this by the following rule of dire
t fa
toring : fromA :� B;B derive A :� B.For soundness of this rule, let M be a stru
ture, and suppose that j=M C, where C = (A :�B;B). Let g be any ground substitution. We may assume that j=M C[g℄, and must show thatj=M C 0[g℄, where C 0 = (A :� B). But C[g℄ = (A[g℄ :� B[g℄; B[g℄), so either A[g℄ is true in M orone of the literals B[g℄ is false in M (and so both are false). Hen
e j=M C 0[g℄ as required.5.3 Let M be a model of the two premisses C1 and C2, let C 0 be the proposed 
on
lusion, andlet g be a ground substitution. By the rule of substitution, M is a model of C1[g℄ and C2[g℄.Hen
e by the rule of ground resolution, M is a model of C 0[g℄, the ground resolvent of C1[g℄ andC2[g℄ on Q[g℄ = Qj [g℄. Thus M is a model of C 0[g℄ for every g, and so M is a model of C 0.6.1 a. fx  g(h(z));y  h(z)g.b. There are no uni�ers.
. fx  g(a);y  a; z  g(g(a))g.6.2 If t and v are di�erent 
onstants foo and baz , and u is a variable x , then t and u have auni�er fx  foog, and u and v have a uni�er fx  bazg, but t and v have no uni�er.6.3 We �rst show that t1[r . s℄ = t2[r . s℄. Expanding the left-hand side,t1[r . s℄ = f(u1; w1)[r℄[s℄ = f(u1[r℄[s℄; w1[r℄[s℄):Now u1[r℄ = u2[r℄ be
ause r uni�es u1 and u2, and w1[r℄[s℄ = w2[r℄[s℄ be
ause s uni�es w1[r℄ andw2[r℄. Also t2[r . s℄ = f(u2[r℄[s℄; w2[r℄[s℄) as above.Now suppose p is any uni�er of t1 and t2; we show that p fa
tors through r . s. Sin
e p uni�est1 and t2, it also uni�es u1 and u2, so p fa
tors through r, say p = r .q. But p also uni�es w1 andw2, so w1[r℄[q℄ = w1[p℄ = w2[p℄ = w2[r℄[q℄, and q uni�es w1[r℄ and w2[r℄. Sin
e s is the m.g.u. ofw1[r℄ and w2[r℄, it follows that q fa
tors through s, say q = s . k. Putting the pie
es together,we �nd thatp = r . q = r . (s . k) = (r . s) . k;
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isesand p fa
tors through r . s. Sin
e this happens for any uni�er p of t1 and t2, it follows that r . sis a most general uni�er of t1 and t2.6.4 First, r . s is a uni�er of ft1; t2; t3g be
ause t1[r . s℄ = t1[r℄[s℄ = t2[r℄[s℄ = t2[r . s℄ (sin
e ris a uni�er of t1 and t2), and t1[r . s℄ = t1[r℄[s℄ = t3[r℄[s℄ = t3[r . s℄ (sin
e s is a uni�er of t1[r℄and t2[r℄).Moreover, r . s is a most general uni�er; for if p is another uni�er of ft1; t2; t3g then p uni�est1 and t2 in parti
ular, so p fa
tors through r, say p = r . q. We now �nd that t1[r℄[q℄ = t1[p℄ =t3[p℄ = t3[r℄[q℄, so q uni�es t1[r℄ and t3[r℄, and hen
e q fa
tors through the m.g.u. s, say q = s . k.Summarizing, p = r . q = r . s . k, and p fa
tors through r . s.Finally, if ft1; t2; t3g has a uni�er p, then p uni�es t1 and t2 in parti
ular, and so they have am.g.u. r, and p fa
tors through r, say p = r . q. As above, q uni�es t1[r℄ and t2[r℄, so these havean m.g.u. s, and an m.g.u. of ft1; t2; t3g is r . s.6.5 a. The relation � is re
exive be
ause t[I ℄ = t and so t � t for any term t. Also, � istransitive. If t � u and u � w, say t[s℄ = u and u[r℄ = w, then t[s . r℄ = t[s℄[r℄ = u[r℄ = w,so t � w. However, pre
eq is not anti-symmetri
; for example, if x and y are distin
tvariables, then x � y (be
ause x [x  y ℄ = y ), and similarly y � x , but x 6= y .b. We �rst show that for any terms t and u, t u u is a lower bound of t and u. Let s0 be thesubstitution de�ned bys0(v ) = � t; if v = �(t; u)v ; otherwise.Then �(t; u)[s0℄ = t for all terms t and u. We now use stru
tural indu
tion to extend thisresult, showing that (t u u)[s0℄ = t for all t and u. It follows that t u u � t, and the proofthat t u u � u is similar. The a
tual proposition P (w) proved by indu
tion on w is thefollowing:For all t and u, if w = t u u then w[s0℄ = t.The base 
ase o

urs when w is a variable. If so, and w = t u u, then w = �(t; u); weexamined this 
ase above. For the indu
tion step, we assume that P (w1), : : : , P (wk) hold,and show P (w) where w = f(w1; : : : ; wk). If so, and w = t u u, then t = f(t1; : : : ; tk)for some terms t1, : : : , tk, and similarly u = f(u1; : : : ; uk), with wi = ti u ui for ea
h i.Applying the indu
tion hypothesis, we �nd that wi[s0℄ = ti for ea
h i, and so w[s0℄ = t.This 
ompletes the proof that t u u � t.To show that t u u is a greatest lower bound, suppose w[s1℄ = t and w[s2℄ = u for someterm w. De�ne a substitution s bys(v ) = s1(v ) u s2(v ):We 
laim that w[s℄ = t u u, so w � t u u.Again we argue by stru
tural indu
tion, the a
tual proposition Q(w) proved by indu
tionbeing the following:For all t and u, if w[s1℄ = t and w[s2℄ = u, then w[s℄ = t u u.For the base 
ase, if w is a variable v , thenw[s℄ = s(v ) = s1(v ) u s2(v ) = w[s1℄ u w[s2℄ = t u u:
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ises 195For the step 
ase, we assume that Q(w1), : : : , Q(wk) hold, and show Q(w) where w =f(w1; : : : ; wk). If w[s1℄ = t, then t = f(t1; : : : ; tk) with ti = wi[s1℄ for ea
h i. Also ifw[s2℄ = u, then u = f(u1; : : : ; uk) with ui = wi[s2℄ for ea
h i. Applying the indu
tionhypothesis, we 
on
lude that wi = ti u ui for ea
h i, and sow[s℄ = f(w1[s℄; : : : ; wk[s℄) = f(t1 u u1; : : : ; tk u uk) = t u u:This 
ompletes the proof.
. If u0 = u[s℄ is a variant of u having no variables in 
ommon with t, and t and u0 have amost general uni�er r, then t[r℄ is a least upper bound of t and u.7.1 1. reverse(x1:a1;
1) :� reverse(a1;b1); append(b1;x1:nil ;
1): (rev.2)2. reverse(x2:a2;
2) :� reverse(a2;b2); append(b2;x2:nil ;
2): (rev.2)3. reverse(x1:x2:a2;
1) :� 1, 2, Rreverse(a2;b2); append(b2;x2:nil ;b1); append(b1;x1:nil ;
1):4. reverse(nil ;nil) :� : (rev.1)5. reverse(x1:x2:nil ;
1) :� append(nil ;x2:nil ;b1); append(b1;x1:nil ;
1): 3, 4, R6. append(nil ;b6;b6) :� : (app.1)7. reverse(x1:x2:nil ;
1) :� append(x2:nil ;x1:nil ;
1): 5, 6, R8. append(x8:a8;b8;x8:
8) :� append(a8;b8;
8): (app.2)9. reverse(x1:x2:nil ;x2:
8) :� append(nil ;x1:nil ;
8): 7, 8, R10. append(nil ;b10;b10) :� : (app.1)11. reverse(x1:x2:nil ;x2:x1:nil) :� 9, 10, R7.2 One possibility is to de�ne palin in terms of reverse:palin(a) :� reverse(a;a):We 
an use the following de�nition of reverse (see Chapter 13):reverse(a;b) :� revapp(a;nil ;b):revapp(nil ;b;b) :� :revapp(x :a;b;
) :� revapp(a;x :b;
):The following sequen
e of goals is derived in solving # :� palin(1:x :y :z :nil):# :� palin(1:x :y :z :nil):# :� reverse(1:x :y :z :nil ; 1:x :y :z :nil):# :� revapp(1:x :y :z :nil ;nil ; 1:x :y :z :nil):# :� revapp(x :y :z :nil ; 1:nil ; 1:x :y :z :nil):# :� revapp(y :z :nil ;x :1:nil ; 1:x :y :z :nil):# :� revapp(z :nil ;y :x :1:nil ; 1:x :y :z :nil):# :� revapp(nil ; z :y :x :1:nil ; 1:x :y :z :nil):# :� :
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isesThe �nal step involves unifying the lists z :y :x :1:nil and 1:x :y :z :nil , yielding the answer substi-tution fz  1;y  xg.8.1 a. In terms of the relation opposite from Chapter 1:optstep(x :y :a;a) :� opposite(x ;y ):optstep(x :a;x :b) :� optstep(a;b):or (more 
leverly),optstep(a;b) :� append(p;x :y :q;a); opposite(x ;y ); append(p;q;b):b. This is an example of transitive 
losure (see Chapter 9):optimize(a;a) :� not improvable(a):optimize(a;
) :� optstep(a;b); optimize(b;
):improvable(a) :� optstep(a;b):The improvable relation is needed so that the test improvable(a) is ground whenever a is.
. The tri
k is to introdu
e a relation adjoin, de�ned so that adjoin(x ;a;b) is true if b is apath equivalent to x :a, but optimal if a is itself optimal:optimize(nil ;nil) :� :optimize(x :a;
) :� optimize(a;b); adjoin(x ;b;
):adjoin(x ;nil ;x :nil) :� :adjoin(x ;y :a;a) :� opposite(x ;y ):adjoin(x ;y :a;x :y :a) :� not opposite(x ;y ):This solution is plainly linear in the length of a, but the previous solution is quadrati
,be
ause ea
h optimization step is linear, and there may be n=2 of them.9.1 The relation 
onn(a;b; p; s) is de�ned to mean that p is a path from a to b that avoidsnodes in s :
onne
ted(a;b; p) :� 
onn(a;b; p;a:nil):
onn(a;a;nil ; s) :� :
onn(a;
 ;n :p; s) :� ar
(a;b;n );notmember(b; s); 
onn(b;
 ; p;b:s):ar
(empty7; state(x ;y ); state(0;y )) :� :ar
(empty5; state(x ;y ); state(x ; 0)) :� :ar
(pour7to5; state(x ;y ); state(0;v )) :� plus(x ;y ;v ); leq(v ; 5):ar
(pour5to7; state(x ;y ); state(u ; 0)) :� plus(x ;y ;u ); leq(u ; 7):ar
(�ll5from7; state(x ;y ); state(u ; 5)) :� plus(x ;y ; z); plus(u ; 5; z):ar
(�ll7from5; state(x ;y ); state(7;v )) :� plus(x ;y ; z); plus(7;v ; z):ar
(�ll7; state(x ;y ); state(7;y )) :� :ar
(�ll5; state(x ;y ); state(x ; 5)) :� :leq(x ;y ) :� plus(x ;w ;y ):
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ises 197Exe
uting the goal# :� 
onne
ted(state(0; 0); state(4; 0); p):gives the answerp = �ll7:�ll5from7:empty5:pour7to5:�ll7:�ll5from7:empty5:nilin addition to several longer ones.9.2 Use (for example) the term state(left ; left ; right ; left) to name the state in whi
h the farmer,the wolf and the 
abbage are on the left bank, and the goat is alone on the right bank. Therelation opposite(a;b) is true if a and b are di�erent banks of the stream:opposite(left ; right) :� :opposite(right ; left) :� :A state is unsafe if the wolf and goat or the goat and 
abbage are on the same bank, but thefarmer is on the opposite bank:unsafe(state(a;b;b;
)) :� opposite(a;b):unsafe(state(a;b;
 ;
)) :� opposite(a;
):Using negation as failure, we 
an now de�ne a relation safe(s) that 
he
ks whether state s is safe:safe(s) :� not unsafe(s):Use the term take(x ;a;b) to name the move of taking obje
t x from bank a to bank b. Thenwe 
an de�ne a relation ar
(n ;x ;y ) that is true if move n takes state x to state y :ar
(take(wolf ;a;b); state(a;a;
 ;d); state(b;b;
 ;d)) :� opposite(a;b):ar
(take(goat ;a;b); state(a;
 ;a;d); state(b;
 ;b;d)) :� opposite(a;b):ar
(take(
abbage;a;b); state(a;
 ;d;a); state(b;
 ;d;b)) :� opposite(a;b):ar
(take(boat ;a;b); state(a;
 ;d; e); state(b;
 ;d; e)) :� opposite(a;b):For example, taking the wolf from a to b requires that the farmer and the wolf are on bank abeforehand, and results in both being on the opposite bank b, while the goat and 
abbage donot move. With this set-up, we 
an use the path-�nding program from the pre
eding exer
ise tosolve the goal# :� 
onne
ted(state(left ; left ; left ; left); state(right ; right ; right ; right); p):9.3 Ea
h expression must 
ontain exa
tly three operators, so we de�ne trial in terms of arelation trial1 (e ;b0;b) that is true if e is an expression 
ontaining not more than b0 operators,and b is the number left over:trial(e) :� trial1 (e ; 3; 0):trial1 (e ;b0;b) :�plus(b1; 1;b0); trial1 (e1;b1;b2); trial1 (e2;b2;b); 
ombine(e1; e2; e):trial1 (4;b0;b0) :� :
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ombine(e1; e2; add(e1; e2)) :� :
ombine(e1; e2; subtra
t(e1; e2)) :� :
ombine(e1; e2;multiply(e1; e2)) :� :
ombine(e1; e2; divide(e1 ; e2)) :� :There are �ve possible stru
tures for an expression with three operators op; symboli
ally, they areop(4; op(4; op(4; 4))), op(4; op(op(4; 4); 4) and their mirror images, and the symmetri
al stru
tureop(op(4; 4); op(4; 4)). The operators op 
an be 
hosen from the four possibilities in 43 = 64 ways,giving a total of 5� 64 = 320 expressions.9.4 We 
an represent the state as a term towers(a;b;
), where a, b and 
 are the lists ofdis
s on ea
h spike, in de
reasing order of size. We 
an de�ne a relation legal(x ;a) to hold if dis
x 
an legally be added to a spike holding dis
s a:legal(x ;nil) :� :pla
e(x ;y :nil) :� less(x ;y ):Any dis
 
an be added to an empty spike; a dis
 
an be added to a non-empty spike exa
tly if itis smaller than the top dis
 already on the spike. Now we 
an write 
lauses for a relation movelike this:move(towers(x :a;b;
); towers(a;x :b;
);move12) :� legal(x ;b):move(towers(x :a;b;
); towers(a;b;x :
);move13) :� legal(x ;
):: : :There are six su
h 
lauses altogether. To 
al
ulate the number of states, observe that we 
anpla
e the largest dis
 on any spike, then the next smaller dis
 either on an empty spike or ontop of the largest dis
. Following this pro
edure, we have a free 
hoi
e for ea
h dis
, so thereare 35 = 243 states in all. As is well known, there is a solution in 25 � 1 = 31 moves. Withoutprogramming the solution expli
itly, it 
an be found fairly qui
kly using loop-avoidan
e.10.1 
atten(t ;a) :� 
at1 (t ;a;nil):
at1 (tip(x );x :a;a) :� :
at1 (fork(t1;t2);a0;a) :�
at1 (t1;a0;a1);
at1 (t2;a1;a):This version of 
atten avoids the need to append the 
attened forms of the trees t1 and t2 inorder to 
onstru
t the 
attened form of fork(t1;t2).10.2 De�ne spa
e like this:spa
e(a;
) :� eat(` ';a;b); spa
e(b;
):spa
e(a;a):This relation 
an be used in a new de�nition of expr by systemati
ally inserting 
alls to spa
e



A Answers to the exer
ises 199wherever eat is used. For example, the 
lauseexpr(add(t1;t2);a;d) :�term(t1;a;b); eat(`+';b;
); expr(t2;
 ;d):be
omesexpr(add(t1;t2);a; e) :�term(t1;a;b); spa
e(b;
); eat(`+';
 ;d); expr(t2;d; e):Alternatively, we 
ould modify the de�nition of eat to ignore spa
es itself.10.3 It is helpful to use a relation digit(
 ;k) that holds if the 
hara
ter 
 is a de
imal digitand k is the 
orresponding numeri
 value:digit(`0'; 0) :� :digit(`1'; 1) :� :: : :We 
an de�ne a �rst version of number as follows:number(a0;a) :�eat(
 ;a0;a1); digit(
 ;k);number1(a1;a):number1(a0;a) :�eat(
 ;a0;a1); digit(
 ;k);number1(a1;a):number1(a0;a0) :� :This version does not 
ompute the value of the number. To do that, we add two extra argumentsto the relation number1, so that number1(n0;n ;a0;a) holds if the di�eren
e between a0 and ais a (possibly empty) sequen
e of digits, and the value of the number 
omposed by adding thesedigits after the number n0 is n :number(n ;a0;a) :�eat(
 ;a0;a1); digit(
 ;k);number1(k ;n ;a1;a):number1(n0;n ;a0;a) :�eat(
 ;a0;a1); digit(
 ;k);times(n0; 10;n1); plus(n1;k ;n2);number1(n2;n ;a1;a):number1(n0;n0;a0;a0) :� :Extending the parser for expressions is a simple matter of adding the 
lause:fa
tor(n ;a0;a) :� number(n ;a0;a):10.4 We just need to build a parser for the grammargood ::= `0' j `1' good good
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isesThe program is as follows:good(a) :� good1(a;nil):good1(0:a0;a0) :� :good1(1:a0;a) :� good(a0;a1); good(a1;a):To improve the 
ontrol behaviour of the goal # :� good(a) (and yield the solutions in in
reasingorder of length), we 
an add a 
all to the list predi
ate (see page 30):good(a) :� list(a); good1(a;nil):Solving the goal # :� good(a) with this de�nition of good 
auses Prolog to generate lists a ofin
reasing length whose elements are all unknown variables, then solve the subgoal good1(a;nil).Sin
e the length of the �rst argument of good1 goes down in ea
h re
ursive 
all, the program iswell-behaved.11.1 value(x ;x ) :� integer(x ):value(add(p;q); z) :� value(p;x ); value(q;y ); plus(x ;y ; z):value(subtra
t(p;q); z) :� value(p;x ); value(q;y ); plus(y ; z ;x ):value(times(p;q); z) :� value(p;x ); value(q;y ); times(x ;y ; z):value(divide(p;q); z) :�value(p;x ); value(q;y );not y = 0; times(y ; z ;x ):11.2 De�ne update byupdate(nil ;x ;v ; val(x ;v ):nil) :� :update(val(x ;w ):a;x ;v ; val(x ;v ):a) :� :update(val(y ;w ):a;x ;v ; val(y ;w ):b) :�notx = y ; update(a;x ;v ;b):Extend eval by adding the 
lauseeval(let(x ; e1; e2);a;v ) :�eval(e1;a;v1); update(a;x ;v1;b); eval(e2;b;v ):12.1 
ip
op(a;b;x ;y ) :� nand(a;y ;x );nand(b;x ;y ):There are �ve stable states:a = 0 b = 0 x = 1 y = 1;a = 0 b = 1 x = 1 y = 0;a = 1 b = 0 x = 0 y = 1;a = 1 b = 1 x = 0 y = 1;a = 1 b = 1 x = 1 y = 0:The use of this 
ir
uit as a memory element is explained by the existen
e of two stable states inwhi
h the inputs are both 1.



A Answers to the exer
ises 20112.2 xor(a;b; z) :�pwr(p); gnd(q);ptran(p;a;
);ntran(
 ;a;q);ptran(a;b; z);ntran(z ;b;
);ptran(b;a; z);ntran(z ;
 ;b):The goal # :� xor(a;b; z) reveals that there are four stable states, one for ea
h 
ombination ofthe inputs a and b, and the output z always has the 
orre
t value.13.1 ord(x :y :a) :� x < y ; ord(y : a )ord(u :v :b) :� u < v ; ord(v :b):This gives the resolventord(x :y :v :b) :� x < y ;y < v ; ord(v :b):Now resolve with (ord.2):ord(x :y :v :a) :� x < y ;y < v ; ord(v : b )ord(w :nil) :�This gives the desired spe
ial 
ase:ord(x :y :v :nil) :� x < y ;y < v :13.2 In terms of append :
onse
(x ;y ;a) :� append(b;x :y :
 ;a): (1)Resolving this with (app.1) gives b = nil , a = x :y :
 and
onse
(x ;y ;x :y :
) :� :Resolving (1) with (app.2) gives b = u :b 0, a = u :a0 and
onse
(x ;y ;u :a0) :� append(b 0;x :y :
 ;a0):whi
h we 
an fold with (1) to give
onse
(x ;y ;u :a0) :� 
onse
(x ;y ;a0):13.3 De�ne the relation path bypath(a;b; p) :� ispath(p);�rst(p;a); last(p;b):



202 Answers to the exer
isesUnfolding the de�nitions of ispath, �rst and last , followed by a folding step, then gives a dire
tde�nition of path by re
ursion. The 
lause
onne
ted(a;b) :� path(a;b; p):is obtained by folding the original de�nition of 
onne
ted with the 
lause de�ning path.13.4 a. The de�nition is by simultaneous re
ursion on the tree and the path:sele
t(t ;nil ;t) :� :sele
t(fork(l;r); l :p;u ) :� sele
t(l; p;u ):sele
t(fork(l;r); r :p;u ) :� sele
t(r; p;u ):b. Again we use simultaneous re
ursion on the path and the subje
t tree:repla
e(t ;nil ;u ;u ) :� :repla
e(fork(l;r); l :p;u ; fork(l0 ;r)) :� repla
e(l; p;u ; l0):repla
e(fork(l;r); r :p;u ; fork(l;r0)) :� repla
e(r; p;u ;r0):
. The answers to parts (a) and (b) share a 
ommon pattern:sele
t(t ; p;u ) :� repla
e(t ; p;u ;t):d. The transformation results in the following dire
t de�nition of 
hange:
hange(t ;t ;u 0;u 0) :� :
hange(fork(l;r);u ;u 0; fork(l0;r)) :� 
hange(l;u ;u 0; l0):
hange(fork(l;r);u ;u 0; fork(l;r0)) :� 
hange(r;u ;u 0;r0):



Appendix BUsing an ordinary Prolog system

Most of the programs in this book 
an also be run using an ordinary Prologsystem, with only small 
hanges of notation. For example, standard Prolog omitsthe `:�' from unit 
lauses, so the 
lause we have been writing asopposite(north; south) :� :would be writtenopposite(north; south):in Prolog. Goals are written with `?�' like this: ?� opposite(x ;y ).The most signi�
ant di�eren
e between pi
oProlog and standard Prolog sys-tems is that pi
oProlog does not provide the list notation of standard Prolog.There are two 
hoi
es here: one 
hoi
e is to translate the programs from thebook to use the standard notation, so that the famous append program be
omesappend([ ℄;b;b):append([x j a℄;b; [x j 
 ℄) :� append(a;b;
):You 
an then write goals like ?� append([1; 2℄; [3; 4℄;x ).The other 
hoi
e is to ignore Prolog's list notation, and use in�x 
olon instead.To do this, you must de
lare `:' as an in�x symbol by exe
uting the goal?� op(50; xfy ; :):Taking this approa
h means that programs and goals must be written as shownin this book: you 
annot mix this notation with Prolog lists, be
ause the Prologlist [1; 2; 3℄ is not equal to the term 1:2:3:nil . 203



204 Using an ordinary Prolog systemAnother di�eren
e between pi
oProlog and standard Prolog is that pi
oPrologprovides arithmeti
 fa
ilities through the built-in relations plus and times, andthe fa
ilities provided by Prolog are di�erent. This problem is solved by addingto ea
h program the following de�nitions of these relations:plus(a;b;
) :� integer(a); integer(b); !;
 is a+ b:plus(a;b;
) :� integer(b); integer(
); !;
 > b;a is 
 � b:plus(a;b;
) :� integer(
); integer(a); !;
 > a;b is 
 � a:plus(a;b;
) :� write(`Bad arguments to plus'); nl ; abort :times(a;b;
) :� integer(a); integer(b); !;
 is a � b:times(a;b;
) :�integer(b); integer(
); !;
 mod b =:= 0;a is 
=b:times(a;b;
) :�integer(
); integer(a); !;
 mod a =:= 0;b is 
=a:times(a;b;
) :� write(`Bad arguments to times'); nl ; abort :Most other built-in relations of pi
oProlog are exa
tly the same as the standardones of Prolog: !, =, not, 
all , integer . Standard Prolog has no 
hara
ter obje
ts,and represents 
hara
ters by the integers that are their as
ii 
odes; thus there isno 
har relation. Finally, there is a standard built-in relation fail that behavesexa
tly like pi
oProlog's false, but any relation with no 
lauses behaves the sameway, so you 
an 
ontinue to use false.



Appendix CPi
oProlog sour
e 
ode

pprolog.p { pi
oProlog interpreterf Copyright (C) J. M. Spivey 1996, 2002 gf This is the `pi
oProlog' interpreter des
ribed in the book `An Introdu
tion to Logi
Programming through Prolog' by Mi
hael Spivey (Prenti
e Hall, 1996). Copyright isretained by the author, but permission is granted to 
opy and modify the program forany purpose other than dire
t 
ommer
ial gain.5 The text of this program must be pro
essed by the `ppp' ma
ro pro
essor before it 
anbe 
ompiled. gprogram pi
oProlog (input ; output);f tunable parameters g10 
onstmaxsymbols = 511; f max no. of symbols ghashfa
tor = 90; f per
ent loading fa
tor for hash table gmax
hars = 2048; f max 
hars in symbols gmaxstring = 128; f max string length g15 maxarity = 63; f max arity of fun
tion, vars in 
lause gmemsize = 100000; f size of mem array gg
low = 1000; f 
all GC when this mu
h spa
e left gg
high = 5000; f GC must �nd this mu
h spa
e gf spe
ial 
hara
ter values g20 de�ne(endstr; 
hr (0)) f end of string gde�ne(tab ; 
hr(9)) f tab 
hara
ter gde�ne(endline ; 
hr(10)) f newline 
hara
ter gde�ne(endfile ; 
hr(127)) f end of �le g
205



206 Pi
oProlog sour
e 
odeC.1 Coding 
onventionsf We ignore Pas
al's stupid rule that all global variables must be de
lared together at thestart of the program; likewise all global types and all global 
onstants. Many Pas
al
ompilers relax the rule to make large programs easier to read and write; but if yourPas
al 
ompiler enfor
es it, you know what to do, and a text editor is the tool forthe job. g25 f Most Pas
al 
ompilers implement a `default' part in 
ase statements. The ma
rodefault should be de�ned as the text that 
omes between the ordinary 
ases and thedefault part. If the default part is like an ordinary 
ase, but labelled with a keyword (say`others'), then the de�nition of default should in
lude the semi
olon that separates itfrom the pre
eding 
ase, like this: `; others:'. If your Pas
al doesn't have default partsfor 
ase statements, most of them 
an be deleted, sin
e they are only 
alls to bad tagput there for robustness. The only other one (in S
an) will need a little more work. g3035 de�ne(default; else)f Some Pas
al implementations bu�er terminal output, but provide a spe
ial pro
edureto 
ush the bu�er; the 
ush out ma
ro should be de�ned to 
all whatever pro
edure isne
essary. A 
all to 
ush out follows ea
h prompt for input from the terminal, and theprogress messages from the garbage 
olle
tor. g40 de�ne(
ush out ;
ush)f Pas
al's numeri
 labels make 
ode that uses goto statements unne
essarily obs
ure, sowe de�ne a few ma
ros that have meaningful names but expand to plain integers that
an be used as labels. g45 de�ne(end of pp; 999)de�ne(found ; 1)de�ne(exit ; 2)de�ne(done ; 3)de�ne(found2 ; 4)f When something goes drasti
ally wrong, pi
oProlog sometimes needs to stop immedi-ately. In standard Pas
al, this is a
hieved by a non-lo
al jump to the label end of pp,lo
ated at the end of the main program. But some Pas
al 
ompilers don't allow non-lo
al jumps; they often provide a halt pro
edure instead. The ma
ro abort should bede�ned to do whatever is needed. g5055 label end of pp;de�ne(abort ; halt)f Here are a few 
onvenient abbreviations: gde�ne(in
r ; $1 := $1 + 1) f in
rement a variable gde�ne(de
r ; $1 := $1� 1) f de
rement a variable g60 de�ne(return; goto exit) f return from pro
edure gde�ne(skip) f empty statement gC.2 Error handlingf These ma
ros print an error message, then either arrange for exe
ution of a goal toabandoned (by 
learing the run 
ag), or abandon the whole run of pi
oProlog. Theyuse the $0 feature to allow for a list of arguments.



C.3 String bu�er 207Errors during exe
ution of a goal are reported by exe
 error ; it sets the run 
ag tofalse, so the main exe
ution me
hanism will stop exe
ution before starting on anotherresolution step. g65 var run: boolean ; f whether exe
ution should 
ontinue gd
ag : boolean ; f swit
h for debugging 
ode g70 de�ne(exe
 error ;begin writeln ; write('Error: '; $0); run := false end)de�ne(pani
; begin writeln; writeln('Pani
: '; $0); abort end)de�ne(bad tag ; pani
('bad tag '; $2: 1; ' in '; $1))C.3 String bu�erf The strings that are the names of fun
tion symbols, variables, et
. are saved in thearray 
harbuf : ea
h string is represented elsewhere by an index k into this array, andthe 
hara
ters of the string are 
harbuf [k℄, 
harbuf [k + 1℄, : : : , terminated by the
hara
ter endstr. 
harptr is the last o

upied lo
ation in 
harbuf .75 In addition to these `permanent' strings, there are `temporary' strings put together forsome short-term purpose. These are kept in arrays of size maxstring, and are alsoterminated by endstr. g80 typepermstring = 1 : :max
hars ;tempstring = array [1 : :maxstring℄ of 
har ;var85 
harptr : 0 : :max
hars ;
harbuf : array [1 : :max
hars ℄ of 
har ;f StringLength { length of a tempstring gfun
tion StringLength(var s: tempstring): integer ;var i: 0 : :maxstring;90 begini := 0;while s[i+ 1℄ 6= endstr do in
r (i);StringLength := iend;f SaveString { make a tempstring permanent g95 fun
tion SaveString(var s: tempstring): permstring ;var i: 0 : :maxstring;beginif 
harptr + StringLength(s) + 1 > max
hars then100 pani
('out of string spa
e');SaveString := 
harptr + 1; i := 0;repeatin
r (i); in
r (
harptr ); 
harbuf [
harptr ℄ := s[i℄until s[i℄ = endstr105 end;



208 Pi
oProlog sour
e 
odef StringEqual { 
ompare a tempstring to a permstring gfun
tion StringEqual(var s1 : tempstring ; s2 : permstring): boolean ;var i: integer ;begin110 i := 1;while (s1 [i℄ 6= endstr) ^ (s1 [i℄ = 
harbuf [s2 + i� 1℄) do in
r (i);StringEqual := (s1 [i℄ = 
harbuf [s2 + i� 1℄)end;f WriteString { print a permstring g115 pro
edure WriteString(s: permstring);var i: 1 : :max
hars ;begini := s;while 
harbuf [i℄ 6= endstr do120 begin write(
harbuf [i℄); in
r (i) endend;C.4 Representation of termsf It is now time to give the details of how terms are represented. Ea
h `term' is an indexinto the mem array that points to a small blo
k of 
ontiguous words. The �rst wordindi
ates the number and layout of the words that follow. It pa
ks together the size ofthe node, and an integer 
ode that determines the kind of term: fun
 for a 
ompoundterm, int for an integer, and so on. Ma
ros t kind(t) and t size(t) extra
t these fromthe �rst word of a term t. There is also a bit in the �rst word that is used by thegarbage 
olle
tor for marking. The se
ond word of the node, t shift(t) = mem[t+ 1℄ isalso reserved for the garbage 
olle
tor.125
The layout of the remaining elements of mem that make up the term depends on thet kind �eld. For a fun
 term, there is the fun
tion symbol t fun
(t), and a variablenumber of arguments, whi
h may be referred to as t arg(t; 1), t arg(t; 2), : : : , t arg(t; n)where n is the arity of t fun
(t).130 For an int term, there is just the integer value t ival (t), and for a 
hr
tr term thereis the 
hara
ter value t 
val (t), whi
h is a
tually the 
ode ord(
). 
ell nodes representvariables and have a t val �eld that points to the value. ref nodes are the numeri
markers in program 
lauses that refer to a slot in the frame for a 
lause; the t index�eld is the index of the slot. undo nodes do not represent terms at all, but items onthe trail sta
k; they share some of the layout of terms, so that they 
an be treated thesame by the garbage 
olle
tor. g135140 typepointer = integer ; f index into mem array gde�ne(null; 0) f null pointer gtype term = pointer ;145 de�ne(t tag ;mem [$1℄)de�ne(t kind ; t tag($1) div 256) f one of fun
 , int , : : : gde�ne(t size; t tag($1) mod 128) f size in words gde�ne(marked ; (t tag($1) mod 256 � 128)) f GC mark gde�ne(add mark ; t tag($1) := t tag($1) + 128)



C.5 Memory allo
ation 209150 de�ne(rem mark ; t tag($1) := t tag($1)� 128)de�ne(make tag ; 256 � $1 + $2)de�ne(t shift ;mem[$1 + 1℄) f for use by g
 gde�ne(fun
 ; 1) f 
ompound term gde�ne(t fun
;mem[$1 + 2℄) f fun
tion symbol g155 de�ne(t arg ;mem[$1 + $2 + 2℄) f arguments (start from 1) gde�ne(int ; 2) f integer gde�ne(t ival ;mem [$1 + 2℄) f integer value gde�ne(
hr
tr; 3) f 
hara
ter gde�ne(t 
val ;mem[$1 + 2℄) f 
hara
ter value g160 de�ne(
ell; 4) f variable 
ell gde�ne(t val ;mem[$1 + 2℄) f value or null if unbound gde�ne(ref ; 5) f variable referen
e gde�ne(t index ;mem[$1 + 2℄) f index in frame gde�ne(undo; 6) f trail item g165 f see later gde�ne(term size ; 3) f : : : plus no. of args gC.5 Memory allo
ationf Storage for most things is allo
ated from the big array mem . This array is in threeparts: the heap and lo
al sta
k, whi
h grow upwards from the bottom of mem, and theglobal sta
k, whi
h grows downwards from the top of mem.The heap stores the 
lauses that make up the program and running goal; it grows onlywhile 
lauses are being input and not during exe
ution, so there is no need for freespa
e between the heap and lo
al sta
k. Program 
lauses be
ome a permanent part ofthe heap, but goal 
lauses (and 
lauses that 
ontain errors) 
an be dis
arded; so thereis an extra variable hmark that indi
ates the beginning of the present 
lause.170
The lo
al sta
k holds a
tivation re
ords for 
lauses during exe
ution of goals, and theglobal sta
k other longer-lived data stru
tures. Both sta
ks expand and 
ontra
t duringexe
ution of goals. Also, there is a garbage 
olle
tor that 
an re
laim ina

essibleportions of the global sta
k. g175 var180 lsp; gsp; hp; hmark : pointer ;mem: array [1 : : memsize ℄ of integer ;f Lo
Allo
 { allo
ate spa
e on lo
al sta
k gfun
tion Lo
Allo
(size : integer): pointer ;begin185 if lsp + size � gsp then pani
('out of sta
k spa
e');Lo
Allo
 := lsp + 1; lsp := lsp + sizeend;f GloAllo
 { allo
ate spa
e on global sta
k gfun
tion GloAllo
(kind ; size: integer): pointer ;190 var p: pointer ;beginif gsp � size � lsp thenpani
('out of sta
k spa
e');



210 Pi
oProlog sour
e 
odegsp := gsp � size; p := gsp;195 t tag(p) := make tag(kind ; size);GloAllo
 := pend;f HeapAllo
 { allo
ate spa
e on heap gfun
tion HeapAllo
(size : integer): pointer ;200 beginif hp + size > memsize then pani
('out of heap spa
e');HeapAllo
 := hp + 1; hp := hp + sizeend;de�ne(is heap; ($1 � hp)) f test if a pointer is in the heap g205 de�ne(is glob; ($1 � gsp)) f test if it is in the global sta
k gC.6 Chara
ter inputf Pas
al's I/O fa
ilities view text �les as sequen
es of lines, but it is more 
onvenientfor pi
oProlog to deal with a uniform sequen
e of 
hara
ters, with the end of a lineindi
ated by an endline 
hara
ter, and the end of a �le by an endfile 
hara
ter.The routines here perform the translation (probably reversing a translation done bythe Pas
al run-time library). They also allow a single 
hara
ter to be `pushed ba
k' onthe input, so that the s
anner 
an avoid reading too far. g210 varintera
ting : boolean ; f whether input is from terminal gpb
har : 
har ; f pushed-ba
k 
har, else endfile g215 in�le: text ; f the 
urrent input �le glineno: integer ; f line number in 
urrent �le g�lename: permstring ; f name of 
urrent �le gf FGetChar { get a 
hara
ter from a �le gfun
tion FGetChar (var f : text): 
har ;220 var 
h : 
har ;beginif eof (f) thenFGetChar := endfileelse if eoln(f) then225 begin readln(f); in
r(lineno); FGetChar := endline endelsebegin read(f; 
h); FGetChar := 
h endend;f GetChar { get a 
hara
ter g230 fun
tion GetChar : 
har ;beginif pb
har 6= endfile thenbegin GetChar := pb
har ; pb
har := endfile endelse if intera
ting then235 GetChar := FGetChar (input)elseGetChar := FGetChar (in�le)



C.7 Representation of 
lauses 211end;f PushBa
k { push ba
k a 
hara
ter on the input g240 pro
edure PushBa
k (
h : 
har );beginpb
har := 
hend;C.7 Representation of 
lausesf Clauses in the pi
oProlog program (and goals to be exe
uted) have head and bodyliterals in whi
h the variables are repla
ed by ref nodes. The 
lause itself is a segmentof mem that has some �elds at �xed o�sets, followed by a variable-length sequen
e ofpointers to the literals in the body of the 
lause, terminated by null. Goal 
lauses havethe same representation, but with head = null. Ma
ros 
 rhs and 
 body are de�nedso that 
 rhs(
) is a pointer to the beginning of the sequen
e of pointers that makes upthe 
lause body, and 
 body(
; i) is the i'th literal in the body itself.245250 Partially exe
uted 
lause bodies are represented in the exe
ution me
hanism by theaddress of the pointer p to the �rst unsolved literal. For 
leanliness, we provide ma
rosg �rst(p) and g rest(p) that respe
tively return the �rst literal itself, and a pointerthat represents the remaining literals after the �rst one. The test for the empty list isg �rst(p) = null.255 The number of 
lauses tried against a goal literal is redu
ed by using asso
iating ea
hliteral with a `key', 
al
ulated so that uni�able literals have mat
hing keys. gtype 
lause = pointer ;de�ne(
 nvars ;mem[$1℄) f no. of variables g260 de�ne(
 key ;mem[$1 + 1℄) f uni�
ation key gde�ne(
 next ;mem [$1 + 2℄) f next 
lause for same relation gde�ne(
 head ;mem [$1 + 3℄) f 
lause head gde�ne(
 rhs ; ($1 + 4)) f 
lause body (ends with NULL) gde�ne(
 body ;mem[
 rhs($1) + $2� 1℄)265 de�ne(
lause size ; 4) f ... plus size of body + 1 gde�ne(g �rst ;mem[$1℄) f �rst of a list of literals gde�ne(g rest ; ($1) + 1) f rest of the list gC.8 Sta
k frames and interpreter registersf The lo
al sta
k is organized as a sequen
e of frames, ea
h 
orresponding to an a
tive
opy of a program 
lause. Most �elds in a frame are 
opies of the values of the inter-preter's `registers' when it was 
reated, so here also is the de
laration of those globalregisters. The tp register that points to the top of the trail sta
k is de
lared later.270 The last part of a frame is a variable-length array of 
ells, 
ontaining the a
tual variablesfor the 
lause being used in the frame. The variables are numbered from 1, and ea
h
ell is of length term size , so the f lo
al ma
ro 
ontains the right formula so thatf lo
al(f; i) is a pointer to the i'th 
ell. g275
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e 
odetype frame = pointer ;de�ne(f goal ;mem [$1℄) f the goal gde�ne(f parent ;mem [$1 + 1℄) f parent frame gde�ne(f retry ;mem[$1 + 2℄) f untried 
lauses g280 de�ne(f 
hoi
e ;mem[$1 + 3℄) f previous 
hoi
e-point gde�ne(f glotop;mem [$1 + 4℄) f global sta
k at 
reation gde�ne(f trail ;mem[$1 + 5℄) f trail state at 
reation gde�ne(f nvars ;mem[$1 + 6℄) f no. of lo
al variables gde�ne(f lo
al ; ($1 + 7 + ($2� 1) � term size))285 de�ne(frame size ; 7) f : : : plus spa
e for lo
al variables gf frame size { 
ompute size of a frame with n variables gde�ne(frame size ; (frame size + ($1) � term size))var
urrent : pointer ; f 
urrent goal g290 
all : term; f Deref 'ed �rst literal of goal ggoalframe : frame ; f 
urrent sta
k frame g
hoi
e : frame ; f last 
hoi
e point gbase: frame ; f frame for original goal gpro
: 
lause ; f 
lauses left to try on 
urrent goal gf Deref is a fun
tion that resolves the indire
tion in the representation of terms. It looksup referen
es in the frame, and follows the 
hain of pointers from variable 
ells to theirvalues. The result is an expli
it representation of the argument term; if the frame isnon-null, the result is never a ref node, and if it is a 
ell node, the t val �eld isempty. g295
f Deref { follow var and 
ell pointers g300 fun
tion Deref (t: term; e: frame): term;beginif t = null then pani
('Deref');if (t kind (t) = ref) ^ (e 6= null) then305 t := f lo
al (e; t index (t));while (t kind(t) = 
ell) ^ (t val(t) 6= null) dot := t val (t);Deref := tend;f This is a good pla
e to put the forward de
larations of a few pro
edures and fun
tions. g310 pro
edure PrintTerm(t: term; e: frame ; prio : integer); forward;fun
tion ParseTerm : term; forward;fun
tion DoBuiltin(a
tion : integer): boolean ; forward;pro
edure Colle
t ; forward;315 fun
tion Key(t: term; e: frame): integer ; forward;f In the a
tual de�nition of a pro
edure or fun
tion that has been de
lared forward, werepeat the parameter list in a 
all to the ma
ro fwd . Standard Pas
al requires this tobe repla
ed by the empty string, but some implementations allow the parameter list tobe repeated and 
he
k that the two lists agree. g320 de�ne(fwd )



C.9 Symbol table 213C.9 Symbol tablef The names of relations, fun
tions, 
onstants and variables are held in a hash table. Itis organized as a `
losed' hash table with sequential sear
h: this is simple but leavesmu
h room for improvement. The symbol table is not allowed to be
ome more full thanhashfa
tor per 
ent, sin
e nearly full hash tables of this kind perform rather badly.Ea
h symbol has an s a
tion 
ode that has a di�erent non-zero value for ea
h built-inrelation, and is zero for everything else. User-de�ned relations have a 
hain of 
lausesthat starts at the s pro
 �eld and is linked together by the 
 next �elds of the 
lauses. g325 type symbol = 1 : :maxsymbols ; f index in symtab gvar330 nsymbols : 0 : :maxsymbols ; f number of symbols gsymtab: array [1 : :maxsymbols℄ of re
ordname: integer ; f print name: index in 
harbuf garity : integer ; f number of arguments or -1 ga
tion : integer ; f 
ode if built-in, 0 otherwise g335 pro
: 
lause f 
lause 
hain gend;
ons ; eqsym; 
utsym;nilsym ;notsym: symbol ;f We de�ne sele
tor ma
ros for symbols, just as for terms gde�ne(s name ; symtab[$1℄:name)340 de�ne(s arity ; symtab[$1℄:arity)de�ne(s a
tion ; symtab[$1℄:a
tion)de�ne(s pro
; symtab[$1℄:pro
)f Lookup { 
onvert string to internal symbol gfun
tion Lookup(var name: tempstring): symbol ;345 label found ;var h; i: integer ; p: symbol ;beginf Compute the hash fun
tion in h gh := 0; i := 1;350 while name [i℄ 6= endstr dobegin h := (5 � h+ ord(name [i℄)) mod maxsymbols ; in
r (i) end;f Sear
h the hash table gp := h+ 1;while s name(p) 6= �1 do begin355 if StringEqual(name; s name(p)) then goto found ;de
r (p);if p = 0 then p := maxsymbolsend;f Not found: enter a new symbol g360 f Be 
areful to avoid over
ow on 16 bit ma
hines: gif nsymbols � (maxsymbols div 10) � (hashfa
tor div 10) thenpani
('out of symbol spa
e');s name(p) := SaveString(name);s arity(p) := �1;365 s a
tion(p) := 0; s pro
(p) := null;
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e 
odefound :Lookup := pend;type keyword = array [1 : : 8℄ of 
har ;f Enter { de�ne a built-in symbol g370 fun
tion Enter(name: keyword ; arity : integer ; a
tion : integer): symbol ;var s: symbol ; i: integer ; temp: tempstring ;begini := 1;375 while name [i℄ 6= ' ' dobegin temp[i℄ := name[i℄; in
r (i) end;temp[i℄ := endstr; s := Lookup(temp);s arity(s) := arity ; s a
tion(s) := a
tion ;Enter := s380 end;f Codes for built-in relations gde�ne(
ut ; 1) f !=0 gde�ne(
all; 2) f 
all=1 gde�ne(plus ; 3) f plus=3 g385 de�ne(times ; 4) f times=3 gde�ne(isint ; 5) f integer=1 gde�ne(is
har; 6) f 
har=1 gde�ne(naff ; 7) f : =1 gde�ne(equality ; 8) f = =2 g390 de�ne(fail; 9) f false=0 gde�ne(print ; 10) f print=1 gde�ne(nl; 11) f nl=0 gf InitSymbols { initialize and de�ne standard symbols gpro
edure InitSymbols ;395 var i: integer ; dummy : symbol ;beginnsymbols := 0;for i := 1 to maxsymbols do s name(i) := �1;
ons := Enter(': '; 2; 0);400 
utsym := Enter('! '; 0;
ut);eqsym := Enter('= '; 2; equality );nilsym := Enter('nil '; 0; 0);notsym := Enter('not '; 1;naff);dummy := Enter('
all '; 1;
all);405 dummy := Enter('plus '; 3; plus);dummy := Enter('times '; 3;times);dummy := Enter('integer '; 1; isint);dummy := Enter('
har '; 1; is
har);dummy := Enter('false '; 0; fail);410 dummy := Enter('print '; 1; print);dummy := Enter('nl '; 0;nl)end;



C.10 Building terms on the heap 215f AddClause { insert a 
lause at the end of its 
hain gpro
edure AddClause(
: 
lause);415 var s: symbol ; p: 
lause ;begins := t fun
(
 head (
));if s a
tion(s) 6= 0 then beginexe
 error('
an''t add 
lauses to built-in relation ');420 WriteString(s name(s))endelse if s pro
(s) = null thens pro
(s) := 
else begin425 p := s pro
(s);while 
 next(p) 6= null do p := 
 next(p);
 next(p) := 
endend;C.10 Building terms on the heapf Next, some 
onvenient routines that 
onstru
t various kinds of term in the heap area:they are used by the parsing routines to 
onstru
t the internal representation of theinput terms they read. The routine MakeRef that is supposed to 
onstru
t a ref nodein fa
t returns a pointer to one from a �xed 
olle
tion. This saves spa
e, sin
e all 
lauses
an share the same small number of ref nodes. g430
435 type argbuf = array [1 : : maxarity ℄ of term;f MakeCompound { 
onstru
t a 
ompound term on the heap gfun
tion MakeCompound (fun: symbol ; var arg : argbuf ): term;var p: term; i; n: integer ;begin440 n := s arity(fun);p := HeapAllo
(term size + n);t tag(p) := make tag(fun
 ;term size + n);t fun
(p) := fun;for i := 1 to n do t arg(p; i) := arg [i℄;445 MakeCompound := pend;f MakeNode { 
onstru
t a 
ompound term with up to 2 arguments gfun
tion MakeNode(fun: symbol ; a1 ; a2 : term): term;var arg : argbuf ;450 beginarg [1℄ := a1 ; arg [2℄ := a2 ;MakeNode :=MakeCompound (fun ; arg)end;var refnode : array [1 : : maxarity ℄ of term;f MakeRef { return a referen
e 
ell prepared earlier g455 fun
tion MakeRef (o�set : integer): term;
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e 
odebeginMakeRef := refnode [o�set ℄end;f MakeInt { 
onstru
t an integer node on the heap g460 fun
tion MakeInt(i: integer): term;var p: term;beginp := HeapAllo
(term size);465 t tag(p) := make tag(int ;term size);t ival (p) := i; MakeInt := pend;f MakeChar { 
onstru
t a 
hara
ter node on the heap gfun
tion MakeChar (
: 
har ): term;470 var p: term;beginp := HeapAllo
(term size);t tag(p) := make tag(
hr
tr;term size);t 
val(p) := ord(
); MakeChar := p475 end;f MakeString { 
onstru
t a string as a Prolog list of 
hars gfun
tion MakeString(var s: tempstring): term;var p: term; i: integer ;begin480 i := StringLength(s);p :=MakeNode(nilsym ;null;null);while i > 0 dobegin p :=MakeNode(
ons ;MakeChar (s[i℄); p); de
r(i) end;MakeString := p485 end;f MakeClause { 
onstru
t a 
lause on the heap gfun
tion MakeClause(nvars : integer ; head : term;var body : argbuf ; nbody : integer): 
lause ;var p: 
lause ; i: integer ;490 beginp := HeapAllo
(
lause size + nbody + 1);
 nvars(p) := nvars ; 
 next(p) := null; 
 head(p) := head ;for i := 1 to nbody do 
 body(p; i) := body [i℄;
 body(p;nbody + 1) := null;495 if head = null then 
 key(p) := 0else 
 key(p) := Key(head ;null);MakeClause := pend;



C.11 Printing terms 217C.11 Printing termsf These routines print terms on the user's terminal. The main routine is PrintTerm ,whi
h prints a term by re
ursively traversing it. Unbound 
ells are printed in the form'L123' (for lo
al 
ells) or 'G234' (for global 
ells): the number is 
omputed from theaddress of the 
ell. If the frame is null, referen
e nodes are printed in the form '�3'. g500 f operator priorities gde�ne(maxprio; 2) f isolated term g505 de�ne(argprio ; 2) f fun
tion arguments gde�ne(eqprio ; 2) f equals sign gde�ne(
onsprio; 1) f 
olon gf IsString { 
he
k if a list represents a string gfun
tion IsString(t: term; e: frame): boolean ;510 label done ;
onst limit = 128;var i: integer ;begini := 0; t := Deref (t; e);515 while i < limit do beginif (t kind(t) 6= fun
) _ (t fun
(t) 6= 
ons) thengoto doneelse if t kind (Deref (t arg(t; 1); e)) 6= 
hr
tr thengoto done520 elsebegin in
r (i); t := Deref (t arg(t; 2); e) endend;done :IsString := (t kind(t) = fun
 ) ^ (t fun
(t) = nilsym)525 end;f ShowString { print a list as a string gpro
edure ShowString(t: term; e: frame);begint := Deref (t; e);530 write('"');while t fun
(t) 6= nilsym do beginwrite(
hr (t 
val (Deref (t arg(t; 1); e))));t := Deref (t arg(t; 2); e)end;535 write('"')end;f PrintCompound { print a 
ompound term gpro
edure PrintCompound(t: term; e: frame ; prio : integer);var f : symbol ; i: integer ;540 beginf := t fun
(t);if f = 
ons then beginf t is a list: try printing as a string, or use in�x : gif IsString(t; e) then545 ShowString(t; e)
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e 
odeelse beginif prio < 
onsprio then write('(');PrintTerm(t arg(t; 1); e;
onsprio � 1);write(':');550 PrintTerm(t arg(t; 2); e;
onsprio);if prio < 
onsprio then write(')')endendelse if f = eqsym then begin555 f t is an equation: use in�x = gif prio < eqprio then write('(');PrintTerm(t arg(t; 1); e; eqprio � 1);write(' = ');PrintTerm(t arg(t; 2); e; eqprio � 1);560 if prio < eqprio then write(')')endelse if f = notsym then beginf t is a literal 'not P' gwrite('not ');565 PrintTerm(t arg(t; 1); e;maxprio)endelse beginf use ordinary notation gWriteString(s name(f));570 if s arity(f) > 0 then beginwrite('(');PrintTerm(t arg(t; 1); e;argprio);for i := 2 to s arity(f) do beginwrite(', ');575 PrintTerm(t arg(t; i); e;argprio)end;write(')')endend580 end;f PrintTerm { print a term gpro
edure PrintTerm fwd ((t: term; e: frame ; prio: integer));begint := Deref (t; e);585 if t = null thenwrite('*null-term*')else begin
ase t kind (t) offun
 :590 PrintCompound (t; e; prio);int :write(t ival (t): 1);
hr
tr:write(''''; 
hr (t 
val (t)); '''');595 
ell:



C.12 S
anner 219if is glob(t) thenwrite('G'; (memsize � t) div term size : 1)elsewrite('L'; (t� hp) div term size : 1);600 ref :write('�'; t index (t))defaultwrite('*unknown-term(tag='; t kind(t): 1; ')*')end605 endend;f PrintClause { print a 
lause gpro
edure PrintClause(
: 
lause);var i: integer ;610 beginif 
 = null thenwriteln('*null-
lause*')else beginif 
 head (
) 6= null then begin615 PrintTerm(
 head(
);null;maxprio);write(' ')end;write(':- ');if 
 body(
; 1) 6= null then begin620 PrintTerm(
 body(
; 1);null;maxprio);i := 2;while 
 body(
; i) 6= null do beginwrite(', ');PrintTerm(
 body(
; i);null;maxprio);625 in
r(i)endend;writeln('.')end630 end;C.12 S
annerf The S
an pro
edure that reads the next token of a 
lause or goal from the input, togetherwith some pro
edures that implement a 
rude form of re
overy from syntax errors.S
an puts an integer 
ode into the global variable token ; if the token is an identi�er, anumber, or a string, there is another global variable that 
ontains its a
tual value.The re
overy me
hanism skips input text until it �nds a full stop or (if the input wasfrom the terminal) the end of a line. It then sets token to dot , the 
ode for a full stop.The parser routines are designed so that they will never read past a full stop, and �nalre
overy from the error is a
hieved when 
ontrol rea
hes ReadClause again. g635
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oProlog sour
e 
odevar640 token: integer ; f last token from input gtokval : symbol ; f if token = ident , the identi�er gtokival : integer ; f if token = number, the number gtoksval : tempstring ; f if token = str
on , the string gerr
ag : boolean ; f whether re
overing from an error g645 err
ount : integer ; f number of errors found so far gf Possible values for token: gde�ne(ident ; 1) f identi�er: see tokval gde�ne(variable ; 2) f variable: see tokval gde�ne(number; 3) f number: see tokival g650 de�ne(
h
on ; 4) f 
har 
onstant: see tokival gde�ne(str
on ; 5) f string 
onstant: see toksval gde�ne(arrow ; 6) f ':-' gde�ne(lpar; 7) f '(' gde�ne(rpar; 8) f ')' g655 de�ne(
omma; 9) f ',' gde�ne(dot ; 10) f '.' gde�ne(
olon ; 11) f ':' gde�ne(equal; 12) f '=' gde�ne(negate ; 13) f 'not' g660 de�ne(eoftok ; 14) f end of �le gf syntax error { report a syntax error gde�ne(syntax error ;begin if : err
ag thenbegin ShowError ; writeln($0); Re
over end end)f ShowError { report error lo
ation g665 pro
edure ShowError ;beginerr
ag := true; in
r(err
ount);if : intera
ting then begin670 write('"'); WriteString(�lename);write('", line '; lineno: 1; ' ')end;write('Syntax error - ')end;f Re
over { dis
ard rest of input 
lause g675 pro
edure Re
over ;var 
h : 
har ;beginif : intera
ting ^ (err
ount � 20) then680 begin writeln('Too many errors: I''m giving up'); abort end;if token 6= dot then beginrepeat
h := GetCharuntil (
h = '.') _ (
h = endfile)685 _ (intera
ting ^ (
h = endline));token := dotend
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anner 221end;de�ne(is upper ; ((($1 � 'A') ^ ($1 � 'Z')) _ ($1 = ' ')))690 de�ne(is letter ; (is upper($1)_ (($1 � 'a') ^ ($1 � 'z'))))de�ne(is digit ; (($1 � '0') ^ ($1 � '9')))f S
an { read one symbol from in�le into token . gpro
edure S
an;695 var 
h ; 
h2 : 
har ; i: integer ;begin
h := GetChar ; token := 0;while token = 0 do beginf Loop after white-spa
e or 
omment g700 if 
h = endfile thentoken := eoftokelse if (
h = ' ') _ (
h = tab) _ (
h = endline) then
h := GetCharelse if is letter(
h) then begin705 if is upper (
h) then token := variableelse token := ident ;i := 1;while is letter(
h) _ is digit(
h) do beginif i > maxstring then710 pani
('identifier too long');toksval [i℄ := 
h ; 
h := GetChar ; in
r(i)end;PushBa
k (
h);toksval [i℄ := endstr; tokval := Lookup(toksval );715 if tokval = notsym then token := negateendelse if is digit(
h) then begintoken := number; tokival := 0;while is digit(
h) do begin720 tokival := 10 � tokival + (ord (
h)� ord('0'));
h := GetCharend;PushBa
k (
h)end725 else begin
ase 
h of'(': token := lpar;')': token := rpar;',': token := 
omma;730 '.': token := dot ;'=': token := equal;'!': begin token := ident ; tokval := 
utsym end;'/':begin735 
h := GetChar ;if 
h 6= '*' thensyntax error('bad token "/"')



222 Pi
oProlog sour
e 
odeelse begin
h2 := ' '; 
h := GetChar ;740 while (
h 6= endfile) ^ : ((
h2 = '*') ^ (
h = '/')) dobegin 
h2 := 
h ; 
h := GetChar end;if 
h = endfile thensyntax error ('end of file in 
omment')else745 
h := GetCharendend;':':begin750 
h := GetChar ;if 
h = '-' thentoken := arrowelsebegin PushBa
k (
h); token := 
olon end755 end;'''':begintoken := 
h
on ; tokival := ord(GetChar ); 
h := GetChar ;if 
h 6= '''' then760 syntax error('missing quote')end;'"':begintoken := str
on ; i := 1; 
h := GetChar ;765 while (
h 6= '"') ^ (
h 6= endline) dobegin toksval [i℄ := 
h ; 
h := GetChar ; in
r(i) end;toksval [i℄ := endstr;if 
h = endline then beginsyntax error('unterminated string');770 PushBa
k (
h)endenddefaultsyntax error('illegal 
hara
ter "'; 
h; '"')775 endendendend;f PrintToken { print a token as a string g780 pro
edure PrintToken(t: integer);begin
ase t ofident :begin write('identifier '); WriteString(s name(tokval )); end;785 variable:begin write('variable '); WriteString(s name(tokval )); end;number: write('number');
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h
on : write('
har 
onstant');arrow : write('":-"');790 lpar: write('"("');rpar: write('")"');
omma: write('","');dot : write('"."');
olon : write('":"');795 equal: write('"="');str
on : write('string 
onstant')defaultwrite('unknown token')end800 end;C.13 Variable namesf As the parser reads an input 
lause, the routines here maintain a table of variable namesand the 
orresponding run-time o�sets in a frame for the 
lause: for ea
h i, the nameof the variable at o�set i is vartable [i℄. Ea
h 
lause 
ontains only a few variables, solinear sear
h is good enough.If the input 
lause turns out to be a goal, the table is saved and used again to displaythe answer when exe
ution su

eeds. g805 varnvars : 0 : :maxarity ; f no. of variables so far gvartable : array [1 : :maxarity ℄ of symbol ; f names of the variables gf VarRep { look up a variable name g810 fun
tion VarRep(name : symbol): term;var i: integer ;beginif nvars = maxarity then pani
('too many variables');815 i := 1; vartable [nvars + 1℄ := name; f sentinel gwhile name 6= vartable [i℄ do in
r(i);if i = nvars + 1 then in
r(nvars);VarRep :=MakeRef (i)end;f ShowAnswer { display answer and get response g820 fun
tion ShowAnswer(bindings : frame): boolean ;var i: integer ; 
h : 
har ;beginif nvars = 0 then ShowAnswer := true825 else beginfor i := 1 to nvars do beginwriteln ;WriteString(s name(vartable [i℄)); write(' = ');PrintTerm(f lo
al(bindings ; i);null; eqprio � 1)830 end;if : intera
ting thenbegin writeln ; ShowAnswer := false end
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e 
odeelse beginwrite(' ? '); 
ush out ;835 if eoln thenbegin readln ; ShowAnswer := false endelsebegin readln(
h); ShowAnswer := (
h = '.') endend840 endend;C.14 Parserf Here are the routines that parse input 
lauses. They use the method of re
ursive des
ent,with ea
h 
lass of phrase re
ognized by a single fun
tion that 
onsumes the tokens ofthe phrase and returns its value. Ea
h of these fun
tions follows the 
onvention thatthe �rst token of its phrase is in the global token variable when the fun
tion is 
alled,and the �rst token after the phrase is in token on return. The value of the fun
tion isthe internal data stru
ture for the term; this is built dire
tly in the heap, with variablesrepla
ed by ref nodes. Syntax errors are handled by skipping to the next full stop,then trying again to �nd a 
lause. g845
f Eat { 
he
k for an expe
ted token and dis
ard it g850 pro
edure Eat(expe
ted : integer);beginif token = expe
ted thenbegin if token 6= dot then S
an end855 else if : err
ag then beginShowError ;write('expe
ted '); PrintToken(expe
ted);write(', found '); PrintToken(token); writeln;Re
over860 endend;f ParseCompound { parse a 
ompound term gfun
tion ParseCompound : term ;var fun: symbol ; arg : argbuf ; n: integer ;865 beginfun := tokval ; n := 0; Eat(ident);if token = lpar then beginEat(lpar); n := 1; arg [1℄ := ParseTerm ;while token = 
omma do870 begin Eat(
omma); in
r(n); arg [n℄ := ParseTerm end;Eat(rpar)end;if s arity(fun) = �1 thens arity(fun) := n875 else if s arity(fun) 6= n thensyntax error ('wrong number of args');ParseCompound := MakeCompound (fun; arg)end;



C.14 Parser 225f ParsePrimary { parse a primary g880 fun
tion ParsePrimary : term;var t: term;beginif token = ident then t := ParseCompoundelse if token = variable then885 begin t := VarRep(tokval ); Eat(variable) endelse if token = number thenbegin t :=MakeInt(tokival ); Eat(number) endelse if token = 
h
on thenbegin t :=MakeChar (
hr (tokival )); Eat(
h
on) end890 else if token = str
on thenbegin t :=MakeString(toksval ); Eat(str
on ) endelse if token = lpar thenbegin Eat(lpar); t := ParseTerm ; Eat(rpar) endelse begin895 syntax error ('expe
ted a term'); t := nullend;ParsePrimary := tend;f ParseFa
tor { parse a fa
tor g900 fun
tion ParseFa
tor : term;var t: term;begint := ParsePrimary ;if token 6= 
olon then905 ParseFa
tor := telse beginEat(
olon);ParseFa
tor :=MakeNode(
ons ; t;ParseFa
tor )end910 end;f ParseTerm { parse a term gfun
tion ParseTerm fwd (: term);var t: term;begin915 t := ParseFa
tor ;if token 6= equal thenParseTerm := telse beginEat(equal);920 ParseTerm :=MakeNode(eqsym ; t;ParseFa
tor )endend;f Che
kAtom { 
he
k that a literal is a 
ompound term gpro
edure Che
kAtom(a: term);925 beginif t kind (a) 6= fun
 thensyntax error ('literal must be a 
ompound term')
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e 
odeend;f ParseClause { parse a 
lause g930 fun
tion ParseClause(isgoal : boolean): 
lause ;label done ;var head ; t: term;body : argbuf ;n: integer ;935 minus : boolean ;beginif isgoal thenhead := nullelse begin940 head := ParseTerm ;Che
kAtom(head );Eat(arrow )end;n := 0;945 if token 6= dot then beginwhile true do beginn := n+ 1; minus := false ;if token = negate thenbegin Eat(negate); minus := true end;950 t := ParseTerm ; Che
kAtom(t);if minus then body [n℄ := MakeNode(notsym; t;null)else body [n℄ := t;if token 6= 
omma then goto done;Eat(
omma)955 endend;done :Eat(dot);if err
ag then ParseClause := null960 else ParseClause := MakeClause(nvars ; head ; body ; n)end;f ReadClause { read a 
lause from in�le gfun
tion ReadClause : 
lause ;var 
: 
lause ;965 beginrepeathp := hmark ; nvars := 0; err
ag := false ;if intera
ting thenbegin writeln ; write('# :- '); 
ush out end;970 S
an;if token = eoftok then 
 := nullelse 
 := ParseClause(intera
ting)until (: err
ag) _ (token = eoftok);ReadClause := 
975 end;



C.15 Trail 227C.15 Trailf The trail sta
k re
ords assignments made to variables, so that they 
an be undone onba
ktra
king. It is a linked list of nodes with a t kind of undo allo
ated from the globalsta
k. The variables for whi
h bindings are a
tually kept in the trail are the `
riti
al'ones that will not be destroyed on ba
ktra
king. g980 type trail = pointer ;f Nodes on the trail share the t tag and t shift �elds of other nodes on the global sta
k,plus: gde�ne(x reset ;mem [$1 + 2℄) f variable to reset gde�ne(x next ;mem[$1 + 3℄) f next trail entry g985 de�ne(trail size ; 4)var trhead : trail ; f start of the trail gf 
riti
al { test if a variable will survive ba
ktra
king gde�ne(
riti
al ; (($1 < 
hoi
e) _ ($1 � f glotop(
hoi
e))))f Save { add a variable to the trail if it is 
riti
al g990 pro
edure Save(v: term);var p: trail ;beginif 
riti
al (v) then beginp := GloAllo
(undo;trail size);995 x reset(p) := v; x next(p) := trhead ; trhead := pendend;f Restore { undo bindings ba
k to previous state gpro
edure Restore;1000 var v: term;beginwhile (trhead 6= f trail(
hoi
e)) do beginv := x reset(trhead );if v 6= null then t val (v) := null;1005 trhead := x next(trhead )endend;f Commit { blank out trail entries not needed after 
ut gpro
edure Commit ;1010 var p: trail ;beginp := trhead ;while (p 6= null) ^ (p < f glotop(
hoi
e)) do beginif (x reset(p) 6= null) ^ : 
riti
al (x reset(p)) then1015 x reset(p) := null;p := x next(p)endend;
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oProlog sour
e 
odeC.16 Uni�
ationf The uni�
ation algorithm is the naive one that is traditional in Prolog implementations.Tradition is also followed in omitting the `o

ur 
he
k'.1020 Nodes of type 
ell may only point to terms that are independent of any frame: i.e.,they may not point to terms in the heap that may 
ontain ref nodes. So there is afun
tion GloCopy that 
opies out enough of a term onto the global sta
k so that any
ell 
an point to it. No 
opy is needed if the term is already on the global sta
k, or ifit is a simple term that 
annot 
ontain any ref 's. g1025 f GloCopy { 
opy a term onto the global sta
k gfun
tion GloCopy (t: term; e: frame): term;var tt : term; i; n: integer ;begin1030 t := Deref (t; e);if is glob(t) thenGloCopy := telse begin
ase t kind (t) of1035 fun
 :beginn := s arity(t fun
(t));if is heap(t) ^ (n = 0) then GloCopy := telse begin1040 tt := GloAllo
(fun
 ;term size + n);t fun
(tt) := t fun
(t);for i := 1 to n dot arg(tt ; i) := GloCopy(t arg(t; i); e);GloCopy := tt1045 endend;
ell:begintt := GloAllo
(
ell;term size);1050 t val(tt) := null;Save(t); t val(t) := tt ;GloCopy := ttend;int ;
hr
tr:1055 GloCopy := tdefaultbad tag('GloCopy'; t kind (t))endend1060 end;



C.16 Uni�
ation 229f When two variables are made to `share', there is a 
hoi
e of whi
h variable is made topoint to the other. The 
ode takes 
are to obey some rules about what may point towhat: (1) Nothing on the global sta
k may point to anything on the lo
al sta
k; (2)Nothing on the lo
al sta
k may point to anything nearer the top of the lo
al sta
k.Both these rules are ne
essary, sin
e the top part of the lo
al sta
k may be re
laimedwithout warning. There is another rule that makes for better performan
e: (3) Avoidpointers from items nearer the bottom of the global sta
k to items nearer the top.1065 The tri
ky lifetime ma
ro implements these rules by 
omputing a numeri
al measure ofthe lifetime of an obje
t, de�ned so that anything on the lo
al sta
k is shorter-lived thananything on the global sta
k, and within ea
h sta
k items near the top are shorter-livedthan items near the bottom. g1070 f lifetime { measure of potential lifetime gde�ne(lifetime ; ($1 � (2 � ord(is glob($1))� 1)))f Share { bind two variables together g1075 pro
edure Share(v1 ; v2 : term);beginif lifetime(v1 ) � lifetime(v2 ) thenbegin Save(v1 ); t val(v1 ) := v2 endelse1080 begin Save(v2 ); t val(v2 ) := v1 endend;f Unify { �nd and apply uni�er for two terms gfun
tion Unify(t1 : term; e1 : frame ; t2 : term; e2 : frame): boolean ;var i: integer ; mat
h : boolean ;1085 begint1 := Deref (t1 ; e1 ); t2 := Deref (t2 ; e2 );if t1 = t2 then f In
ludes unifying a var with itself gUnify := trueelse if (t kind(t1 ) = 
ell) ^ (t kind(t2 ) = 
ell) then1090 begin Share(t1 ; t2 ); Unify := true endelse if t kind(t1 ) = 
ell thenbegin Save(t1 ); t val (t1 ) := GloCopy (t2 ; e2 ); Unify := true endelse if t kind(t2 ) = 
ell thenbegin Save(t2 ); t val (t2 ) := GloCopy (t1 ; e1 ); Unify := true end1095 else if t kind(t1 ) 6= t kind(t2 ) thenUnify := falseelse begin
ase t kind (t1 ) offun
 :1100 if (t fun
(t1 ) 6= t fun
(t2 )) thenUnify := falseelse begini := 1; mat
h := true;while mat
h ^ (i � s arity(t fun
(t1 ))) do begin1105 mat
h := Unify(t arg(t1 ; i); e1 ; t arg(t2 ; i); e2 );in
r(i)end;Unify := mat
hend;



230 Pi
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e 
ode1110 int :Unify := (t ival (t1 ) = t ival (t2 ));
hr
tr:Unify := (t 
val (t1 ) = t 
val (t2 ))default1115 bad tag('Unify'; t kind (t1 ))endendend;f Key { uni�
ation key of a term g1120 fun
tion Key fwd ((t: term; e: frame): integer);var t0 : term;beginf The argument t must be a dire
t pointer to a 
ompound term.The value returned is key(t): if t1 and t2 are uni�able,1125 then key(t1 ) = 0 or key(t2 ) = 0 or key(t1 ) = key(t2 ). gif t = null then pani
('Key');if t kind (t) 6= fun
 then bad tag('Key1'; t kind(t));if s arity(t fun
(t)) = 0 thenKey := 01130 else begint0 := Deref (t arg(t; 1); e);
ase t kind (t0 ) offun
 : Key := t fun
(t0 );int : Key := t ival (t0 ) + 1;1135 
hr
tr: Key := t 
val (t0 ) + 1;ref ;
ell: Key := 0defaultbad tag('Key2'; t kind(t0 ))end1140 endend;f Sear
h { �nd the �rst 
lause that might mat
h gfun
tion Sear
h(t: term; e: frame ; p: 
lause): 
lause ;var k: integer ;1145 begink := Key(t; e);if k 6= 0 thenwhile (p 6= null) ^ (
 key(p) 6= 0) ^ (
 key(p) 6= k) dop := 
 next(p);1150 Sear
h := pend;C.17 Interpreterf The main 
ontrol of the interpreter uses a depth-�rst sear
h pro
edure with an expli
itsta
k of a
tivation re
ords. It in
ludes the tail-re
ursion optimization and an indexings
heme that uses the hash 
odes 
omputed by Key . g



C.17 Interpreter 2311155 var ok : boolean ; f whether exe
ution su

eeded gde�ne(debug point ; if d
ag then begin write($1; ': ');PrintTerm($2; $3;maxprio); writeln end)f PushFrame { 
reate a new lo
al sta
k frame gpro
edure PushFrame(nvars : integer ; retry : 
lause);1160 var f : frame ; i: integer ;beginf := Lo
Allo
(frame size(nvars));f goal(f) := 
urrent ; f parent(f) := goalframe ;f retry(f) := retry ; f 
hoi
e(f) := 
hoi
e ;1165 f glotop(f) := gsp; f trail(f) := trhead ;f nvars(f) := nvars ;for i := 1 to nvars do begint tag(f lo
al (f; i)) := make tag(
ell;term size);t val (f lo
al (f; i)) := null1170 end;goalframe := f ;if retry 6= null then 
hoi
e := goalframeend;f Tail re
ursion 
an be used only under rather stringent 
onditions: the goal literal mustbe the last one in the body of the 
alling 
lause, both the 
alling 
lause and the 
alled
lause must be determinate, and the 
alling 
lause must not be the original goal (lestthe answer variables be lost). The ma
ro tro test(p) 
he
ks that these 
onditions aresatis�ed, where p is the untried part of the pro
edure for the 
urrent goal literal. g1175 f tro test { test if a resolution step 
an use TRO g1180 de�ne(tro test ; (g �rst(g rest(
urrent)) = null) ^ (
hoi
e < goalframe)^ ($1 = null) ^ (goalframe 6= base))f If the tro test ma
ro returns true, then it is safe to dis
ard the 
alling frame in a resolu-tion step before solving the subgoals in the newly-
reated frame. TroStep implementsthis manoeuvre: read it after you understand the normal 
ase 
overed by Step.Be
ause the 
alling frame is to be dis
arded, it is important that no pointers from thenew frame to the 
alling frame are 
reated during uni�
ation. TroStep uses the tri
k ofswapping the two frames so that Unify will make pointers go the right way. The ideais simple, but the details are made 
ompli
ated by the need to adjust internal pointersin the relo
ated frame. g1185
f TroStep { perform a resolution step with tail-re
ursion g1190 pro
edure TroStep;var temp: frame ; oldsize ;newsize ; i: integer ;beginif d
ag then writeln('(TRO)');1195 oldsize := frame size(f nvars(goalframe)); f size of old frame gnewsize := frame size(
 nvars(pro
)); f size of new frame gtemp := Lo
Allo
(newsize);temp := goalframe + newsize ; f 
opy old frame here gf Copy the old frame: in reverse order in 
ase of overlap g1200 for i := oldsize � 1 downto 0 do mem[temp + i℄ := mem[goalframe + i℄;
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e 
odef Adjust internal pointers in the 
opy gfor i := 1 to f nvars(goalframe) do beginif (t kind(f lo
al(temp; i)) = 
ell)^ (t val (f lo
al (temp; i)) 6= null)1205 ^ (goalframe � t val (f lo
al(temp; i)))^ (t val (f lo
al (temp; i)) < goalframe + oldsize) thent val(f lo
al(temp; i)) := t val(f lo
al(temp; i)) + newsizeend;f Overwrite the old frame with the new one g1210 f nvars(goalframe) := 
 nvars(pro
);for i := 1 to f nvars(goalframe) do begint tag(f lo
al (goalframe ; i)) := make tag(
ell;term size);t val (f lo
al (goalframe ; i)) := nullend;1215 f Perform the resolution step gok := Unify(
all ; temp; 
 head (pro
); goalframe);
urrent := 
 rhs(pro
);lsp := temp � 1end;f The Step pro
edure 
arries out a single resolution step. Built-in relations are treatedas a spe
ial 
ase; so are resolution steps that 
an use the tail-re
ursion optimization.Otherwise, we allo
ate a frame for the �rst 
lause for the 
urrent goal literal, unify the
lause head with the literal, and adopt the 
lause body as the new goal. The step 
anfail (and Step returns false) if there are no 
lauses to try, or if the �rst 
lause fails tomat
h. g12201225 f Step { perform a resolution step gpro
edure Step;var retry : 
lause;begin1230 if s a
tion(t fun
(
all )) 6= 0 thenok := DoBuiltin(s a
tion(t fun
(
all )))else if pro
 = null thenok := falseelse begin1235 retry := Sear
h(
all ; goalframe ; 
 next(pro
));if tro test(retry) thenTroStepelse beginPushFrame(
 nvars(pro
); retry);1240 ok := Unify(
all ; f parent(goalframe); 
 head (pro
); goalframe);
urrent := 
 rhs(pro
);endendend;f The Unwind pro
edure returns from 
ompleted 
lauses until it �nds one where there isstill work to do, or it �nds that the original goal is 
ompleted. At this point, 
ompletedframes are dis
arded if they 
annot take part in future ba
ktra
king. g1245



C.17 Interpreter 233f Unwind { return from 
ompleted 
lauses gpro
edure Unwind ;1250 beginwhile (g �rst(
urrent) = null) ^ (goalframe 6= base) do begindebug point('Exit'; g �rst(f goal (goalframe)); f parent(goalframe));
urrent := g rest(f goal (goalframe));if goalframe > 
hoi
e then lsp := goalframe � 1;1255 goalframe := f parent(goalframe)endend;f The Ba
ktra
k pro
edure undoes all the work that has been done sin
e the last non-deterministi
 
hoi
e (indi
ated by the 
hoi
e register). The trail shows what assign-ments must be undone, and the sta
ks are returned to the state they were in when the
hoi
e was made. The pro
 register is set from the f retry �eld of the 
hoi
e frame: thisis the list of 
lauses for that goal that remain to be tried g1260 f Ba
ktra
k { roll ba
k to the last 
hoi
e-point gpro
edure Ba
ktra
k ;1265 beginRestore;
urrent := f goal (
hoi
e); goalframe := f parent(
hoi
e);
all := Deref (g �rst(
urrent); goalframe);pro
 := f retry(
hoi
e); gsp := f glotop(
hoi
e);1270 lsp := 
hoi
e � 1; 
hoi
e := f 
hoi
e(
hoi
e);debug point('Redo'; 
all ; goalframe);end;f Resume is 
alled with ok = true when the interpreter starts to exe
ute a goal; it eitherreturns with ok = true when the goal su

eeds, or returns with ok = false when ithas 
ompletely failed. After Resume has returned true, it 
an be 
alled again withok = false to �nd another solution; in this 
ase, the �rst a
tion is to ba
ktra
k to themost re
ent 
hoi
e-point. g1275 f Resume { 
ontinue exe
ution gpro
edure Resume;1280 label exit ;beginwhile run do beginif ok then beginif g �rst(
urrent) = null then return;1285 
all := Deref (g �rst(
urrent); goalframe);debug point('Call'; 
all ; goalframe);if (s pro
(t fun
(
all )) = null)^ (s a
tion(t fun
(
all)) = 0) then beginexe
 error('
all to undefined relation ');1290 WriteString(s name(t fun
(
all )));returnend;pro
 := Sear
h(
all ; goalframe ; s pro
(t fun
(
all )))end1295 else beginif 
hoi
e � base then return;
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oProlog sour
e 
odeBa
ktra
kend;Step;1300 if ok then Unwind ;if gsp � lsp � g
low then Colle
tend;exit :end;f Exe
ute { solve a goal by SLD-resolution g1305 pro
edure Exe
ute(g: 
lause);label exit ;beginlsp := hp; gsp := memsize + 1;1310 
urrent := null; goalframe := null; 
hoi
e := null; trhead := null;PushFrame(
 nvars(g);null);
hoi
e := goalframe ; base := goalframe ; 
urrent := 
 rhs(g);f 
hoi
e(base) := base;run := true; ok := true;1315 repeatResume;if : run then return;if : ok thenbegin writeln ; write('no'); return end;1320 ok := ShowAnswer(base)until ok ;writeln; write('yes');exit :end;C.18 Built-in relationsf Ea
h built-in relation is a parameterless boolean-valued fun
tion: it �nds its argumentsfrom the 
all in 
all , 
arries out whatever side-e�e
t is desired, and returns true exa
tlyif the 
all su

eeds.1325 Two routines help in de�ning built-in relations: GetArgs dereferen
es the argument ofthe literal 
all and puts them in the global array av ; and NewInt makes a new integernode on the global sta
k. g1330 varav : argbuf ; f GetArgs puts arguments here g
allbody : pointer ; f dummy 
lause body used by 
all=1 gf GetArgs { set up av array g1335 pro
edure GetArgs;var i: integer ;beginfor i := 1 to s arity(t fun
(
all )) doav [i℄ := Deref (t arg(
all ; i); goalframe)1340 end;



C.18 Built-in relations 235f A 
ouple of ma
ros that abbreviate a

esses to the av array: gde�ne(a kind ; (t kind (av [$1℄) = $2))de�ne(a ival ; t ival (av [$1℄))fun
tion NewInt(n: integer): term;1345 var t: term;begint := GloAllo
(int ;term size);t ival (t) := n;NewInt := t1350 end;f DoCut { built-in relation !/0 gfun
tion DoCut : boolean ;begin
hoi
e := f 
hoi
e(goalframe);1355 lsp := goalframe + frame size(f nvars(goalframe)) � 1;Commit ;
urrent := g rest(
urrent);DoCut := trueend;f DoCall { built-in relation 
all=1 g1360 fun
tion DoCall : boolean ;beginGetArgs;if : a kind(1; fun
) then begin1365 exe
 error('bad argument to 
all/1');DoCall := falseendelse beginPushFrame(1;null);1370 t val (f lo
al (goalframe ; 1)) :=GloCopy (av [1℄; f parent(goalframe));
urrent := 
allbody ;DoCall := trueend1375 end;f DoNot { built-in relation : =1 gfun
tion DoNot : boolean ;var savebase : frame ;begin1380 GetArgs;if : a kind(1; fun
) then beginexe
 error('bad argument to 
all/1');DoNot := falseend1385 else beginPushFrame(1;null);savebase := base; base := goalframe ; 
hoi
e := goalframe ;t val (f lo
al (goalframe ; 1)) :=GloCopy (av [1℄; f parent(goalframe));



236 Pi
oProlog sour
e 
ode1390 
urrent := 
allbody ; ok := true;Resume;
hoi
e := f 
hoi
e(base); goalframe := f parent(base);if : ok then begin
urrent := g rest(f goal (base));1395 DoNot := trueendelse beginCommit ;DoNot := false1400 end;lsp := base � 1; base := savebaseendend;f Pro
edures DoPlus and DoTimes implement the plus=3 and times=3 relations: theyboth involve a 
ase analysis of whi
h arguments are known, followed by a 
all to Unifyto unify the remaining argument with the result. The times=3 relation fails on divide-by-zero, even in the 
ase times(X; 0; 0), whi
h a
tually has in�nitely many solutions. g1405 f DoPlus { built-in relation plus=3 gfun
tion DoPlus : boolean ;1410 var result : boolean ;beginGetArgs;result := false ;if a kind(1; int) ^ a kind(2; int) then1415 result := Unify(av [3℄; goalframe ;NewInt(a ival (1) + a ival (2));null)else if a kind (1; int) ^ a kind (3; int) then beginif a ival (1) � a ival (3) thenresult := Unify(av [2℄; goalframe ;NewInt(a ival (3)� a ival (1));null)1420 endelse if a kind (2; int) ^ a kind (3; int) then beginif a ival (2) � a ival (3) thenresult := Unify(av [1℄; goalframe ;NewInt(a ival(3)� a ival (2));null)end1425 elseexe
 error('plus/3 needs at least two integers');
urrent := g rest(
urrent);DoPlus := resultend;f DoTimes { built-in relation times=3 g1430 fun
tion DoTimes : boolean ;var result : boolean ;beginGetArgs;1435 result := false ;if a kind(1; int) ^ a kind(2; int) thenresult := Unify(av [3℄; goalframe ;NewInt(t ival (av [1℄) � t ival (av [2℄));null)



C.18 Built-in relations 237else if a kind (1; int) ^ a kind (3; int) then begin1440 if a ival (1) 6= 0 thenif a ival (3) mod a ival (1) = 0 thenresult := Unify(av [2℄; goalframe ;NewInt(a ival (3) div a ival (1));null)end1445 else if a kind (2; int) ^ a kind (3; int) then beginif a ival (2) 6= 0 thenif a ival (3) mod a ival (2) = 0 thenresult := Unify(av [1℄; goalframe ;NewInt(a ival (3) div a ival (2));null)1450 endelseexe
 error('times/3 needs at least two integers');
urrent := g rest(
urrent);DoTimes := result1455 end;f DoEqual { built-in relation = =2 gfun
tion DoEqual : boolean ;beginGetArgs;1460 
urrent := g rest(
urrent);DoEqual := Unify(av [1℄; goalframe ; av [2℄; goalframe)end;f DoInteger { built-in relation integer=1 gfun
tion DoInteger : boolean ;1465 beginGetArgs;
urrent := g rest(
urrent);DoInteger := a kind(1; int)end;f DoChar { built-in relation 
har=1 g1470 fun
tion DoChar : boolean ;beginGetArgs;
urrent := g rest(
urrent);1475 DoChar := a kind(1;
hr
tr)end;f DoPrint { built-in relation print=1 gfun
tion DoPrint : boolean ;begin1480 GetArgs;PrintTerm(av [1℄; goalframe ;maxprio);
urrent := g rest(
urrent);DoPrint := trueend;f DoNl { built-in relation nl=0 g1485 fun
tion DoNl : boolean ;
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e 
odebeginwriteln;
urrent := g rest(
urrent);1490 DoNl := trueend;f DoBuiltin { swit
h for built-in relations gfun
tion DoBuiltin fwd ((a
tion : integer): boolean);begin1495 
ase a
tion of
ut : DoBuiltin := DoCut ;
all: DoBuiltin := DoCall ;plus : DoBuiltin := DoPlus ;times : DoBuiltin := DoTimes ;1500 isint : DoBuiltin := DoInteger ;is
har: DoBuiltin := DoChar ;naff : DoBuiltin := DoNot ;equality : DoBuiltin := DoEqual ;fail: DoBuiltin := false ;1505 print : DoBuiltin := DoPrint ;nl: DoBuiltin := DoNldefaultbad tag('DoBuiltin'; a
tion)end1510 end;C.19 Garbage 
olle
tionf Finally, here is the garbage 
olle
tor, whi
h re
laims spa
e in the global sta
k that isno longer a

essible. It must work well with the sta
k-like expansion and 
ontra
tionof the sta
k, so it is a 
ompa
ting 
olle
tor that does not alter the order in memory ofthe a

essible nodes.The garbage 
olle
tor operates in four phases: (1) Find and mark all a

essible storage.(2) Compute the new positions of the marked items after the global sta
k is 
ompa
ted.(3) Adjust all pointers to marked items. (4) Compa
t the global sta
k and move it tothe top of mem. That may seem 
ompli
ated, and it is; the garbage 
olle
tor mustknow about all the run-time data stru
tures, and is that one pie
e of the system that
uts a
ross every abstra
tion boundary.15151520 Be
ause of the relo
ation, Colle
t should only be 
alled at `quiet' times, when the onlypointers into the global sta
k are from interpreter registers and the lo
al sta
k. Anexample of a `non-quiet' time is in the middle of uni�
ation, when many re
ursive
opies of the uni�
ation pro
edure are keeping pointers to bits of term stru
ture. Toavoid the need to 
olle
t garbage at su
h times, the main 
ontrol of the interpreter
alls Colle
t before ea
h resolution step if the spa
e left is less than g
low . If spa
eruns out in the subsequent resolution step, exe
ution is abandoned without mu
h gra
e.This plan works be
ause the amount of spa
e 
onsumed in a resolution step is boundedby the maximum size of a program 
lause; this size is not 
he
ked, though. g1525
1530 var shift : integer ; f amount global sta
k will shift g



C.19 Garbage 
olle
tion 239f Visit { re
ursively mark a term and all its sub-terms gpro
edure Visit(t: term);label exit ;var i; n: integer ;1535 beginf We redu
e the depth of re
ursion when marking long lists bytreating the last argument of a fun
tion iteratively, makingre
ursive 
alls only for the other arguments. gwhile t 6= null do begin1540 if : is glob(t) _ marked(t) then return;add mark (t);
ase t kind (t) offun
 :begin1545 n := s arity(t fun
(t));if n = 0 then return;for i := 1 to n� 1 do Visit(t arg(t; i));t := t arg(t; n)end;1550 
ell:t := t val(t);int ;
hr
tr:returndefault1555 bad tag('Visit'; t kind (t))endend;exit :end;f MarkSta
k { mark from ea
h frame on the lo
al sta
k g1560 pro
edure MarkSta
k ;var f : frame ; i: integer ;beginf := hp + 1;1565 while f � lsp do beginfor i := 1 to f nvars(f) doif t kind (f lo
al (f; i)) = 
ell thenVisit(t val(f lo
al(f; i)));f := f + frame size(f nvars(f))1570 endend;f CullTrail { delete an initial segment of unwanted trail gpro
edure CullTrail (var p: trail);label exit ;1575 beginwhile p 6= null do beginif x reset(p) 6= null thenif : is glob(x reset(p)) _ marked (x reset(p)) thenreturn;1580 p := x next(p)
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oProlog sour
e 
odeend;exit :end;f MarkTrail { remove dead trail nodes, mark the rest. g1585 pro
edure MarkTrail ;var p: trail ;beginCullTrail (trhead ); p := trhead ;while p 6= null do1590 begin add mark(p); CullTrail (x next(p)); p := x next(p) endend;f Relo
ate { 
ompute shifts gpro
edure Relo
ate;var p: pointer ; step: integer ;1595 beginshift := 0; p := gsp;while p � memsize do beginstep := t size(p); t shift(p) := shift ;if :marked (p) then1600 shift := shift + step;p := p+ stependend;f AdjustPointer { update a pointer g1605 pro
edure AdjustPointer(var p: term);beginif (p 6= null) ^ is glob(p) then beginif :marked (p) thenpani
('adjusting pointer to unmarked blo
k');1610 p := p+ shift � t shift(p)endend;f AdjustSta
k { adjust pointers in lo
al sta
k gpro
edure AdjustSta
k ;1615 var f : frame ; i: integer ; q: pointer ;label found ; found2 ;beginf := hp + 1;while f � lsp do begin1620 q := f glotop(f);while q � memsize do beginif marked (q) then goto found ;q := q + t size(q)end;1625 found :if q � memsize then AdjustPointer(q);f glotop(f) := q;



C.19 Garbage 
olle
tion 241q := f trail(f);while q 6= null do begin1630 if marked (q) then goto found2 ;q := x next(q)end;found2 :AdjustPointer(q);1635 f trail(f) := q;for i := 1 to f nvars(f) doif t kind (f lo
al (f; i)) = 
ell thenAdjustPointer(t val(f lo
al(f; i)));f := f + frame size(f nvars(f));1640 endend;f AdjustInternal { update internal pointers gpro
edure AdjustInternal ;var p; i: integer ;1645 beginp := gsp;while p � memsize do beginif marked(p) then begin
ase t kind(p) of1650 fun
 :for i := 1 to s arity(t fun
(p)) doAdjustPointer(t arg(p; i));
ell:AdjustPointer(t val(p));1655 undo:beginAdjustPointer(x reset(p));AdjustPointer(x next(p))end;1660 int ;
hr
tr:skipdefaultbad tag('Adjust'; t kind (p))end1665 end;p := p+ t size(p)endend;f Compa
t { 
ompa
t marked blo
ks and un-mark g1670 pro
edure Compa
t ;var p; q; step; i: integer ;beginp := gsp; q := gsp;while p � memsize do begin1675 step := t size(p);if marked(p) then begin rem mark(p);



242 Pi
oProlog sour
e 
odefor i := 0 to step � 1 do mem [q + i℄ := mem[p+ i℄;q := q + stepend;1680 p := p+ stepend;gsp := gsp + shift ;for i := memsize downto gsp do mem [i℄ := mem[i� shift ℄;end;f Colle
t { 
olle
t garbage g1685 pro
edure Colle
t ;beginwrite('[g
'); 
ush out ;f Phase 1: marking g1690 Visit(
all ); MarkSta
k ; MarkTrail ;f Phase 2: 
ompute new lo
ations gRelo
ate;f Phase 3: adjust pointers gAdjustPointer(
all ); AdjustPointer(trhead);1695 AdjustSta
k ; AdjustInternal ;f Phase 4: 
ompa
t gCompa
t ;write('℄'); 
ush out ;if gsp � lsp � g
high then exe
 error('out of memory spa
e')1700 end;C.20 Main programf Initialize { initialize everything gpro
edure Initialize ;var i: integer ; p: term;begin1705 d
ag := false ; err
ount := 0;pb
har := endfile ; 
harptr := 0;hp := 0; InitSymbols ;f Set up the refnode array gfor i := 1 to maxarity do begin1710 p := HeapAllo
(term size);t tag(p) := make tag(ref ;term size);t index (p) := i; refnode [i℄ := pend;f The dummy 
lause 
all(p) :� p is used by 
all=1. g1715 
allbody := HeapAllo
(2);g �rst(
allbody) := MakeRef (1);g �rst(g rest(
allbody)) := nullend;



C.20 Main program 243f ReadFile { read and pro
ess 
lauses from an open �le g1720 pro
edure ReadFile ;var 
: 
lause ;beginlineno := 1;repeat1725 hmark := hp;
 := ReadClause ;if 
 6= null then beginif d
ag then PrintClause(
);if 
 head (
) 6= null then1730 AddClause(
)else beginif intera
ting thenbegin pb
har := endfile ; readln end;Exe
ute(
);1735 writeln;hp := hmarkendenduntil 
 = null1740 end;f ReadProgram { read �les listed on 
ommand line gpro
edure ReadProgram ;var i0 ; i: integer ;arg : tempstring ;1745 begini0 := 1;if arg
 > 1 then beginargv (1; arg);if (arg [1℄ = '-') ^ (arg [2℄ = 'd')1750 ^ (arg [3℄ = endstr) then begind
ag := true;in
r(i0 )endend;1755 for i := i0 to arg
 � 1 do beginargv (i; arg);�lename := SaveString(arg);if : openin(in�le ; arg) then beginwrite('Can''t read '); WriteString(�lename); writeln ;1760 abortend;write('Reading '); WriteString(�lename); writeln ;ReadFile ;
losein(in�le);1765 if err
ount > 0 then abortendend;



244 Pi
oProlog sour
e 
odebegin f main program gwriteln('Wel
ome to pi
oProlog');1770 Initialize ;intera
ting := false ; ReadProgram ;intera
ting := true; lineno := 1; ReadFile ;writeln;end of pp:1775 end:



Appendix DCross-referen
e listing

a ival , 1343, 1415{19, 1422{3,1440{43, 1446{9a kind , 1342, 1364, 1381, 1414{16, 1421,1436, 1439, 1445, 1468, 1475a1 , 448, 451a2 , 448, 451abort , 56, 72, 680, 1760, 1765a
tion , 313, 334, 341, 371, 378, 1493,1495, 1508add mark , 149, 1541, 1590AddClause , 414, 1730AdjustInternal , 1643, 1695AdjustPointer , 1605, 1626, 1634, 1638,1652{4, 1657{8, 1694AdjustSta
k , 1614, 1695arg , 437, 444, 449, 451{2, 864, 868{70, 877,1744, 1748{50, 1756{8argbuf , 435, 437, 449, 488, 864, 933, 1332arg
, 1747, 1755argprio, 505, 572, 575argv , 1748, 1756arity , 333, 340, 371, 378arrow , 652, 752, 789, 942av , 1332, 1339, 1342{3, 1371, 1389, 1415,1418, 1423, 1437{8, 1442, 1448, 1461, 1481Ba
ktra
k , 1264, 1297bad tag , 73, 1057, 1115, 1127, 1138, 1508,1555, 1663base , 293, 1181, 1251, 1296, 1312{13, 1320,1387, 1392{4, 1401bindings , 821, 829

body , 488, 493, 933, 951{2, 960
 body , 264, 493{4, 619{24
 head , 262, 417, 492, 614{15, 1216,1240, 1729
 key , 260, 495{6, 1148
 next , 261, 426{7, 492, 1149, 1235
 nvars , 259, 492, 1196, 1210, 1239, 1311
 rhs , 263, 264, 1217, 1241, 1312
all, 383, 404, 1497
all , 290, 1216, 1230{31, 1235, 1240, 1268,1271, 1285{90, 1293, 1338{9, 1690, 1694
allbody , 1333, 1372, 1390, 1715{17
ell, 160, 306, 595, 1047{9, 1089{93, 1136,1168, 1203, 1212, 1550, 1567, 1637, 1653
h , 220, 227, 240, 242, 677, 683{5, 695, 697,700{705, 708, 711{13, 717{23, 726, 735{6,739{42, 745, 750{51, 754, 758{9, 764{70,774, 822, 838
h2 , 695, 739{41
harbuf , 86, 103, 111{12, 119{20
harptr , 85, 99{103, 1706
h
on , 650, 758, 788, 888{9Che
kAtom , 924, 941, 950
hoi
e , 292, 988, 1002, 1013, 1164, 1172,1180, 1254, 1267{70, 1296, 1310{12, 1354,1387, 1392
hr , 20{23, 532, 594, 889
hr
tr, 158, 473, 518, 593, 1054, 1112,1135, 1475, 1552, 1660
lause size , 265, 491 245



246 Cross-referen
e listing
lause , 258, 294, 335, 414{15, 488{9, 608,930, 963{4, 1143, 1159, 1228, 1306, 1721
losein , 1764Colle
t , 314, 1301, 1686
olon , 657, 754, 794, 904, 907
omma, 655, 729, 792, 869{70, 953{4Commit , 1009, 1356, 1398Compa
t , 1670, 1697
ons , 337, 399, 483, 516, 542, 908
onsprio, 507, 547{51
riti
al , 988, 993, 1014CullTrail , 1573, 1588{90
urrent , 289, 1163, 1180, 1217, 1241, 1251{3,1267{8, 1284{5, 1310{12, 1357, 1372,1390, 1394, 1427, 1453, 1460, 1467, 1474,1482, 1489
ut , 382, 400, 1496
utsym, 337, 400, 732debug point , 1156, 1252, 1271, 1286de
r , 59, 356, 483Deref , 301, 308, 514, 518, 521, 529, 532{3,584, 1030, 1086, 1131, 1268, 1285, 1339d
ag , 69, 1156, 1194, 1705, 1728, 1751DoBuiltin , 313, 1231, 1493, 1496{506DoCall , 1361, 1366, 1373, 1497DoChar , 1471, 1475, 1501DoCut , 1352, 1358, 1496DoEqual , 1457, 1461, 1503DoInteger , 1464, 1468, 1500done , 48, 510, 517{19, 523, 931, 953, 957DoNl , 1486, 1490, 1506DoNot , 1377, 1383, 1395, 1399, 1502DoPlus , 1409, 1428, 1498DoPrint , 1478, 1483, 1505dot , 656, 681, 686, 730, 793, 854, 945, 958DoTimes , 1431, 1454, 1499dummy , 395, 404{11e1 , 1083, 1086, 1094, 1105e2 , 1083, 1086, 1092, 1105Eat , 851, 866{71, 885{93, 907, 919, 942, 949,954, 958end of pp, 45, 55, 1774endfile , 23, 223, 232{3, 684, 700, 740{42,1706, 1733endline , 22, 225, 685, 702, 765, 768endstr, 20, 92, 104, 111, 119, 350, 377, 714,767, 1750Enter , 371, 379, 399{411eoftok , 660, 701, 971{3

eqprio, 506, 556{60, 829eqsym, 337, 401, 554, 920equal, 658, 731, 795, 916, 919equality , 389, 401, 1503err
ount , 645, 668, 679, 1705, 1765err
ag , 644, 663, 668, 855, 959, 967, 973exe
 error , 70, 419, 1289, 1365, 1382, 1426,1452, 1699Exe
ute, 1306, 1734exit , 47, 60, 1280, 1303, 1307, 1323, 1533,1558, 1574, 1582expe
ted , 851, 853, 857f 
hoi
e , 280, 1164, 1270, 1313, 1354, 1392f glotop, 281, 988, 1013, 1165, 1269,1620, 1627f goal , 277, 1163, 1252{3, 1267, 1394f lo
al , 284, 305, 829, 1168{9, 1203{7,1212{13, 1370, 1388, 1567{8, 1637{8f nvars , 283, 1166, 1195, 1202, 1210{11,1355, 1566, 1569, 1636, 1639f parent , 278, 1163, 1240, 1252, 1255, 1267,1371, 1389, 1392f retry , 279, 1164, 1269f trail , 282, 1002, 1165, 1628, 1635fail, 390, 409, 1504FGetChar , 219, 223{7, 235{7�lename, 217, 670, 1757{9, 1762
ush out , 41, 834, 969, 1688, 1698
ush, 41found , 46, 345, 355, 366, 1616, 1622, 1625found2 , 49, 1616, 1630, 1633frame size , 285, 287frame size , 287, 1162, 1195{6, 1355,1569, 1639frame , 276, 291{3, 301, 311, 315, 509, 527,538, 582, 821, 1027, 1083, 1120, 1143,1160, 1192, 1378, 1562, 1615fun, 437, 440, 443, 448, 452, 864, 866, 873{7fun
 , 153, 442, 516, 524, 589, 926, 1035,1040, 1099, 1127, 1133, 1364, 1381,1543, 1650fwd , 320, 582, 912, 1120, 1493g �rst , 266, 1180, 1251{2, 1268,1284{5, 1716{17g rest , 267, 1180, 1253, 1357, 1394, 1427,1453, 1460, 1467, 1474, 1482, 1489, 1717g
high , 18, 1699g
low , 17, 1301



D Cross-referen
e listing 247GetArgs, 1335, 1363, 1380, 1412, 1434, 1459,1466, 1473, 1480GetChar , 230, 233{7, 683, 697, 703, 711,721, 735, 739{41, 745, 750, 758, 764{6GloAllo
, 189, 196, 994, 1040, 1049, 1347GloCopy , 1027, 1032, 1038, 1043{4, 1052,1055, 1092{4, 1371, 1389goalframe , 291, 1163, 1171{2, 1180{81, 1195,1198{202, 1205{6, 1210{13, 1216, 1235,1240, 1251{5, 1267{8, 1271, 1285{6, 1293,1310{12, 1339, 1354{5, 1370{71, 1387{9,1392, 1415, 1418, 1423, 1437, 1442, 1448,1461, 1481gsp, 180, 185, 192{4, 205, 1165, 1269, 1301,1309, 1596, 1646, 1673, 1682{3, 1699halt , 56hashfa
tor, 12, 361head , 487, 492, 495{6, 932, 938{41, 960HeapAllo
, 199, 202, 441, 464, 472, 491,1710, 1715hmark , 180, 967, 1725, 1736hp, 180, 201{4, 599, 967, 1309, 1564, 1618,1707, 1725, 1736i0 , 1743, 1746, 1752, 1755ident , 647, 706, 732, 783, 866, 883in
r , 58, 92, 103, 111, 120, 225, 351, 376,521, 625, 668, 711, 766, 816{17, 870,1106, 1752in�le, 215, 237, 1758, 1764Initialize , 1702, 1770InitSymbols , 394, 1707input , 8, 235int , 156, 465, 591, 1054, 1110, 1134, 1347,1414{16, 1421, 1436, 1439, 1445, 1468,1552, 1660intera
ting , 213, 234, 669, 679, 685, 831,968, 972, 1732, 1771{2is digit , 692, 708, 717{19is glob, 205, 596, 1031, 1073, 1540,1578, 1607is heap, 204, 1038is letter , 690, 704, 708is upper , 689, 690, 705is
har, 387, 408, 1501isgoal , 930, 937isint , 386, 407, 1500IsString , 509, 524, 544Key , 315, 496, 1120, 1129, 1133{6, 1146

keyword , 369, 371kind , 189, 195lifetime , 1073, 1077limit , 511, 515lineno, 216, 225, 671, 1723, 1772Lo
Allo
, 183, 186, 1162, 1197Lookup, 344, 367, 377, 714lpar, 653, 727, 790, 867{8, 892{3lsp, 180, 185{6, 192, 1218, 1254, 1270, 1301,1309, 1355, 1401, 1565, 1619, 1699make tag , 151, 195, 442, 465, 473, 1168,1212, 1711MakeChar , 469, 474, 483, 889MakeClause , 487, 497, 960MakeCompound , 437, 445, 452, 877MakeInt , 461, 466, 887MakeNode , 448, 452, 481{3, 908, 920, 951MakeRef , 456, 458, 818, 1716MakeString , 477, 484, 891marked , 148, 1540, 1578, 1599, 1608, 1622,1630, 1648, 1676MarkSta
k , 1561, 1690MarkTrail , 1585, 1690mat
h , 1084, 1103{5, 1108maxarity , 15, 435, 454, 808{9, 814, 1709max
hars , 13, 82, 85{6, 99, 116maxprio, 504, 565, 615, 620, 624, 1157, 1481maxstring, 14, 83, 89, 97, 709maxsymbols, 11, 328{31, 351, 357, 361, 398mem, 145, 152{63, 181, 259{66, 277{83,983{4, 1200, 1677, 1683memsize , 16, 181, 201, 597, 1309, 1597,1621, 1626, 1647, 1674, 1683minus, 935, 947{51naff , 388, 403, 1502name, 332, 339, 344, 350{51, 355, 363, 371,375{6, 811, 815{16nbody , 488, 491{4negate , 659, 715, 948{9NewInt , 1344, 1349, 1415, 1419, 1423, 1438,1443, 1449newsize , 1192, 1196{8, 1207nilsym , 337, 402, 481, 524, 531nl, 392, 411, 1506notsym, 337, 403, 562, 715, 951nsymbols , 330, 361, 397null, 143, 303{6, 365, 422, 426, 481, 492{6,585, 611, 614{15, 619{24, 829, 895, 938,



248 Cross-referen
e listing951, 959, 971, 1004, 1013{15, 1050, 1126,1148, 1169, 1172, 1180{81, 1204, 1213,1232, 1251, 1284, 1287, 1310{11, 1369,1386, 1415, 1419, 1423, 1438, 1443, 1449,1539, 1576{7, 1589, 1607, 1629, 1717,1727{9, 1739number, 649, 718, 787, 886{7nvars , 487, 492, 808, 814{17, 824{6, 960,967, 1159, 1162, 1166{7o�set , 456, 458ok , 1155, 1216, 1231{3, 1240, 1283, 1300,1314, 1318{21, 1390, 1393oldsize , 1192, 1195, 1200, 1206openin , 1758ord , 351, 474, 720, 758, 1073output , 8pani
, 72, 73, 100, 185, 193, 201, 303, 362,710, 814, 1126, 1609ParseClause , 930, 959{60, 972ParseCompound , 863, 877, 883ParseFa
tor , 900, 905, 908, 915, 920ParsePrimary , 880, 897, 903ParseTerm , 312, 868{70, 893, 912, 917, 920,940, 950pb
har , 214, 232{3, 242, 1706, 1733permstring , 82, 96, 107, 115, 217pi
oProlog , 8plus , 384, 405, 1498pointer , 142, 144, 180, 183, 189{90, 199, 258,276, 289, 980, 1333, 1594, 1615print , 391, 410, 1505PrintClause , 608, 1728PrintCompound , 538, 590PrintTerm , 311, 548{50, 557{9, 565, 572,575, 582, 615, 620, 624, 829, 1157, 1481PrintToken , 780, 857{8prio , 311, 538, 547, 551, 556, 560, 582, 590pro
, 294, 335, 342, 1196, 1210, 1216{17,1232, 1235, 1239{41, 1269, 1293PushBa
k , 240, 713, 723, 754, 770PushFrame , 1159, 1239, 1311, 1369, 1386ReadClause , 963, 974, 1726ReadFile , 1720, 1763, 1772readln , 225, 836{8, 1733ReadProgram , 1742, 1771Re
over , 664, 676, 859ref , 162, 304, 600, 1136, 1711refnode , 454, 458, 1712

Relo
ate, 1593, 1692rem mark , 150, 1676Restore, 999, 1266result , 1410, 1413{15, 1418, 1423, 1428,1432, 1435{7, 1442, 1448, 1454Resume, 1279, 1316, 1391retry , 1159, 1164, 1172, 1228, 1235{6, 1239rpar, 654, 728, 791, 871, 893run, 68, 71, 1282, 1314, 1317s a
tion , 341, 365, 378, 418, 1230{31, 1288s arity , 340, 364, 378, 440, 570, 573, 873{5,1037, 1104, 1128, 1338, 1545, 1651s name , 339, 354{5, 363, 398, 420, 569,784{6, 828, 1290s pro
, 342, 365, 422{5, 1287, 1293s1 , 107, 111{12s2 , 107, 111{12Save, 990, 1051, 1078{80, 1092{4savebase , 1378, 1387, 1401SaveString , 96, 101, 363, 1757S
an, 694, 854, 970Sear
h , 1143, 1150, 1235, 1293Share, 1075, 1090shift , 1530, 1596{600, 1610, 1682{3ShowAnswer , 821, 824, 832, 836{8, 1320ShowError , 664, 666, 856ShowString , 527, 545size, 183, 185{6, 189, 192{5, 199, 201{2skip, 61, 1661Step, 1227, 1299step, 1594, 1598{601, 1671, 1675{80str
on , 651, 764, 796, 890{91StringEqual , 107, 112, 355StringLength, 88, 93, 99, 480symbol , 328, 337, 344{6, 371{2, 395, 415,437, 448, 539, 641, 809{11, 864symtab, 331, 339{42syntax error , 662, 737, 743, 760, 769, 774,876, 895, 927t arg , 155, 444, 518, 521, 532{3, 548{50,557{9, 565, 572, 575, 1043, 1105, 1131,1339, 1547{8, 1652t 
val , 159, 474, 532, 594, 1113, 1135t fun
, 154, 417, 443, 516, 524, 531, 541,1037, 1041, 1100, 1104, 1128, 1133,1230{31, 1287{90, 1293, 1338, 1545, 1651t index , 163, 305, 601, 1712t ival , 157, 466, 592, 1111, 1134, 1343,1348, 1438



D Cross-referen
e listing 249t kind , 146, 304{6, 516{18, 524, 588, 603,926, 1034, 1057, 1089{95, 1098, 1115,1127, 1132, 1138, 1203, 1342, 1542, 1555,1567, 1637, 1649, 1663t shift , 152, 1598, 1610t size , 147, 1598, 1623, 1666, 1675t tag , 145, 146{50, 195, 442, 465, 473, 1168,1212, 1711t val , 161, 306{7, 1004, 1050{51, 1078{80,1092{4, 1169, 1204{7, 1213, 1370, 1388,1551, 1568, 1638, 1654t0 , 1121, 1131{5, 1138t1 , 1083, 1086{95, 1098{100, 1104{5, 1111{15t2 , 1083, 1086{95, 1100, 1105, 1111{13tab , 21, 702temp, 372, 376{7, 1192, 1197{200,1203{7, 1216{18tempstring , 83, 88, 96, 107, 344, 372, 477,643, 1744term size , 166, 284, 287, 441{2, 464{5,472{3, 597{9, 1040, 1049, 1168, 1212,1347, 1710{11term, 144, 290, 301, 311{12, 315, 435{8, 448,454{6, 461{2, 469{70, 477{8, 487, 509,527, 538, 582, 811, 863, 880{81, 900{901,912{13, 924, 932, 990, 1000, 1027{8,1075, 1083, 1120{21, 1143, 1344{5, 1532,1605, 1703text , 215, 219times , 385, 406, 1499token, 640, 681, 686, 697{8, 701, 705{6,715, 718, 727{32, 752{4, 758, 764, 853{4,

858, 867{9, 883{92, 904, 916, 945, 948,953, 971{3tokival , 642, 718{20, 758, 887{9toksval , 643, 711, 714, 766{7, 891tokval , 641, 714{15, 732, 784{6, 866, 885trail size , 985, 994trail , 980, 986, 991, 1010, 1573, 1586trhead , 986, 995, 1002{5, 1012, 1165, 1310,1588, 1694tro test , 1180, 1236TroStep, 1191, 1237tt , 1028, 1040{44, 1049{52undo, 164, 994, 1655Unify , 1083, 1088{96, 1101, 1105, 1108,1111{13, 1216, 1240, 1415, 1418, 1423,1437, 1442, 1448, 1461Unwind , 1249, 1300v1 , 1075, 1077{80v2 , 1075, 1077{80variable, 648, 705, 785, 884{5VarRep, 811, 818, 885vartable , 809, 815{16, 828Visit , 1532, 1547, 1568, 1690WriteString , 115, 420, 569, 670, 784{6, 828,1290, 1759, 1762x next , 984, 995, 1005, 1016, 1580, 1590,1631, 1658x reset , 983, 995, 1003, 1014{15,1577{8, 1657
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tion, 176DoEqual fun
tion, 176DoInteger fun
tion, 176dominates relation, 31DoNot fun
tion, 176DoPlus fun
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ute pro
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ompleteness, 53hardware simulation, 115{20head of a 
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