
An introdution to logi programmingthrough Prolog
Mihael SpiveyOriel College, OxfordFirst published 1996 by Prentie Hall EuropePublished 2002 by the author J. M. Spivey 1996, 2002All rights reserved. No part of this publiation may be reprodued, stored ina retrieval system, or transmitted, in any form. or by any means, eletroni,mehanial, photoopying, reording or otherwise, without prior permission, inwriting, from the publisher.For permission in all ountries ontat the author.

i



ii An introdution to logi programming through PrologOriginal bak over opyAn Introdution to Logi Programming through Prolog is one of thefew texts that ombine three essential omponents of logi programming: thedelarative nature of logi itself, the programming tehniques needed to writee�etive programs, and the eÆient implementation of logi programming byomputer.Beginning with a gentle introdution to logi programming using a numberof simple examples, the book develops a a onise and self-ontained aount ofthe logi behind Prolog programming. This leads into a disussion of methodsof writing programs so that they retain their logial meaning, but run as eÆ-iently as possible. The tehniques are illustrated by pratial examples suh assearhing a network, solving ombinatorial problems, and parsing and evaluatingexpressions. The �nal part of the book explains how logi programming an beimplemented eÆiently, and inludes the omplete soure text of a simple imple-mentation of Prolog, apable of running all the programs presented in the book.This Prolog implementation is available on the Internet.Mihael Spivey is a University Leturer in Computer Siene at Oxford and aTutorial Fellow of Oriel College, Oxford.



Contents

Prefae viii1 Introdution 11.1 Introduing logi programming 22 Programming with relations 133 Reursive strutures 213.1 Lists 213.2 Deriving fats about append 253.3 More relations on lists 293.4 Binary trees 324 The meaning of logi programs 354.1 Syntax 364.2 Truth tables 394.3 Adding funtions and variables 414.4 Substitutions 425 Inferene rules 475.1 Substitution and ground resolution 475.2 Refutation 505.3 Completeness 526 Uni�ation and resolution 556.1 Uni�ation 576.2 Resolution 626.3 Derivation trees and the lifting lemma 646.4 Completeness of resolution 66v



vi Contents7 SLD{resolution and answer substitutions 697.1 Linear resolution 707.2 SLD{resolution 737.3 Searh trees 767.4 Answer substitutions 808 Negation as failure 858.1 Negation in goals 858.2 Negation in programs 878.3 Semantis of negation 889 Searhing problems 919.1 Representing the problem 929.2 Avoiding yles 949.3 Bounded and breadth-�rst searh 9610 Parsing 9910.1 Arithmeti expressions 9910.2 Di�erene lists 10110.3 Expression trees 10210.4 Grammar rules in Prolog 10411 Evaluating and simplifying expressions 10711.1 Evaluating expressions 10711.2 Simplifying expressions 10912 Hardware simulation 11513 Program transformation 12213.1 Unfolding and symboli exeution 12213.2 Fold{unfold transformation 12313.3 Improving the reverse program 12514 About pioProlog 13014.1 The pioProlog language 13114.2 Built-in relations 13214.3 The ut symbol 13314.4 Implementation overview 13615 Implementing depth-�rst searh 13915.1 Depth-�rst searh 13915.2 Representing the goal list 14115.3 Representing goals 14315.4 Answer substitutions 145



Contents vii15.5 Depth-�rst searh revisited 14515.6 Choie points 14915.7 Choosing representations 15016 Representing terms and substitutions 15316.1 Representing terms 15316.2 Substitutions 15516.3 Renaming 15716.4 Printing terms 15816.5 The trail 16016.6 Uni�ation 16117 Implementation notes 16417.1 Maros 16517.2 String handling 16817.3 Memory alloation 16817.4 Symbol table 17017.5 Lexial analysis 17017.6 Syntax analysis 17217.7 Trail 17417.8 Uni�ation 17517.9 Interpreter 17517.10 Built-in relations 17517.11 Main program 17618 Interpreter optimizations 17818.1 Garbage olletion 17918.2 Indexing 18018.3 Tail reursion 18118.4 A onluding example 18319 In onlusion 185Further reading 187AppendiesA Answers to the exerises 189B Using an ordinary Prolog system 203C PioProlog soure ode 205D Cross-referene listing 245Index 250



Prefae

As we approah the �ftieth anniversary of the �rst programmable omputer,the twenty-�fth anniversary of the `software risis' is already long past, thatexpression �rst having been used at an international onferene in 1968. Thusmore than half of the history of omputer siene has been lived under the shadowof our inability to manage the omplexity of the artifats we have reated. Underthese irumstanes, few would dare to suggest that the problems of our disiplinehave a single tehnologial solution. It is ertainly not the purpose of this bookto suggest that logi programming, interesting and powerful though it may be,is a panaea for the problems programmers fae today.A more enouraging possibility is that we may be able to �nd theories andprogramming paradigms that link together di�erent ways of understanding pro-grams and omputer systems. The purpose of this book is to explore to whatextent logi programming provides suh a theory. Based on prediate logi, itallows omputing problems to be expressed in a ompletely `delarative' way,without giving instrutions for how the problem is to be solved. An exeutionmehanism, like the one embodied in implementations of Prolog, an then beused to searh eÆiently and systematially for a solution to the problem. Forsome problems, the simplest expression of the problem in logial terms also leadsto an e�etive proedure for solving it when a simple exeution mehanism isused. Other problems require either a more intelligent exeution mehanism, orneed to be reast in suh a way that a simple exeution mehanism an �ndsolutions e�etively. Through the medium of logi, we an separate the task ofapturing the problem from the task of �nding an e�etive way to solve it.The implementation of Prolog provides an exellent example of the onstru-tion of a software system that satis�es a strong, mathematial spei�ation. Inthe ase of Prolog, this spei�ation is the mathematial meaning that underliesthe delarative interpretation of logi programs, and the relevant mathematialfoundation is the model theory of Horn lause logi. The thread that links the�rst part of this book (whih presents the mathematial logi behind Prolog)viii



Prefae ixwith the last part (whih desribes how Prolog an be implemented) is this: thatthe implementation of Prolog an be viewed as arrying out symboli reasoningwith logial formulas, and its orretness is expressed in the fat that it faith-fully realizes the inferene rule of resolution, whih is itself sound with respetto the delarative meaning of programs. The soundness of the resolution rule isestablished in the �rst part of the book, and its (almost) faithful implementationin Prolog is explained informally in the last part, but in a way that reets thestruture of a formal development by stepwise (data) re�nement.Another attrative feature of logi programming is the rih web of links ithas with other topis in omputer siene. These are some of the links that areexplored in this book:� Relational databases, stripped of their inessentials, provide operations onrelations that are losely linked to ways of ombining relations in logiprogramming. We touh on these links in Chapter 2.� Mathematial logi, important in formal methods of software developmentand in arti�ial intelligene, is also the foundation of logi programming.Studying logi programming is a good introdution to mathematial logi,beause the logi behind logi programming is simple, and allows resultslike the soundness and ompleteness of inferene systems to be proved inthe simplest possible setting. In these books, these results are establishedfor the Horn lause logi of Prolog in Chapters 5 to 7.� Automated theorem proving is inreasingly used in the veri�ation of hard-ware and software systems. It is losely related to logi programming, bothbeause they share some of the same foundations, and beause logi pro-gramming is a useful vehile for implementing theorem provers. Some sim-ple appliations of logi programming to theorem proving are explored inChapter 11.� Type systems for modern programming languages like ML are expressedas systems of inferene rules that are in e�et logi programs. Compilersfor these languages infer types for the expressions in a program by usingthe same tehniques that we shall use to implement Prolog in Chapters 15to 18.In a wider sense, every omputer system implements a kind of logi. By providinginput data, we give the system information about some part of the world. Theomputer derives some other information whih it presents as its output. If theinput data is aurate, and the rules we have built into the omputer system aresound, then the output data will desribe a valid onlusion. Logi programmingdepends expliitly on this view of omputer systems by allowing both the programand its input and output data to be expressed as sentenes in formal logi.Oriel College, Oxford J. M. S.January, 1996



x PrefaeUsing this bookThe hapters of this book an be grouped into four parts, eah developing di�erentthemes from the theory, appliation and implementation of logi programming.Chapters 1 to 3 introdue the ideas of logi programming; writing programsby de�ning relations, ombining relations to de�ne new ones, reursion in dataand programs. The exposition here is mainly by example, and many topis aretouhed upon that are explored fully in later parts of the book.Chapters 4 to 8 develop the `logial' theme by presenting the semantis oflogi programs and developing the inferene system of SLD{resolution that isthe logial basis of Prolog implementations. This is the most mathematial partof the book, and develops in miniature the standard theory of mathematial logi,inluding proofs that various inferene systems for Horn lause logi are soundand omplete.Chapters 9 to 13 present more pratial topis, from the formulation of graph-searhing problems so that they an be solved by Prolog's simple searh strategy,to appliations of logi programming in parsing, algebrai simpli�ation and sim-ulating hardware iruits.The �nal part of the book, in Chapters 14 to 18, piks up where the se-ond part left o�. It explains how SLD{resolution an be implemented eÆientlyby mahine, using the onventional tehnology of Prolog implementation. Thesehapters desribe the funtioning of an atual interpreter for a Prolog subset, andthe omplete soure ode for this interpreter is inluded as Appendix C of thisbook. The presentation in this part of the book is based on stepwise re�nementof data representations. The aount begins with a simple implementation ofdepth-�rst searh that uses abstrat data types like sequenes, terms and substi-tutions with orresponding abstrat operations. Later hapters explain how theseabstrat data types an be implemented using the onrete data types providedby a mahine.Getting a opy of pioPrologA distribution kit is available that ontains the Pasal soure ode of the pio-Prolog interpreter, ode for all the example programs from the book, the `ppp'maro proessor that is needed to pre-proess the pioProlog soure and C soureode for a Pasal{to{C translator that an be used to ompile it via C. You anobtain the kit from the WWW pagehttp://spivey.oriel.ox.a.uk/mike/logi



Chapter 1Introdution

What kind of thing is a omputer program?One answer is that a program is a olletion of instrutions for arrying outsome omputing task. This is the answer that would have been given by the �rstomputer programmers, who had to desribe in omplete detail both how datawas stored in the memory of their omputers and the sequene of data movementsand arithmeti operations needed to ompute the solutions to problems. Thismade programming tedious and error-prone, and so limited the ambition of mostprogrammers to fairly simple numerial problems. Lukily, omputers were smallin those days too.The same answer { that a program is a olletion of instrutions { is the basisfor the high-level languages like Fortran and Algol 60 that were invented to easethe programming task; the suessors of these languages, inluding Pasal, Cand Ada, are still with us today. These languages allowed programmers to assignsymboli names to storage loations and write algebrai expressions instead ofexpliit sequenes of movements and operations. Programmers no longer neededto onern themselves with the exat layout of data in memory, or with the exatsequene of operations needed to evaluate an algebrai expression, but ould leavethese details to be �lled in by a ompiler.Despite all these bene�ts, programs in these languages are still made up ofommands that work by hanging values stored in memory loations. Programsare understood in terms of what happens when a omputer obeys the ommands.For this reason, programming languages suh as these are often desribed asimperative, by analogy with the grammatial mood used to give ommands innatural language.Another answer to the question `What kind of thing is a program?' stems fromlanguages like Lisp and { of speial interest in this book { like Prolog. The dis-tinguishing feature of these delarative programming languages, at least in theirpure forms, is that programs are made up not of ommands to be exeuted, but ofde�nitions and statements about the problem to be solved. Grammatially, they1



2 Introdutionare in the delarative mood, used for ordinary statements in natural language.Unlike the ommands in imperative programs, they an be understood in a waythat is independent of the mehanism that exeutes the program. Delarativeprograms ontain no expliit instrutions to be followed by the omputer thatexeutes them. Instead, the job of the omputer is to manipulate the informationontained in the program so as to derive the solution to a given problem.In logi programming, a program onsists of a olletion of statements ex-pressed as formulas in symboli logi. There are rules of inferene from logithat allow a new formula to be derived from old ones, with the guarantee thatif the old formulas are true, so is the new one. Beause these rules of inferenean be expressed in purely symboli terms, applying them is the kind of symbol-manipulation that an be arried out by a omputer. This is what happens whena omputer exeutes a logi program: it uses the rules of inferene to derive newformulas from the ones given in the program, until it �nds one that expressesthe solution to the problem that has been posed. If the formulas in the programare true, then so are the formulas that the mahine derives from them, and theanswers it gives will be orret. To ensure that the program gives orret an-swers, the programmer heks that the program ontains only true statements,and that it ontains enough of them to allow solutions to be derived for all theproblems that are of interest. The programmer may also be onerned to ensurethat the derivations the mahine must arry out are fairly short, so that the ma-hine an �nd answers quikly, and this may a�et the form in whih de�nitionsare made and properties stated in the program. Nevertheless, eah formula anbe understood in isolation as a true statement about the problem to be solved.This kind of delarative programming allows the programmer to disregard thepreise sequene of ations that takes plae when a program is exeuted, to a muhgreater extent than is made possible even with high-level imperative programminglanguages. In heking that the program gives orret answers, for example, theprogrammer need only hek that eah logi formula in the program makes atrue statement about the problem, and need not worry about its relationshipwith other parts of the program. This stands in stark ontrast with imperativeprogramming, where the orretness of a ommand like `x := x + 1' dependsruially on its plae in the whole program, inluding interations with otherommands that use x, some of them millions of lines away.1.1 Introduing logi programmingThe ontrast between imperative and delarative programming an be illustratedby looking at two solutions to a small programming problem, one using the on-ventional approah of Pasal, and the other using the approah of logi pro-gramming. The problem is to provide a program that will help an arhitet indesigning motel suites. The lient has already deided that eah suite will havetwo rooms, a lounge and a bedroom, and its oor plan will be something like



1.1 Introduing logi programming 3Front Door WindowLiving Room BedroomBedroom DoorWindowFigure 1.1: Floor plan of motel suiteFigure 1.1. The program must determine the diretions in whih the doors andwindows may fae, following these guidelines:1. The lounge window should be opposite the front door to reate a feeling ofspae.2. The bedroom door should be in one of the walls at right angles to the frontdoor to provide a little privay.3. The bedroom window should be in one of the walls adjaent to the bedroomdoor.4. The bedroom window should fae East to ath the morning light.In Pasal, diretions might be represented by elements of an enumerated type,like this:type diretion = (north; south; east;west);Guidelines (1) and (2) onstrain the design of the lounge. They an be expressedin Pasal by writing a Boolean-valued funtion lounge that takes as argumentsproposed diretions for the two doors and the lounge window, and heks whetherthe guidelines are satis�ed (see Figure 1.2). Names like fd and bw stand for`front door' and `bedroom window', and the two Boolean funtions opposite andadjaent have the obvious meanings.Guidelines (3) and (4) onern the design of the bedroom, and they are ex-pressed by the funtion bedroom that heks the diretions for the bedroom doorand window. The funtions lounge and bedroom are ombined in the suite fun-tion that heks a set of hoies for the whole motel suite.De�ning these funtions seems to apture the essene of the problem, but thePasal program is not omplete until we have shown how they are to be used ina searh for valid designs. For a simple problem like this one, and exhaustive



4 Introdutionfuntion lounge(fd ; lw ; bd : diretion): boolean;beginlounge := opposite(fd ; lw) ^ adjaent(fd ; bd)end;funtion bedroom(bd ; bw : diretion): boolean;beginbedroom := adjaent(bd ; bw) ^ (bw = east)end;funtion suite(fd ; lw ; bd ; bw : diretion): boolean;beginsuite := lounge(fd ; lw ; bd) ^ bedroom(bd ; bw)end; Figure 1.2: Pasal funtions for heking motel suite designsfor fd := north to west dofor lw := north to west dofor bd := north to west dofor bw := north to west doif suite(fd ; lw ; bd ; bw) thenprint(fd ; lw ; bd ; bw)Figure 1.3: Exhaustive searhsearh like the one shown in Figure 1.3 will do the job: it tries every ombinationof four diretions, printing out the ombinations for whih the suite funtionreturns true. Exept for a few details (suh as the proedure print for printingout the answers) this ompletes the imperative solution.How an the problem be solved using logi programming? Like the Pasalsolution, the heart of the program is a de�nition of the properties that desribevalid designs. Instead of the Boolean funtions of the Pasal program, it uses anotation more suited to symboli alulation. In this notation, the de�nition oflounge looks like this:lounge(fd;bd; lw ) :�opposite(fd; lw ); adjaent(fd;bd):In this de�nition, the symbol `:�' is to be read as `if'; think of it as looking a littlelike the leftward-pointing arrow `(' that is sometimes used in ordinary logi. Theomma that separates the formulas opposite(fd; lw ) and adjaent(fd;bd) is tobe read as `and'. Names like lounge stand for relations that hold between objets,



1.1 Introduing logi programming 5and names like fd are variables that stand for any objet. So the whole de�nitionmeans `Diretions fd, bd and lw together form a valid design for the lounge iffd is opposite to lw , and fd is adjaent to bd'. As in the Pasal program, weassume that the relations opposite and adjaent have already been de�ned.In the same notation, here is a de�nition of the relation bedroom that desribesvalid designs for the bedroom:bedroom(bd;bw ) :� adjaent(bd;bw );bw = east :Here the name `east ' stands for a onstant diretion. This de�nition reads `Di-retions bd and bw form a valid design for the bedroom if bd is adjaent to bw ,and bw is the diretion east '.The lounge and bedroom relations are ombined in the following de�nition,desribing what onstitutes a valid design for the whole suite:suite(fd; lw ;bd;bw ) :�lounge(fd; lw ;bd); bedroom(bd;bw ):The �nal ingredient in the logi program is a statement of exatly what problemis to be solved: i.e., that the program must �nd groups of four diretions thatsatisfy the suite relation. This is expressed by writing a goal or question likethis: # :� suite(fd; lw ;bd;bw ):The symbol # is just a onventional sign, used so that goals have the samesuper�ial form as other formulas in the program, with one atomi formula onthe left of the `:�' sign and a list of atomi formulas on the right. It might bepronouned `suess', so that the goal means `Suess is ahieved if diretion fd,lw , bd and bw together form a valid design for the motel suite'.Unlike the Pasal program, the logi program ontains no expliit instrutionsfor �nding a solution to the problem, and there is nothing that orresponds tothe nested for{loops that searh through all possible ombinations of diretions.In fat, it may seem faniful to all what we have written a program at all, sineit does not seem to desribe a omputational proess; but this absene of expliitinstrutions is one of the attrations of a delarative style of programming. Itturns out that there are powerful, general strategies for �nding solutions to prob-lems that have been expressed as logi programs. Eah implementation of logiprogramming inludes suh a strategy as a entral omponent { for example,many implementations of the logi programming language Prolog use a strategyknown as `SLD{resolution with depth-�rst searh'. Whilst this strategy is notthe most powerful one, it is relatively easy to implement eÆiently.Having written a logi program, what an we do with it? One possibility is touse the statements in the program to prove that ertain relationships must hold.



6 IntrodutionFor example, suppose the fatsopposite(east ;west) and adjaent(east ; south)are known. Putting fd = east , bd = south and lw = west into the de�nition oflounge gives the formulalounge(east ; south;west) :�opposite(east ;west); adjaent(east ; south):This formula is obtained by substituting east for every ourrene of fd in thede�nition of lounge, south for every ourrene of bd, and so on.The symbol `:�' means `if' and the omma means `and'. Also, the two ondi-tions on the right of the `:�' sign in the new formula are both known to be true.So the onlusion on the left must be true as well:lounge(east ; south;west):This formula says that there is a valid design for the lounge in whih the front doorfaes East, the bedroom door faes South, and the lounge window faes West.We have reahed this onlusion by very simple steps: substituting onstants forvariables, and heking that two formulas are idential. These are operationsthat (as we shall see in more detail later) an easily be arried out by mahine.Carrying on, we might substitute bd = south and bw = east into the de�ni-tion of the bedroom relation to obtain the formulabedroom(south; east) :� adjaent(south; east); east = east :Again this formula has known fats on the right-hand side of the `:�' sign, sowhatever is on the left-hand side must be true also: we may dedue the onlusionbedroom(south; east):As a �nal step, we might take an instane of the de�nition of suite, againobtained by substituting onstants for variables:suite(east ;west ; south; east) :�lounge(east ;west ; south); bedroom(south; east):Again, the same onstant has been substituted for every ourrene of eah vari-able. By good fortune, the two onditions that appear on the right-hand side areexatly the same as the two fats we derived earlier. So we may onlude thatthe formulasuite(east ;west ; south; east)



1.1 Introduing logi programming 7is true: in other words, that a valid design for the motel suite an have the frontdoor faing East, the lounge window faing West, the bedroom door faing South,and the bedroom window faing East. In fat, this design is the one shown inFigure 1.1, if we take North to be towards the left of the piture.In this sequene of logial steps, we worked `forwards' from known fats todesired onlusions, and we were able to prove that a ertain set of hoies on-stituted a valid design for the motel suite. Suh reasoning is of less use in �ndinga valid design, rather than just heking that a proposed design is valid. For thatpurpose, a di�erent pattern of reasoning is more appropriate, one that works`bakwards' from problems we would like to solve towards the known fats thatare the ingredients of a solution. This method is used by Prolog as its way ofsolving problems that all for the values of variables to be found.Let us see how we might go about solving the motel design problem by hand,using this `bakwards' method in essentially the same way as is used automatiallyby Prolog. We wish to derive a onlusion of the formsuite(fd; lw ;bd;bw ):How might we do this? Plainly, we must use the de�nition of the suite relation,and this de�nition says that we must �nd a way of satisfying both the followingonditions:lounge(fd; lw ;bd) and bedroom(bd;bw ),with the variable bd taking the same value in both.Leaving the seond of these sub-problems aside for a moment, we onentrateon the �rst one. To derive a onlusion like this, we plainly need to use thede�nition of lounge, whih it says that to derive a onlusion lounge(fd; lw ;bd),we must satisfy both of these onditions:opposite(fd; lw ) and adjaent(fd;bd),with fd taking the same value in both.We have now deomposed the problem into relations like opposite and adjaentthat we know how to deal with. But the ondition opposite(fd; lw ) an besatis�ed in many ways. For example, we might try putting fd = north andlw = south (as in Figure 1.1, but this time with North at the top of the piture).We also need to satisfy the seond ondition, that is, adjaent(fd;bd), where weare supposing for the moment that fd = north. There are two ways to do this,so we �rst try putting bd = east , following Figure 1.1 again.This ompletes a tentative solution to the lounge part of the problem, andwe an turn to the bedroom sub-problem we put aside earlier. By now, we havehosen to put bd = east , so the problem we have to solve is bedroom(east ;bw ),



8 Introdutionor (expanding the de�nition of bedroom),adjaent(east ;bw ) and bw = eastWe an solve the �rst of these in two ways, by putting bw = north or bw =south, but neither of these leads to a solution of the seond part, sine it is nottrue that north = east or south = east . A dead end!What has gone wrong is that we made arbitrary hoies in solving the loungepart of the problem, and these hoies have turned out not to allow us to ompletethe solution of the bedroom part. What we should do now is to go bak andhange those hoies, hoping that hoosing di�erently will lead to more suessin ompleting the solution. This proess of systematially exploring hoies is anautomati part of the exeution of logi programs, and need not be an expliitpart of the logi program itself, unlike the nested for{loops of the Pasal program.A sensible way to proeed is to revise the latest hoie we made, leaving earlierhoies alone until we have explored all other possibilities for later ones. This`baktraking' sheme is the one followed by Prolog. We �rst try revising ourhoie of east as the value of bd, but unfortunately this does not help: wehose bd = east to solve the problem adjaent(north;bd), and the only otherpossibility is to put bd = west , but this does not lead to a solution of the bedroompart of the problem either. Eventually, we hit on the idea of setting fd = eastand lw = west as our solution to the sub-problem opposite(fd; lw ), then takingbd = south so that adjaent(fd;bd) is true, and taking bw = east to establishadjaent(bd;bw ), �nally heking that the requirement bw = east is satis�ed(it is!). These hoies solve all the sub-problems, so we have found a design thatsatis�es all the guidelines; in fat, the design is the same one we heked earlier.We have disovered a solution to the motel design problem by trying di�erentpossibilities in sequene, and that is what Prolog does when it is implemented onordinary, sequential omputers. However, there is nothing in the program thatwould prevent us from exploring several sets of hoies onurrently, perhaps bygiving them to several assistants, or by using several proessors in parallel to dothe same thing by mahine. This potential for suh a transparent exploitation ofparallelism is another attrative feature of delarative programming.The problem of designing a motel suite has several solutions: another one hasfd = east , lw = west , bd = south, bw = east . It is quite natural for logiprograms to return several answers to the same question (and also natural forthem to return no answers at all, if the problem posed is in fat insoluble). We allthis feature of a program non-determinism. If a program is non-deterministi,Prolog's systemati searh prints all the answers to a goal in the order they aredisovered. There is a sense in whih our Pasal program also produes all theanswers, but only beause the program prints the answers in an expliit sequene.With the logi program, the treatment of multiple answers is natural and impliit.Some real-time programs also exhibit a kind of non-determinism that is ausedby haphazard timing of events. This is di�erent from the non-determinism of logi



1.1 Introduing logi programming 9programming and muh less useful. With these real-time programs, it is hane(or the inner workings of the mahine) that deides whih answer is produed,and the user must be prepared to aept any of the possible answers. With alogi program, it is the environment of a program that deides whih answer isaepted, so that the user an ask for a list of all the answers from a program andpik the one that is wanted, or an use the program as part of a larger programthat applies further onstraints to the solutions. For example, here is a goal thatasks for a suite design satisfying the additional onstraint that the front doorshould fae West:# :� suite(fd; lw ;bd;bw ); fd = west :The Prolog strategy (whih always solves multiple subgoals by working fromleft to right) would answer this question by generating all the solutions to theoriginal design problem, then rejeting the ones that did not satisfy the additionalrequirement fd = west .The logi programs we shall study in this book are usually made up of logialformulas that look like this:P :� Q1; Q2; : : : ; Qn;with P and the Qi being literals or atomi formulas like bedroom(bd;bw ). Weall these formulas Horn lauses, and we read them as asserting that if all the Qiare true, then P is true also. Horn lauses are more restritive than the formulasof full prediate logi. For instane, prediate logi allows the onnetives `and'(whih we write with a omma) and `implies' (whih is equivalent to our `:�') tobe ombined in any way we hoose, not just in the �xed pattern demanded bythe syntax of Horn lauses. It also provides other onnetives suh as `or' and`not' that are not allowed in Horn lauses at all. Full prediate logi provides thequanti�ers `for all' and `there exists' that are only partially reeted in the waywe use variables in Horn lauses.Despite these restritions, Horn lauses are of speial interest beause manyomputing problems an be expressed in Horn lause form, and it is possibleto build eÆient mehanized theorem provers for theories that are expressed asHorn lauses { and that is just what a Prolog implementation is, or should be.A speial ase of Horn lauses ours if we allow n = 0 in the formula above,so that there are no Qi on the right-hand side, like this:P :� :We read this formula as stating simply that P is true. This makes sense, beausethere are no formulas Qi that must be true for the lause to assert the P is truealso. Clauses like this, with no onditions on the right-hand side, are alled unitlauses or simply fats.



10 IntrodutionA list of fats an be used to de�ne a relation by listing all instanes of it. Forexample, the opposite and adjaent relations might be de�ned in this way:opposite(north; south) :� :opposite(south; north) :� :opposite(east ;west) :� :opposite(west ; east) :� :adjaent(north; east) :� :adjaent(north;west) :� :adjaent(south; east) :� :adjaent(south;west) :� :adjaent(east ; north) :� :adjaent(east ; south) :� :adjaent(west ; north) :� :adjaent(west ; south) :� :As we shall see, this means that logi programs an be used like relational data-bases.Summary� A logi program onsists of a series of assertions written in the language offormal logi.� Results are derived from logi programs by symboli reasoning.� Logi programming systems solve goals by systematially searhing for away to derive the answer from the program.Exerises1.1 A deluxe motel suite has two bedrooms, but must otherwise obey the designrules listed in this hapter. Show how to modify the design program for use indesigning luxury suites. How many solutions to the problem are there? Howmany an reasonably be built?Pratial exeriseThis exerise illustrates the use of pioProlog to solve the motel design problemdisussed in Setion 1.1. The Prefae explains how to get a opy of pioProlog.Alternatively, Appendix B explains how to do the pratial exerises in the bookusing an ordinary Prolog system in plae of pioProlog.



1.1 Introduing logi programming 11/* motel.pp */suite(FD, LW, BD, BW) :-lounge(FD, LW, BD),bedroom(BD, BW).lounge(FD, LW, BD) :-opposite(FD, LW),adjaent(FD, BD).bedroom(BD, BW) :-adjaent(BD, BW),BW = east.opposite(north, south) :- .opposite(south, north) :- .opposite(east, west) :- .opposite(west, east) :- .adjaent(north, east) :- .adjaent(north, west) :- .adjaent(south, east) :- .adjaent(south, west) :- .adjaent(east, north) :- .adjaent(east, south) :- .adjaent(west, north) :- .adjaent(west, south) :- .Figure 1.4: The �le motel.ppInluded with the pioProlog system is the �le motel.pp shown in Figure 1.4.This ontains the lauses of the motel design program, written using the onven-tions that pioProlog expets. Names of variables like fd are written in upperase, and both names of relations (like suite) and names of onstants (like east)are written in lower ase. Eah lause in the program ends with a full stop.Comments are enlosed in the markers /* and */.To start the pioProlog system and load this �le of lauses, you should use theommand$ pprolog motel.ppat the operating system prompt. (In this and the following instrutions, youshould type what appears in itali type.) PioProlog prints a welome message,



12 Introdutionthen reads the lauses from the �le motel.pp and stores them internally, beforeprinting its usual prompt:Welome to pioPrologLoading motel.pp# :-PioProlog is now waiting for you to type a goal to be solved. Let us ask it tosolve the motel design problem:# :- suite(FD, LW, BD, BW).Do not forget to inlude the �nal full stop, or pioProlog will just sit there andwait for it. All being well, pioProlog will �nd a solution to the problem, anddisplay it like this:FD = eastLW = westBD = northBW = east ?PioProlog now waits for your response. You an hoose either to aept thissolution by typing a full stop (followed by a arriage return), or ask pioProlog to�nd another solution, by typing just a arriage return. In the latter ase, anothersolution is displayed just like the �rst:FD = eastLW = westBD = southBW = east ?By ontinuing to reply with just a arriage return, you an get pioProlog toprodue all the solutions one after another. After it has shown the last solution,it �nally answers `no', meaning that no (more) solutions ould be found, andreturns to the `# :-' prompt. At any point in the stream of answers, you antype a full stop. PioProlog then answers `yes', meaning that an answer wasfound and aepted, and immediately returns to its prompt.You an end the session with pioProlog by typing the end-of-�le harater(usually Control{Z or Control{D) at the prompt.



Chapter 2Programming with relations

Logi programming works by de�ning relations between data items. In this hap-ter, we look at some of the tehniques that an be used to de�ne new relationsin terms of existing ones. Drawing on database tehniques, we examine variousways of ombining relations to derive the answers to questions.The simplest way to de�ne a relation is to give an expliit list of fats; thatis, to de�ne the relation by a table. Figure 2.1 is a list of fats de�ning arelation uses(person ; program ;mahine) that holds between ertain peopleand the software produts and mahines they use. This example looks more likea database than a program, and we an use it like a database by formulatingqueries about it as logial goals. For example, the goal# :� uses(mike;x ; sun):asks `What software produts does Mike use on the Sun?'. The goal an beanswered by searhing the table for fats that math it; the �rst argument ofuses takes the value mike, and the third takes the value sun, but the seondargument may be anything. There are two solutions: one with x = ompiler andone with x = editor .Relational database systems have the ability to answer questions by ombininginformation from more than one relation, and we an mimi this in logi program-ming too. For example, Figure 2.2 de�nes a relation needs(program ;memory )that relates programs to the amount of memory (in kilobytes) needed to runthem. With this information, we an answer a question like `What are the mem-ory requirements of the programs people run on the Ma?' by de�ning a newrelation:answer(program ;memory ) :�uses(person ; program ;ma);needs(program ;memory ): 13



14 Programming with relationsuses(mike; ompiler ; sun) :� :uses(mike; ompiler ; p) :� :uses(mike; ompiler ;ma) :� :uses(mike; editor ; sun) :� :uses(mike; editor ; p) :� :uses(mike; diary ; p) :� :uses(anna; editor ;ma) :� :uses(anna; spreadsheet ;ma) :� :uses(jane; database; p) :� :uses(jane; ompiler ; p) :� :uses(jane; editor ; p) :� :Figure 2.1: The uses relationneeds(ompiler ; 128) :� :needs(editor ; 512) :� :needs(diary ; 64) :� :needs(spreadsheet ; 640) :� :needs(database; 8192) :� :Figure 2.2: The needs relationWith this de�nition, the goal # :� answer(x ;y ) has answers in whih x is aprogram used on the Ma and y is the amount of memory it needs. In databaseterms, the answer relation is alled a view . It is a relation that is not storedexpliitly in the database, but omputed in order to answer a query.Relational databases provide a number of operations on relations that anbe used to solve many data-proessing problems. These operations an all berepresented in logi programming, and they provide a useful lassi�ation of theways relations an be ombined. It is the emphasis on relation-level (ratherthan reord-level) operations that give relational databases their name and theirlaimed advantages over other kinds of database.The operation of seletion means restriting a relation with an extra ondition,as in the query `What are the memory requirements of programs that need morethan 256K?', whih is answered by the viewanswer(program ;memory ) :�needs(program ;memory );memory > 256:We assume here that the ordering relation > on numbers is de�ned elsewhere.Seletion with an extra ondition that is an equation x = , where  is aonstant, an also be ahieved by substituting  for x in the rest of the query.



2 Programming with relations 15For example, we an understand the question `How muh memory does the editorneed?' as asking `What are the memory requirements of the program that is theeditor?', and answer it with the viewanswer(program ;memory ) :�needs(program ;memory ); program = editorThis is a diret example of seletion, with the extra ondition program = editor .We an ahieve the same e�et by substituting editor for program and deletingthe equation:answer(editor ;memory ) :�needs(editor ;memory ):This de�nition makes it more obvious that all the reords that are in the answerrelation have editor as their program omponent.Another database operation, projetion, involves removing some of the argu-ments of a relation (that is, some of the olumns in the table of the relation). Itan be ahieved by de�ning a view that has fewer arguments than the relation ituses. For example, the question `What programs does eah person use?' an beanswered by the viewanswer(person ; program) :�uses(person ; program ;mahine):Here the third argument, mahine , of the uses relation has been omitted fromthe answer relation.The uses relation ontains the lauseuses(mike; ompiler ; sun) :� :and this de�nition of answer lets us derive from it the onlusionanswer(mike; ompiler) :� :that reords the fat that Mike uses the ompiler, without speifying the mahine.The same onlusion an be derived from any lause in the uses relation thatmentions Mike and the ompiler, whatever mahine is involved.It is often natural to ombine projetion and seletion. For example, thequestion `What programs need more than 256K of memory?' is answered by theview answer(program) :�needs(program ;memory );memory > 256:



16 Programming with relationsThis query selets those reords from the needs relation with a memory �eldlarger than 256, then projets the result on just the program �eld. The atualmemory requirement has been omitted from the arguments of the answer relation,so the answer ontains just the program names.A better view for answering the question `How muh memory does the editorneed?' is this one:answer(memory ) :�needs(editor ;memory ):where the onstant editor has been omitted from the arguments of the answerrelation. Again, this view ombines seletion and projetion, by �rst seletingreords that satisfy the ondition program = editor , then projeting on thememory �eld.The operation of relational join ombines two relations by mathing the valuesof one or more �elds. An example is provided by the all-embraing question `Whatpeople use what programs on what mahines, and how muh memory do theyneed?'. This question is answered by the viewanswer(person ; program ;mahine ;memory ) :�uses(person ; program ;mahine);needs(program ;memory ):This is the relational join of the uses and needs relations on the program �eld,so alled beause program is the only �eld that ours in both relations. Theanswer is a list of values for all four variables. It ontains the same information asthe two separate relations uses and needs, but is rather repetitious beause eahprogram is assoiated with the same memory requirement eah time it appears.Again, relational join an be ombined in a natural way with projetion andseletion. For example, the following view answers the question `What are thememory requirements of programs Anna uses on the Ma?':answer(program ;memory ) :�uses(anna; program ;ma);needs(program ;memory ):This view ombines relational join with seletion of the reords that satisfy theonditions person = anna and mahine = ma, followed by projetion on theprogram and memory �elds.It is possible to join a relation with itself on some of its �elds. This operationis useful in answering questions like `Whih programs are used by two di�erentpeople on the same mahine?'. To answer this question, we �rst make a join of theuses relation with itself on the program and mahine �elds, making a relation



2 Programming with relations 17answer1 (person1; person2; program ;mahine) that is true if person1 andperson2 both use program on mahine :answer1 (person1; person2; program ;mahine) :�uses(person1; program ;mahine);uses(person2; program ;mahine):This relation inludes the ase that person1 and person2 are in fat the sameperson, so we selet the reords in whih they are di�erent, and �nally projeton the program �eld:answer(program) :�answer1 (person1; person2; program ;mahine);person1 6= person2:The de�nition of the sub-view answer1 ould be merged with this to give a singlelause de�ning answer .The relational operations of intersetion, union and di�erene orrespond toonjuntion, disjuntion and negation in logi. Intersetion an be used to answerquestions like `What programs do both Anna and Jane use?' by ombining twosub-views with the `,' operator (whih is read as `and'), like this:answer(program) :�answer1 (program);answer2 (program):answer1 (program) :� uses(anna; program ;mahine):answer2 (program) :� uses(jane; program ;mahine):Here, the answer view is the intersetion of the two views answer1 and answer2 ,whih are themselves obtained by seletion and projetion. Intersetion is thesame as the speial ase of relational join in whih a pair of relations have idential�elds, and the join is on all of them.The answer view for our last query an atually be de�ned by a single lause,like this:answer(program) :�uses(anna; program ;mahine1);uses(jane; program ;mahine2):The variable mahine has been renamed here as mahine1 in one literal andmahine2 in the other, so that the answers will inlude programs that are used



18 Programming with relationsby both Anna and Jane but on di�erent mahines. Without this renaming, theresults would be di�erent. The view omputed by the de�nitionanswer(program) :�uses(anna; program ;mahine);uses(jane; program ;mahine):answers instead the question `What programs do both Anna and Jane use on thesame mahine?'. This view is obtained by joining the uses relation with itself onthe program and mahine �elds, then seleting and projeting.The operation of relational union orresponds to `or' in logi. Our Horn lausenotation has no symbol for `or', but we an ahieve the same e�et by using morethan one lause in the de�nition of a relation. For example, the question `Whatprograms are used by either Anna or Jane?' is answered by the viewanswer(program) :� answer1 (program):answer(program) :� answer2 (program):where answer1 and answer2 are as before. If a program p is used by Anna { sothat it satis�es answer1 (p) { then we an derive the onlusion answer(p) usingthe �rst lause in the de�nition of answer . Similarly, if p satis�es answer2 (p),then the seond lause allows us to derive the onlusion answer(p).The �nal operation of relational algebra is di�erene of relations, and this anbe ahieved by a ombination of onjuntion and negation. For example, thequestion `What programs are used by Anna but not by Jane?' an be expressedin the viewanswer(program) :�answer1 (program);notanswer2 (program):The not operator is missing from our Horn lause notation, but a restritedversion, powerful enough for database appliations, an be implemented usingthe tehnique of negation as failure that is explained in Chapter 8. Briey,to prove notP , negation as failure requires that we attempt to prove P in-stead. If we annot prove P , then we onlude that notP is true; onversely,if we do sueed in proving P , then notP is false. This is a valid form ofreasoning, provided that P ontains no unknown variables, and we an ensurethat this is so in the example by arranging that the literal answer1 (p) is solved�rst.There are several important di�erenes between the view of relational data-bases presented here and the database systems that are used in pratie. We havebeen identifying the �elds of relations by their position in the list of arguments,and that beomes tedious to get right when the database ontains more thantwo or three relations with two or three �elds eah. Real databases have better



2 Programming with relations 19naming shemes for �elds, and assoiate types with the �elds to prevent mistakesand allow more eonomial storage. Real databases an maintain indexes fortheir relations that allow joins and seletions to be omputed in a reasonabletime, even when there are thousands or millions of reords in the relations. Theyare arefully designed to make fast and eonomial use of disk storage.On the other hand, logi programming is more general than relational data-bases in many ways. Logi programs an de�ne relations partly by plain fats andpartly by lauses that have variables and bodies that express onstraints on thevalues of the variables. The data in logi programs is not restrited to be atomi,as with databases, and (as we shall see in the next hapter) relations over reur-sive data strutures an themselves be given reursive de�nitions. These thingshave no analogues in relational databases.Summary� Relational databases work by ombining relations (tables of data) usingoperations that work on whole relations, rather than individual reords.� Queries about a database are answered by de�ning views, new relationsthat are derived using the relational operators.� The tables of relational databases an be expressed in logi programmingby relations that are de�ned as lists of fats.� Eah of these relational operators an be expressed in logi programmingby ombining existing relations in the de�nition of a new one.Exerises2.1 The sta� of an oÆe run a o�ee lub, and they have set up a databaseontaining the following relations:� manager(name), whih is true if name is a manager.� bill(name ;number;amount), whih is true if name has been sent a billnumbered number for amount .� paid(number;amount ;date), whih is true if a payment of amount wasmade on date for the bill numbered number.De�ne views that answer the following questions:a. Whih managers have been sent a bill for less than ten pounds?b. Who has been sent more than one bill?. Who has made a payment that is less than the amount of their bill?d. Who has reeived a bill and either not paid it at all, or not paid it beforeFebruary 1st?



20 Programming with relationsIn eah ase, explain how the query an be expressed in terms of the six operationsof relational algebra. Use as a ondition for seletion the relation before(a;b)that holds if date a is before date b, and use the onstant feb1 to name February1st.Pratial exeriseYou might like to try running database queries like the ones disussed in thishapter, or running your solutions to the exerises. To help with this, pioPrologomes with a �le database.pp that ontains (in pioProlog form) the tables ofpeople and programs from Figures 2.1 and 2.2. It also ontains the de�nition ofa relation greater(x ;y ) that holds if x is a larger integer than y .



Chapter 3Reursive strutures

In Chapter 1, we looked at a very simple programming problem that ould besolved by trying a �nite set of hoies drawn from only four possible diretions.Realisti programming problems are usually more omplex than this. They in-volve data that has more internal struture than the simple diretions used inthe motel suite example, and they lead to programs that are able to produeanswers that are more omplex than a simple list of fats. How an we representthis omplex data in the notation of logi? And how an we build programs thatare apable of more than a �xed, �nite olletion of hoies?The answers to both these questions are the same: we use reursion to builddata that has a nested struture and programs that relate answers to omplexproblems with answers to their strutural parts. We shall look at the data �rst,using as an example one of the most useful reursive data strutures, sequenesor lists.3.1 ListsSuppose we want to build a program that gives street diretions between plaesin a ity that has a retangular array of streets, as many Amerian ities do. Thediretions an be represented by �nite sequenes of moves, so that the sequeneNorth, East, South, Southwould mean `Go one blok North, then one blok East and �nally two bloksSouth'. Any sequene of moves an be represented by a list , onstruted aord-ing to the following rules:1. There is an empty list, whih we write nil .2. If x is an item and a is a list, then there is a list that onsists of the item21



22 Reursive struturesx followed by all the items in the list a. We write this list as x :a.3. Nothing is a list exept aording to rules (1) and (2).For example, the sequene of four moves is represented by the listnorth:(east :(south:(south:nil))):We an hek that this expression really is a list by reasoning like this:nil is a list beause of rule (1).So south:nil is a list beause of rule (2).So south:(south:nil) is a list beause of rule (2).and so on. To stop the notation from beoming umbersome, we adopt theonvention that the `:' symbol assoiates to the right, so that x :y :a means thesame as x :(y :a), and our list of moves an be written without parentheses asnorth:east :south:south:nil :Notie that any list is built up by starting with nil and repeatedly using the `:'operation to add further elements, so any properly-onstruted list must end innil . It is tempting at �rst to save writing and omit the `:nil ' from the end ofexpressions for lists, but the expression north:east :south:south does not mean thesame thing as north:east :south:south:nil { it is not a proper list beause it endsin south instead of nil . Inluding an expliit nil at the end of every list meansthat we do not have to treat as a speial ase the singleton lists that ontain justone element. Instead, they are exatly the lists like east :nil that are made byusing the `:' operation just one.If we know how to get from x to y in our ity, and we know how to get fromy to z , then we know one way of getting from x to z : just go via y . This isprobably not the best way of getting from x to z , but it is better than nothing.The list of one-blok moves that we would follow in going from x to z onsistsof all the moves for getting from x to y , followed by all the moves for gettingfrom y to z .Let us try to de�ne a relation append(a;b;) that is true of three lists a, band  exatly if  is the list that ontains all the elements of a followed by allthe elements of b. As a �rst approximation, we might think of de�ning it by along list of fats like this:append(nil ; nil ; nil) :� :append(nil ;x :nil ;x :nil) :� :append(nil ;x :y :nil ;x :y :nil) :� :...



3.1 Lists 23append(p:nil ; nil ; p:nil) :� :append(p:nil ;x :nil ; p:x :nil) :� :append(p:nil ;x :y :nil ; p:x :y :nil) :� :...append(p:q:nil ; nil ; p:q:nil) :� :append(p:q:nil ;x :nil ; p:q:x :nil) :� :...This olletion of fats ould be arranged in a two-dimensional array, in whiheah row orresponds to one possible length for the �rst argument a, and eaholumn orresponds to one length for the seond argument b. Eah element ofthe array is a fat that an be used to solve append problems for exatly oneombination of lengths for the arguments: for example, the fatappend(p:nil ;x :y :nil ; p:x :y :nil) :� :an be used to solve any problem in whih a list 1 and a list of length 2 are to bejoined. Plainly, any true instane of append appears somewhere in the array, butit would be muh more useful to summarize the ontents of this in�nite array ina �nite desription that ould be written out in full and used as a program forappending lists. What we are looking for is a �nite olletion of lauses fromwhih all the fats in the array ould be derived.Atually, even the in�nite array takes a big step in utting down the size of theproblem, beause it uses variables like p, q, x , y in plae of onstants. Instaneslike append(north:east :nil ; south:south:nil ; north:east :south:south:nil)an be obtained by substituting onstants for the variables that appear in a fatfrom the array.A seond simplifying step is to notie that whatever appears as the seondargument of append also appears as a sub-expression of the third argument, likethis: append(p:q:nil ;x :y :nil ; p:q:(x :y :nil)) :� :In this formula, I have put in a pair of parentheses that ould have been omittedaording to our onvention about `:'. We an redue the two-dimensional arrayof fats into a one-dimensional (but still in�nite) array by summarizing eah rowof the two-dimensional array as a single fat. Eah of these fats uses a variablefor the seond argument of append , and that variable an stand for any list:append(nil ;b;b) :� :



24 Reursive struturesappend(z :nil ;b; z :b) :� :append(y :z :nil ;b;y :z :b) :� :append(x :y :z :nil ;b;x :y :z :b) :� :...Again, every true example of the append relation is an instane of a fat from thislist. Just hoose the fat aording to the number of items in the �rst argumentof append , then �ll in the seond argument with a list of the right length.There is still some pattern in this new list of fats, and it an be used tosummarize it further. If line i of the list isappend(a;b;) :� :then line i+1 di�ers from it by adding a new element in front of both A and C,like this:append(x :a;b;x :) :� :We an make this into a Horn lause:append(x :a;b;x :) :� append(a;b;):If we take this lause together with the very �rst fat in the list (the one aboutnil), then we obtain a �nite de�nition of append :append(nil ;b;b) :� : (app:1)append(x :a;b;x :) :� append(a;b;): (app:2)This is the de�nition that is often used in logi programming.There is an appealing similarity between this pair of lauses that de�ne appendand the three rules for building lists that began this hapter. The �rst rule forbuilding lists says the nil is a list, and the lause (app.1) tells us what happenswhen the list nil is appended with another list. The seond rule for buildinglists says that we an build a list x :a if we already have a list a, and the lause(app.2) tells us what happens when a list of this form is appended with anotherlist, provided we already know what happens with the list a itself. The third rulefor building lists does not orrespond to anything in the program for append , butto a priniple that will apply whenever we use the program to solve problems:No lists a, b and  satisfy the relation append(a;b;) unless they an beproved to do so using lauses (app.1) and (app.2).This priniple is an example of the losed world assumption. It is importantbeause it guarantees that the only solutions to append problems are the ones



3.2 Deriving fats about append 25that are generated by the program, so that if a question about append has anyanswers, they will be found by using the program.3.2 Deriving fats about appendIn Chapter 1, we found that the suite program ould be used in two ways. Thesimpler way was to derive from it the fat that a ertain, known design wasorret. In a similar way, the append program an be used by deriving from itthe fat that ertain lists satisfy the append relation. Later, we shall see how theappend program an be used to solve problems in whih the lists involved are notknown in advane.Let us �rst use the append program to derive a partiular fat, sayappend(1:2:nil ; 3:4:nil ; 1:2:3:4:nil):I am using lists of numbers instead of lists of diretions to save spae. To derivethis fat, we will take ertain instanes of the lauses (app.1) and (app.2) {obtained by substituting onstants for the variables that appear in those lauses{ then appeal to the meaning of the `:�' sign to derive what is on the left fromwhat is on the right. It may not be obvious what lauses we should use, andwhat onstants should be substituted for variables, but if we annot guess howto do the derivation, we an at least hek that the proesses of substitution andmathing are arried out properly as the derivation proeeds.We begin with an instane of (app.1), obtained by substituting 3:4:nil for thevariable b:append(nil ; 3:4:nil ; 3:4:nil): (1)Now we take an instane of (app.2), substituting 2 for x , nil for a and 3:4:nilfor both b and  :append(2:nil ; 3:4:nil ; 2:3:4:nil) :� append(nil ; 3:4:nil ; 3:4:nil): (2)This formula has the form P :� Q, and the formula (1) is exatly idential tothe right-hand side Q. So we an dedue that the left-hand side P is true:append(2:nil ; 3:4:nil ; 2:3:4:nil): (3)Next, we take another instane of (app.2), this time substituting di�erent on-stants for the variables:append(1:2:nil ; 3:4:nil ; 1:2:3:4:nil) :� append(2:nil ; 2:4:nil ; 2:3:4:nil): (4)



26 Reursive struturesThe right-hand side of this formula exatly mathes the fat (3), so again we anderive the left-hand side as a onlusion:append(1:2:nil ; 3:4:nil ; 1:2:3:4:nil): (5)And this is exatly the onlusion we were aiming for.At �rst, it might seem that the seond lause in the de�nition of append isuseless, beause it has append on the right-hand side as well as the left { so surelyit annot be a good de�nition. The derivation we have just looked at shows thatthis is not so, beause (app.2) lets us derive more ompliated append fats fromsimpler ones, so it lets us build up fats about omplex lists in the same way thatthe lists themselves are built up with the `:' operation.The approah of working from known fats towards a desired onlusion is �nefor use by hand in proving append fats that are already known. But now thatthere is an in�nite spae of possibilities to explore, it is not reasonable to expeta mahine to have the insight required to see what instanes of whih lausesshould be used. This is all the more so when the problem is to answer a goal like# :� append(3:1:nil ; 2:4:nil ;w ):that ontains variables. This goal asks for a w that is the result of appendingthe lists 3:1:nil and 2:4:nil . Instead of blindly guessing a suitable list w and thenonstruting the proof that it is right, the mahine running the append program�nds the orret answer w and the proof that it is right simultaneously. Let usfollow the Prolog method for solving this problem, working bakwards as we didwith the program for designing motel suites.First, it is obvious that lause (app.1) annot be used diretly to solve thisgoal. Why not? Beause (app.1) an only establish append fats where the �rstargument is nil , and here the �rst argument, 3:1:nil , is not the same as nil . Ifthe problem an be solved at all, it must be solved by using lause (app.2). Letus ompare the goal in hand with the left-hand side or head of (app.2):# :� append(3 :1:nil ; 2:4:nil ; w ):append(x : a; b; x :) :� append(a;b;):If we are to use (app.2) to answer the goal, then these two formulas must mathexatly, and this an only happen if the parts onneted by lines math; thatis, if x = 3, a = 1:nil , b = 2:4:nil and w = 3: . These substitutions are theminimum that must be done to make the goal and the head of (app.2) idential.If we apply them to the right-hand side or body of (app.2), we obtain the newgoal # :� append(1:nil ; 2:4:nil ;):



3.2 Deriving fats about append 27If only we an �nd an answer to this new goal, we an obtain an answer to theoriginal goal by puttingw = 3: . To derive this answer, we take whatever deriva-tion leads to an answer to the new goal, and add one extra step, using (app.2) andapplying the substitution we have just disovered to make the formulas math.So now we try to solve the goal# :� append(1:nil ; 2:4:nil ;):Again (app.1) is no help, beause the �rst argument of append is not nil . So wetry (app.2) again, hanging the names of variables to prevent onfusion:# :� append( 1 :nil ; 2:4:nil ;  ):append(x 0:a0; b 0; x 0: 0) :� append(a0;b 0; 0):Again, the goal and the head of (app.2) an be made the same, this time bysetting x 0 = 1, a0 = nil , b 0 = 2:4:nil and  = 1: 0. Filling in these values in thebody of (app.2) gives the new goal# :� append(nil ; 2:4:nil ; 0):So our original goal an be answered (with  = 1: 0 and so w = 3:1: 0) providedwe an answer this simpler goal.But the new goal an be solved diretly using (app.1). We rename the variableb of (app.1) as b 00 to avoid onfusion, and ompare the goal with the head of(app.1):# :� append(nil ; 2:4:nil ;  0):append(nil ; b 00; b 00) :� :The two math, provided we take  0 = b 00 = 2:4:nil , and the new goal is theempty goal# :� :There is no more work to do, and we need only assemble the parts of the answerthat were disovered at eah step to reover an answer to the original goal:w = 3: = 3:1: 0 = 3:1:2:4:nil :This may seem like an enormous e�ort just to append two lists, but the onlyoperations we have used { mathing goals against the heads of lauses, and



28 Reursive struturesperforming substitutions to generate new goals { are both easy to mehanizeeÆiently, and it is this that makes logi programming pratial.Now let us onsider a slightly di�erent goal:# :� append(u ;v ; 1:2:3:nil):This asks for a pair of lists u and v that when appended give the list 1:2:3:nil .If we ompare this goal with the heads of lauses (app.1) and (app.2), we �ndthat both of them math. Using (app.1) looks like this:# :� append( u ; v ; 1:2:3:nil):append(nil ; b; b ) :� :The math an be made with u = nil and v = b = 1:2:3:nil , and the new goalis empty, indiating a diret answer to the original goal: u = nil , v = 1:2:3:nil .Alternatively, we may use (app.2) like this:# :� append( u ; v ; 1:2:3:nil):append(x :a; b; x :  ) :� append(a;b;):The mathing substitutions are x = 1, u = x :a = 1:a, v = b and  = 2:3:nil .The new goal is# :� append(a;b; 2:3:nil):One way to answer this new goal is to use (app.1), giving the immediate answera = nil , b = 2:3:nil , and so leading to a seond answer to the original goal:u = 1:nil , v = 2:3:nil . Another way to answer the new goal is to use (app.2)�rst; this generates a third goal, and so on. In all, the original goal has foursolutions:u = nil ; v = 1:2:3:nil ;u = 1:nil ; v = 2:3:nil ;u = 1:2:nil ; v = 3:nil ;u = 1:2:3:nil ; v = nil :Like the multiple solutions to the problem of designing a motel suite, these anall be found by exploring systematially the hoies that an be made. A Prologsystem will �nd all four solutions and present them one after another.The proess (alled uni�ation) of mathing the head of a lause with a goal tobe solved is the key to exeution of logi programs. Unlike the pattern-mathingused in some funtional programming languages, it involves information ow in



3.3 More relations on lists 29both diretions: from the goal to the lause that is being used to solve it, andfrom the lause bak to the goal. For example, in the last appliation of (app.2)shown above, the mathing tells us that the variable u in the goal should takethe value 1:a, and the variable  in the lause should take the value 2:3:nil .A speial feature of logi programs illustrated by this example is that they are`bi-diretional'; there is no need to selet in advane a �xed set of inputs and a�xed set of outputs for a program. We an supply values for any ombinationof the three arguments of append and have the mahine ompute values for theothers. We have looked at an example where we supplied the �rst two arguments,and left the mahine to ompute the (unique) value of the third argument thatmade the append relation true, and another example where we supplied the thirdargument, and the mahine would give a list of di�erent possibilities for the othertwo arguments.Beause of the generality of the uni�ation proess, we an plae onstraintson the values that are found by using the same variable more than one in thegoal. For example, the goal# :� append(x ;x ; 1:2:3:1:2:3:nil):asks for a list that, when appended with itself, gives the list 1:2:3:1:2:3:nil . AProlog system will sueed in solving this goal, �nding the solution x = 1:2:3:nil .In e�et, it does so by generating pairs of lists that append to give 1:2:3:1:2:3:nil ,and seleting from the seven suh pairs of lists the one pair in whih both listsare the same.It is even possible to supply none of the arguments of the append relation, asin the goal# :� append(x ;y ; z):This produes an in�nite list of answers like this:x = nil ; z = y ;x = a:nil ; z = a:y ;x = a:b:nil ; z = a:b:y ;... ...In other words, this is exatly the list of fats about append that we summarizedin the reursive de�nition.3.3 More relations on listsReursion provides us with a way to de�ne other useful relations on lists. Oneexample is the relation list(a) that is true exatly when a is a list onstruted



30 Reursive struturesaording to our three rules. This relation an be de�ned by expressing two ofthe three rules as Horn lauses:list(nil) :� : (list:1)list(x :a) :� list(a): (list:2)The �rst of these lauses says that nil satis�es the relation list , and the seondsays that if a satis�es list , so does x :a. From the two lauses, we an deduethat various objets are lists. For example, the fat that 1:2:nil is a list an bededued as follows: list(nil) is true beause of (list.1); so by applying (list.2)with x = 2 and a = nil , we may dedue list(2:nil). Applying (list.2) again, thistime with x = 1 and a = 2:nil , we dedue list(1:2:nil).The third rule about lists is impliit in the program. Just as with the appendrelation, we say an objet a satis�es the relation list(a) only if it an be provedto do so from the de�nition of list . Any objet that is not a proper list, perhapsbeause it does not end in nil , annot be proved from the de�nition to satisfythe list relation.We an think of the two lauses (list.1) and (list.2) as a spei�ation of arelation list , and ask what relations satisfy that spei�ation. Certainly, therelation we had in mind, the one that is true of proper lists and false of everythingelse, satis�es the spei�ation. But so do many other relations, for example theone that is true of proper lists and also lists that end in 3 instead of nil . Eventhe relation that is true of every objet satis�es the spei�ation. The relationwe intended to de�ne by writing the lauses (list.1) and (list.2) is the least orsmallest relation that satis�es the spei�ation. It is an important fat aboutlogi programs, whih we shall prove in Chapter 5, that a program written as aset of Horn lauses always has suh a `least model'.For now, we ontent ourselves with de�ning some other useful relations on lists.Here is the de�nition of a relation member(x ;a) that is true if x is a member ofthe list a:member(x ;x :a) :� :member(y ;x :a) :� member(y ;a):The �rst lause says that x is a member of the list x :a, and the seond says thaty is a member of x :a if it is a member of a. Neither of these lauses applies tothe empty list, beause the empty list has no members. It is quite permissibleto write de�nitions that have no lause that applies to ertain input values, andthe result is to de�ne a relation that does not hold for these values.We an use the member relation to test for membership. For example, thegoal # :� member(2; 1:2:3:nil) reeives the answer `yes', and the goal # :�member(5; 1:2:3:nil) reeives the answer `no'. It an also be used to generate themembers of a list, so that the goal # :� member(x ; 1:2:3:nil) reeives the threeanswers x = 1, x = 2 and x = 3.



3.3 More relations on lists 31To apply this idea, let us de�ne dominates(x ;a) as the relation that is truewhen x is greater than or equal to (geq) every member of the list a:dominates(x ; nil) :� :dominates(x ;y :a) :� geq(x ;y ); dominates(x ;a):Any number dominates the empty list, and a number x dominates the list y :aif it is greater than or equal to y and dominates the list a. Now we an de�nethe relation maximum(x ;a) that that is true if x is the maximum of the list a:maximum(x ;a) :� member(x ;a); dominates(x ;a):This de�nition simply says that the maximum of a list a is a member of a thatis greater than or equal to every member of a. A goal like# :� maximum(x ; 3:1:4:2:nil):is exeuted by solving the two immediate subgoals member(x ; 3:1:4:2:nil) anddominates(x ; 3:1:4:2:nil). The Prolog strategy is to generate solutions to the�rst member subgoal one after another, then test eah one to see if it makes thedominates subgoal true.Another, more eÆient, de�nition of maximum uses reursion diretly. We�rst de�ne a relation max1 (x ;y ;a) that is true if x is the maximum numberamong y and the members of list a:max1 (x ;x ; nil) :� :max1 (x ;y ; z :a) :� geq(y ; z);max1(x ;y ;a):max1 (x ;y ; z :a) :� less(y ;x );max1 (x ; z ;a):In terms of max1 , we an write a new de�nition of maximum:maximum(x ;y :a) :� max1 (x ;y ;a):This de�nition is more eÆient as a program, beause the maximum of a list isfound in a single pass through the list, rather than the multiple passes neededby our earlier program.We de�ned member diretly by reursion, but there is another de�nition thatuses the append relation instead:member(x ;a) :� append(u ;x :v ;a):This de�nition says that x is a member of a if there are lists u and v suhthat appending u and x :v gives the list a. With this de�nition, a goal like# :� member(2; 3:1:2:4:nil) is exeuted by searhing for a solution to the subgoal



32 Reursive strutures
b  d ea

Figure 3.1: A binary treeappend(u ; 2:v ; 3:1:2:4:nil). By trying both lauses for append and baktraking,Prolog is able to �nd a solution where u = 3:1:nil and v = 4:nil .3.4 Binary treesLists, represented with nil and the `:' operator, are the simplest and most usefulreursive data type, but logi programming also allows more general data stru-tures. As an example, we onsider here the type of binary trees with labels atthe leaves, de�ned by the following rules:1. If x is any objet, then tip(x ) is a binary tree.2. If l and r are binary trees, then so is fork(l;r).3. Nothing is a tree exept aording to rules (1) and (2).For example, the binary tree shown in Figure 3.1 is represented by the termfork(fork(tip(a); tip(b));fork(fork(tip(); tip(d)); tip(e)))These rules for forming trees have the same reursive harater as the rules forforming lists, and we an de�ne relations on trees by reursion just as we usedreursion to de�ne relations on lists.We an use reursion to de�ne a relation atten(t ;a) between a tree t and alist a that is true when a ontains in order all the tips from t , so that if t is thetree of Figure 3.1 then atten(t ; a:b::d :nil) is true.atten(tip(x );x :nil) :� :atten(fork(l;r);) :�atten(l;a);atten(r;b); append(a;b;):



3.4 Binary trees 33The �rst lause says that tip(x ) attens to give the list ontaining just x ; theseond says that a tree fork(l;r) attens to give a list  that is obtained byattening l and r separately and joining the results with append .This de�nition of atten an be used to �nd the attened form of a givenbinary tree, and it gives one list as the answer for eah tree. Also, beause of thediretion-less harater of logi programming, it an be used to �nd trees thatatten to a given list. Eah list is the attening of several trees, and baktrakingreturns these trees one after another.Summary� Complex information an be modelled by data that has a nested struture.� Relations over these data strutures an be de�ned using reursion.� Prolog solves goals by mathing them with lauses from the program andgenerating subgoals. If the goal uses a reursive relation, these subgoalsmay use a simpler instane of the same relation.Exerises3.1 What is the result of exeuting the following goal?# :� maximum(x ; nil):3.2 What solutions would a Prolog system display for the goal# :� maximum(x ; 3:1:3:2:nil):using the two de�nitions of maximum from the text? Why?3.3 Use reursion or de�nition in terms of append or other relations to de�nethe following relations on lists:a. pre�x (a;b) if list a is a pre�x of list b.Example: pre�x (1:2:nil ; 1:2:3:4:nil).b. suÆx (a;b) if list a is a suÆx of list b.Example: suÆx (3:4:nil ; 1:2:3:4:nil).. segment(a;b) if list a is a ontiguous segment of list b.Example: segment(2:3:nil ; 1:2:3:4:nil).d. sublist(a;b) if list a is a sub-list (not neessarily ontiguous) of list b.Example: sublist(1:3:nil ; 1:2:3:4:nil).e. delete(a;x ;b) if list b is the result of deleting a single ourrene of x fromlist a. Example: delete(3:1:4:2:nil ; 4; 3:1:2:nil).



34 Reursive struturesf. perm(a;b) if list a is a permutation of list b.Example: perm(4:1:2:3:nil ; 3:1:4:2:nil).3.4 De�ne a relation last(a;x ) that is true if a is a non-empty list, and x isits last element. Write de�nitions (a) using diret reursion, and (b) in terms ofappend . What are the solutions of the goal # :� last(a; 3), where a is a variable?3.5 How many answers does pioProlog display for the goal# :� maximum(x ; 3:1:3:2:nil)using eah of the de�nitions of maximum given in the text? Why is this?3.6 When it is used as a Prolog program, the de�nition of atten(t ;a) in thetext works well if it is given the tree t and asked to �nd its attened form a, orif it is given both t and a and asked to hek that the relation holds. It worksless well, however, if given the list a and asked to �nd orresponding trees t .Why is this? How an the problem be solved?



Chapter 4The meaning of logi programs

We have seen how the simple logi of Horn lauses an be used to write omputerprograms, and how symboli reasoning an be used by hand or by omputer as away of exeuting programs written in this way. The answers that are output bya logi program are statements that an be derived from the program by steps ofsymboli derivation. In this hapter, we begin a loser look at logi programs bygiving preise rules for the syntax of a program, and more importantly, explainingwhat a logi program means as a logial theory.That programs have suh a logial meaning at all is an aspet of the delarativenature of logi programming. It is important beause it allows us to understandlogi programs in a way that is independent of what happens when they areexeuted. To ensure that the answers output by a logi program are orret, theprogrammer need only ensure that the lauses of the program, when interpretedaording to their logial meaning, are true of the problem to be solved. Itis the responsibility of whoever implements a logi programming language toensure that its rules of reasoning are sound , that is, they deliver true onlusionswhenever they are applied to true premisses.The programmer also needs to ensure that the program is apable of givinganswers to enough di�erent questions to be useful. The empty program (on-taining no lauses at all) ertainly gives no inorret answers, beause it givesno answers at all, but it is not a very interesting program. For this purpose, theprogrammer needs to be sure that the lauses of the program ontain all rele-vant information about the problem, and also that the rules of reasoning used bythe implementation are omplete, that is, any onlusion whih follows from theprogram an in fat be derived from it by the symboli rules.De�ning a logial meaning for logi programs helps us to understand what in-formation is expressed by lauses and programs. It also gives a reliable riterionfor judging whether the rules of reasoning embodied by a partiular implemen-tation of logi programming are sound and omplete. So the logial semantisgiven in this hapter are the beginning of two parallel stories. One story tells35



36 The meaning of logi programshow programming problems an be expressed in the logi of Horn lauses. Wehave already begun to tell this story in the �rst few hapters of this book, andwe will return to it later.The other story tells how partiular rules of reasoning (hopefully sound andomplete) an be embodied in an implementation of logi programming and usedto exeute programs and solve goals. This story is told in the next few hapters,where we shall �nd that a single rule of reasoning alled SLD{resolution is thebasis for an e�etive, sound and omplete proedure for solving goals. The storyis onluded in the last part of the book, where the implementation of SLD{resolution in pioProlog is desribed.The �rst setion of this hapter ontains a summary of the syntax of thesimplest kind of logi programs, without ertain extensions that we shall addlater. In the main part of the hapter, we de�ne the logial meaning of programswritten in this simple language. This prepares the way for the next hapter, whihformalizes the rules of reasoning we have been using informally, and ontains aproof that they are sound and omplete.4.1 SyntaxA typial program is the one that de�nes the atten relation:atten(tip(x );x :nil) :� :atten(fork(u ;v );a) :�atten(u ;b);atten(v ;); append(b; ;a):Three kinds of name are used in this lause:� atten and append are relation symbols that name a relation between dataobjets suh as trees or lists. In Prolog, relation symbols an have any namethat begins with a lower-ase letter. In this book, they are shown in lower-ase italis like this. Eah relation symbol has a �xed number of arguments(two for atten, three for append); this number is alled the arity of thesymbol.� fork and tip are funtion symbols that onstrut data objets (in this ase,trees). In Prolog and in this book, funtion symbols have names thatould also be used for relation symbols, but they an be distinguishedby the fat that relation symbols are always outermost in a formula likeatten(fork(u ;v );a), and funtion symbols are used only in writing thearguments of the formula.� x , u , v , a, et., are variables. In Prolog, variables an be given any namethat starts with an upper-ase letter. In this book, they are shown in smallapitals like this.



4.1 Syntax 37For onveniene, some relation and funtion symbols, suh as the list onstrutor`:' and the equality sign `=' are written as in�x operators, so we an writex = 1:2:3:4:nilinstead of something likeequal(x ; ons(1; ons(2; ons(3; ons(4; nil))))):These in�x symbols are just a matter of syntati onveniene, and we ouldmanage without them by using an ordinary symbol instead, with only the disad-vantage that our programs would be more diÆult to read. Consequently, whenwe disuss the meaning of logi programs and the mehanisms by whih theyare exeuted, we an ignore the existene of in�x symbols exept in examples.Most Prolog systems allow the programmer to introdue new in�x symbols, butpioProlog provides only a �xed olletion, and new ones ould be added only bymodifying pioProlog itself.Both relation symbols and funtion symbols have a �xed arity or number ofarguments, and this number an be zero. Relation symbols with no argumentsare rather uninteresting, beause they are the same as propositional variables like`it is raining', or `I am wet'. We an write a lause that expresses the statement`If it is raining, then I'll get wet':wet :� raining :But programs built from lauses like this are not able to ahieve any very usefulalulations.On the other hand, funtion symbols with no arguments play a vital partin most programs, beause they are the same as onstants suh as the emptylist nil , or atomi data items like editor and ma in the database example ofChapter 2. Constants are the basis on whih we an build up more omplexterms by applying funtion symbols suh as `:' or fork .In terms of this lassi�ation of the symbols they ontain, we an summarizethe syntax of logi programs as follows:� A program is a set of lauses. From a logial point of view, the order inwhih these lauses are written has no importane.� A lause is a formulaP :� Q1; : : : ; Qn:P is a literal alled the head of the lause, and Q1, : : : , Qn are literals thattogether form the body of the lause. In the ase n = 0, there are no literalsin the body; suh a lause is written P :� :



38 The meaning of logi programs� A literal or atom is a formulap(t1; : : : ; tk)where p is a relation symbol of arity k and t1, : : : , tk are k terms. In thease k = 0, the literal is written simply as p.For the present, the terms `atom' and `literal' are synonymous. In Chap-ter 8, however, we shall introdue negated literals notP , where P is anatom of the form p(t1; : : : ; tk).� A term is either a variable like x or person , or it is a ompound termf(t1; : : : ; tk)where f is a funtion symbol of arity k, and t1, : : : , tk are k smaller terms.A funtion symbol with no arguments is a onstant, written simply as f .In this summary, the words in italis are the ones we shall use to refer to parts ofprograms. In disussing logi programming in general (rather than writing logiprograms themselves), we use a few extra notational onventions. Upper-aseletters suh as C, P and Q refer to lauses and atoms, the letters t and u areused for terms, and p and q are relation symbols.Prolog does not require relation or funtion symbols to be delared, and unlikepioProlog, most Prolog systems do not enfore our onvention that they shouldhave a �xed arity, but it will be simpler for us to stik to this onvention. We shalltalk about the alphabet of a program, meaning the sets of relation and funtionsymbols used in the program, together with their arities. In the atten program,there are two relation symbols: append of arity 3, and atten of arity 2. Thereare four funtion symbols: `:' of arity 2, nil of arity 0, tip of arity 1 and forkof arity 2. We an write down the alphabet of this program using the followingnotation, in whih a semiolon separates the relation symbols from the funtionsymbols:fappend=3;atten=2; :=2; nil=0; tip=1; fork=2g:More generally, we shall say `f=k is a funtion symbol' as a short way of inludingthe information that f has arity k. We shall assume that the alphabet of everyprogram ontains at least one onstant symbol, beause this allows us to avoida number of annoying diÆulties with the theory. If a program does not ontainonstant symbols already, we an always add one to its alphabet.We say a program T is well-formed with respet to an alphabet L if all therelation and funtion symbols used in T are drawn from L and used with theorret arity. If L is an alphabet, we write Term(L) for the set of terms that arewell-formed with respet to L. We write GrTerm(L) for the set of well-formedground terms with respet to L, that is, the set of well-formed terms that ontains



4.2 Truth tables 39no variables. Analogously, we write GrLit(L) for the set of well-formed groundliterals with respet to L.4.2 Truth tablesThe lauses of a logi program may ontain omplex terms with funtion symbolsand variables, and if we are to explain the meaning of logi programs, we mustgive a meaning to them. We leave that for later, and begin by explaining themeaning of the very simple logi programs that ontain only relation symbolswith no arguments. Suh relation symbols are like the propositional variables ofBoolean algebra, and we an explain the meaning of these programs using thefamiliar method of truth tables.For example, here is a lause the we ould read as saying `I'll get wet if it'sraining':wet :� raining : (1)There are two relation symbols, wet and raining in this lause, so there are fourpossible assignments of the truth values true and false to them. Eah row ofthis truth table shows one truth assignment and the resulting truth value of thelause:wet raining (1)T T TT F TF T FF F TA lause like (1) is onsidered true unless the right-hand side is true but theleft-hand side is false, something that happens in only one row of the truth table.If we know that lause (1) is true, and also that the lausemiserable :� wet : (2)is true (meaning `I'll be miserable if I get wet'), then we expet that the lausemiserable :� raining : (3)to be true as well, with the informal meaning `I'll be miserable if it's raining'. Wean use a truth table to hek that this is a valid inferene. The table has eightrows, one for eah assignment of truth values to the three symbols miserable,wet and raining . Eah row shows the truth values taken by the lauses (1), (2)and (3).



40 The meaning of logi programsmiserable wet raining (1) (2) (3)T T T T T T �T T F T T T �T F T F T TT F F T T T �F T T T F FF T F T F TF F T F T FF F F T T T �If lause (3) really does follow logially from lauses (1) and (2), then it shouldbe true in eah row of the truth table where both (1) and (2) are true. Theserows are marked with � in the truth table, and they all do ontain a T for lause(3) as well as lauses (1) and (2); we may onlude that lause (3) does followfrom lauses (1) and (2).We an use truth tables to assign a `meaning' to lauses as follows: we say thatthe meaning of a lause is the set of rows in a truth table where the lause is giventhe value T. This de�nition lets us judge whether a laimed onlusion followsfrom stated premisses. We hek that every row that makes all the premissestrue also makes the onlusion true. If so, then the onlusion really is a logialonsequene of the premisses.This way of assigning meanings to lauses is also attrative beause it assignsthe same meaning to lauses that are evidently equivalent from a logial point ofview. For example, the two lausesmiserable :� wet ; old :and miserable :� old ;wet :both express the idea `I'll be miserable if it's old and I get wet'. They havethe same mathematial meaning, beause they are true in the same rows of atruth table { in fat in all rows exept the one where wet and old are true butmiserable is false.As a way of heking that one propositional formula follows from others, themethod of truth tables has the advantage that it an be arried out in a om-pletely routine way. A disadvantage is that truth tables beome very large unlessthe number of di�erent propositional variables is very small, and it then be-omes more attrative to justify onlusions by symboli reasoning than by theexhaustive testing implied by truth tables. Even so, we an still use the idea of atruth table as our riterion for judging whether a method of symboli reasoningis sound and omplete.



4.3 Adding funtions and variables 41Methods that replae exhaustive testing by symboli reasoning beome evenmore attrative when we extend the piture to inlude lauses that ontain vari-ables and funtion symbols. Analogues of truth tables exist in this broadersetting, and we shall use them as a riterion of truth against whih symbolimethods an be judged. However, these analogues of truth tables are no longerbased on �nite arrays of T's and F's, but on in�nite mathematial sets and fun-tions. The table has an in�nite number of `rows', so it is no longer possible tohek them all one by one.4.3 Adding funtions and variablesTruth tables work well enough for simple programs that ontains only relationsymbols with no arguments, but something more is needed when relations anhave arguments that ontain variables and funtion symbols. In plae of rows in atruth table, we will use interpretations that assign a truth value to eah memberof the (perhaps in�nite) set of literals that an be formed from the alphabet ofthe program. If the relation symbols have no arguments, then the set of groundliterals is �nite; they are just the relation signs themselves. In that ase, aninterpretation is muh the same as a row in the truth table, giving a truth value(T or F) for eah relation symbol.More generally, we de�ne an interpretation M over an alphabet L to be a setM � GrLit(L) of ground literals formed from L. The idea is that the membersof M are the literals that are true, and all the others are false. If L ontainsrelation and funtion symbols that take arguments, then GrLit(L) is in�nite,beause we an form in�nitely many terms like nil , 0:nil , 0:0:nil , et. The set ofinterpretations is in�nite too, beause the set of all subsets of an in�nite set isalso in�nite.Eah row of a truth table shows the truth values taken by some premissesand a onlusion when the literals take ertain truth values. These truth valuesfor the formulas are alulated from the truth values for the literals by followingrules onneted with the meaning of the logial operators. Following the analogy,we now give rules that determine, for eah interpretation, the truth value of alause with funtion symbols and variables.We deal �rst with ground lauses, whih may ontain funtion symbols butontain no variables. If M is an interpretation, we say the ground lauseP :� Q1; : : : ; Qn:is true in M exatly if either P 2 M , or Qi =2 M for some i. This agrees withthe rule we used earlier with truth tables: a lause is onsidered true unless allthe literals in the body are true, but the head of the lause is false. We translate`P is true' by P 2 M , beause M ontains exatly the ground literals that areonsidered true under the interpretation.



42 The meaning of logi programsNow for lauses that ontain variables: we say a lause C is true in an interpre-tationM exatly if every ground instane of C is true inM . A ground instane ofa lause C with variables is any lause that an be obtained from C by system-atially substituting ground terms for the variables of C. By `systematially',we intend that the same ground term should be substituted for eah variablewherever it appears. We shall be more preise about this when we introdue theonept of a formal substitution in Setion 4.4.Finally, we say that a program T is true in an interpretation M if eah lauseof the program, onsidered separately, is true inM . In this ase, we also say thatM is a model of T , and write j=M T . Similarly, we write j=M C if an individuallause C is true in M . The meaning of a program T is the set of all models ofT , that is, the set of all interpretations M suh that j=M T .If the lauses of T ontain variables, it may be that the same variable appearsin several di�erent lauses. We de�ne the meaning of a program by treating thelauses separately, allowing ground terms to be substituted for variables in eahlause independently of the others. Beause of this, the value of a variable inone lause is not related to its values in other lauses. On the other hand, werequired the same ground term to be substituted for a variable wherever it oursinside a single lause; this makes sure that within a lause, eah variable refersto a single value.We say that a lause C follows from a program T (or that T entails C) if Cis true in every model of T . This is just like the riterion for entailment we usedwith truth tables, beause it is equivalent to saying that every interpretation(row of the truth table) that makes all the lauses of T true also makes C true.This way of giving meaning to logi programs says nothing about what happenswhen a program runs. This makes it a little unsatisfying for us as programmers,beause we want to know what the omputer does when we present it witha program. On the other hand, this is exatly what we should expet for adelarative programming language: programs have a meaning that is independentof the way the programming language is implemented. Later, when we ome todesribe the mehanisms by whih logi programs are exeuted, we will have astrong expetation about what the mehanisms should ahieve, beause exeutinga program should produe all and only the onlusions that are entailed by theprogram.4.4 SubstitutionsIn desribing what it means for a lause to be true in an interpretation, we usedthe idea of systematially substituting ground terms for variables. We now makethis idea more preise by introduing formally the idea of a substitution and theoperation of applying a substitution to a term or lause to obtain an instane of it.A substitution s:Var ! Term(L) is a funtion from variables to terms. Itassoiates a term with eah variable, and when we `systematially' substitute



4.4 Substitutions 43terms for variables aording to s, it is the term s(x ) that we substitute for eahourrene of a variable x . We shall use the notation fx1  t1; : : : ;xn  tng forthe substitution that maps eah of the variables xi to the orresponding term ti(for 1 � i � n), and maps all other variables to themselves.The instane of a term t under a substitution s is the term t[s℄ de�ned asfollows: if t is a variable x , then t[s℄ = s(x ). If f is a funtion symbol of arity k,and t = f(t1; : : : ; tk), thent[s℄ = f(t1[s℄; : : : ; tk[s℄):This last equation tells us how to form t[s℄ for a ompound term t from thearguments of t: we reursively apply the same substitution s to eah of them,then build the results into a new ompound term that also has f as its funtionsymbol. Beause the arguments of the original term are smaller than the termitself, this equation lets us work out the instane under s of any term t. Thereursion stops with variable symbols (to whih the �rst part of the de�nitionapplies) and onstants (whih are unhanged by substitution). As a slight abuseof notation, we write t[x  u℄ as an abbreviation for t[fx  ug℄, saving a pairof braes.We shall also use the notation P [s℄ for the instane of a literal P under thesubstitution s: if P = p(t1; : : : ; tk) thenP [s℄ = p(t1[s℄; : : : ; tk[s℄):Also, we write C[s℄ for the instane of a lause C under s: if C is the lauseP :� Q1; : : : ; Qn;then C[s℄ is the lauseP [s℄ :� Q1[s℄; : : : ; Qn[s℄:A ground substitution is simply a substitution g suh that g(x ) is a groundterm for every variable x . Plainly, if g is a ground substitution, then t[g℄ is aground term for every term t.The main reason for introduing the idea of a substitution expliitly is thatsubstitutions themselves have helpful algebrai properties. For example, if r ands are substitutions, then there is another substitution r.s alled the ompositionof r and s, suh that t[r.s℄ = t[r℄[s℄ for all terms t. We an de�ne the substitutionr . s by giving its ation on variables: it is the substitution u suh thatu(x ) = r(x )[s℄for all variables x . That is, to ompute u(x ), we �rst apply r to x , then take the



44 The meaning of logi programsinstane under s of the resulting term. We need to prove that this substitutionhas the properties we desire, and this we do in the proposition below.There is also an identity substitution I suh that t[I℄ = t for all terms t. Itis de�ned by I(x ) = x for all variables x . Again, we must prove that I has thedesired properties.PROPOSITIONLet t be a term, and let r, s and w be substitutions.1. t[r . s℄ = t[r℄[s℄.2. t[I℄ = t.3. Composition is assoiative: (r . s) . w = r . (s . w).4. The identity substitution I is a unit element for omposition: I.s = s = s.I.Proof: For part (1), we use indution on the struture of the term t; that is, ifP (t) is the property we wish to prove for all terms t, we �rst prove P (x ) for allvariables x , then prove for every funtion symbol f of arity k that P (f(t1; : : : ; tk))is implied by the indution hypotheses P (t1), : : : , P (tk). Sine every term is builtup from variables by using a �nite number of funtion symbols, it follows thatP (t) holds for all terms t.Applying this idea to the spei� problem in hand, we see thatx [r . s℄ = r(x )[s℄ = x [r℄[s℄for any variable x . Also, if f is a funtion symbol of arity k, and t1, : : : , tn aresuh that ti[r . s℄ = ti[r℄[s℄ for eah i, thenf(t1; : : : ; tk)[r . s℄ = f(t1[r . s℄; : : : ; tk[r . s℄)= f(t1[r℄[s℄; : : : ; tk[r℄[s℄)= f(t1[r℄; : : : ; tk[r℄)[s℄= f(t1; : : : ; tk)[r℄[s℄:This ompletes the proof of part (1). We leave part (2) as an exerise. The proofrequires another strutural indution on t.For parts (3) and (4), we are required to prove the equality of various substi-tutions. For this, we use the fat that two substitutions are equal if they agreeon every variable. If x is any variable, thenx [(r . s) . w℄ = x [r . s℄[w℄ = x [r℄[s℄[w℄ = x [r℄[s . w℄ = x [r . (s . w)℄:Also, x [I . s℄ = x [I℄[s℄ = x [s℄ = x [s℄[I℄ = x [I . s℄.The onept of a substitution allows us to be more preise about the meaning oflogi programs, and spei�ally the ground instanes of a lause C that we used



4.4 Substitutions 45in de�ning what it means for C to be true in a ertain interpretation; they aresimply the instanes C[g℄ where g is a ground substitution. Substitutions willalso let us formulate a set of rules of reasoning by whih valid onlusions an bederived from programs; that is the subjet of the next hapter.A partiularly simple kind of substitution is one that ats as a permutationon the set of variables. We all suh a substitution s a renaming . Its de�ningproperties are that s(v ) is a variable for eah v , and if v1 6= v2 then s(v1) 6=s(v2). If lauses C and C 0 are suh that C 0 = C[s℄ for some renaming s, we saythat C 0 is a variant of C. Beause eah renaming s has an inverse s0 suh thats . s0 = s0 . s = I, it follows that if C 0 is a variant of C then also C is a variantof C 0. Variants are important in exeuting and reasoning with logi programs,beause replaing lauses from a program by variants of them allows us to avoidonfusion between the variables used in one appliation of a lause from thoseused in another appliation.Summary� Logi programs are made up of Horn lauses that ontain relation, funtionand variable symbols.� Programs an be given a meaning as logial theories. This meaning isindependent of any exeution mehanism.� Inferene rules and exeution mehanisms for logi programs an be assessedby omparing their e�et with the logial meaning of the program.Exerises4.1 Show using a truth table that the onlusionvaluable :� metal ; yellow ; heavy : (1)follows from the two premissesvaluable :� gold ; heavy : (2)and gold :� metal ; yellow : (3)4.2 At �rst, we de�ned j=M C �rst for C a ground lause. Later, we extendedthe de�nition to allow C to be any lause. Show that the two de�nitions areonsistent, that is, if C is a ground lause then j=M C (in the earlier sense) if



46 The meaning of logi programsand only if j=M C[g℄ for all ground substitutions g. What part is played in theproof by our assumption that L ontains at least one onstant?4.3 Prove by strutural indution that if the variable x does not appear in theterm t then t[X  u℄ = t.4.4 Complete the proof that t[I℄ = t for every term t.4.5 Prove that if x and y are distint variables, and x does not appear in w ,then t[x  u℄[y  w℄ = t[y  w℄[x  u[y  w℄℄:



Chapter 5Inferene rules

Our way of giving meaning to logi programs �xes preisely what it means for alause to be entailed by a program { and so what it means for an answer to agoal to be orret { but it does not give us any pratial way of heking whetherthis is so for a partiular program and a partiular lause. In this hapter, webegin to develop formal inferene rules that allow onlusions to be derived fromprograms in a way that an be heked by symboli alulation. For eah rule,we prove as a theorem that any lause that an be derived aording to the ruleis in fat entailed by the program { in other words, that the rule is sound.5.1 Substitution and ground resolutionThe �rst inferene rule is the following rule of substitution, whih we have in fatbeen using sine Chapter 1:From a lause C, derive the instane C[s℄, where s is any substitution.The soundness of this rule follows from the following proposition:PROPOSITIONLet C be a lause, M be an interpretation and s be a substitution. If j=M C thenj=M C[s℄.Proof: If j=M C, it follows by the de�nition of j=M that j=M C[g℄ for any groundsubstitution g. If h is a ground substitution, then s . h is also a ground substi-tution, sine (s . h)(x ) = s(x )[h℄ is a ground term for eah variable x . Puttingg = s . h, we dedue that j=M C[s . h℄. But C[s℄[h℄ = C[s . h℄, so j=M C[s℄[h℄.Sine this is true for any ground substitution h, it follows that j=M C[s℄. 47



48 Inferene rulesCOROLLARYFor any program T , lause C and substitution s, if T j= C then T j= C[s℄.Proof: Let M be any model of T . Then j=M C, and so by the propositionj=M C[s℄ also. Therefore T j= C[s℄.The substitution rule allows us to derive instanes of a lause by `�lling in' thevalues of variables, one of the key steps in the kind of derivation we arried outin Chapter 1. The other key step is to ombine two lauses that have a mathingliteral, to derive a new lause. We onsider �rst the speial ase used there, inwhih both the lauses are ground. It is alled the rule of ground resolution:From two ground lausesP :� Q1; : : : ; Qj; : : : ; Qnand Q :� R1; : : : ; Rmsuh that Q = Qj, derive the lauseP :� Q1; : : : ; Qj�1; R1; : : : ; Rm; Qj+1; : : : ; Qnobtained by taking a opy of the �rst lause and replaing Qj with the bodyof the seond lause.We all the lause that is derived in this rule the ground resolvent of the �rst twolauses on Qj. The soundness of the rule follows from the following proposition:PROPOSITIONLet the three ground lauses above be C1, C2 and C3, and let M be an interpre-tation. If j=M C1 and j=M C2 then j=M C3.Proof: Using the de�nition of j=M , we an distinguish various (not mutuallyexlusive) ases:1. P is true in M . In this ase, C3 is automatially true in M .2. One of the Qi for i 6= j is false in M . Again C3 is true in M , beause itontains Qi in its body.3. One of the Ri is false in M . Again the body of C3 ontains Ri, so C3 is truein M .Beause C1 is true in M , either P is true in M (ase 1), or one of the Qi is false



5.1 Substitution and ground resolution 49in M . In the latter ase, either i 6= j (ase 2), or Q = Qj is false in M . In thatase, the truth of C2 implies that one of the Ri is also false in M (ase 3).Combining the rule of substitution (using a ground substitution) with the rule ofground resolution allows us to derive new ground lauses from a program. Bothrules say that if ertain lauses are entailed by a program, then so is anotherlause. We an build up elaborate derivations by using the output from oneappliation of a rule as input to another rule, so deriving more and more elaborateonlusions from a program. Suh a derivation an be set out as a list, in whiheah item is justi�ed by naming the rule that an be used to derive it frompreeding items.EXAMPLEThe following program de�nes a relation reverse(a;b) that holds between twolists a and b if the members of b are those of a in reverse order:reverse(nil ; nil) :� : (rev:1)reverse(x :a;) :� reverse(a;b); append(b;x :nil ;): (rev:2)append(nil ;b;b) :� : (app:1)append(x :a;b;x :) :� append(a;b;): (app:2)From this program, we an derive the fatreverse(1:2:nil ; 2:1:nil) :� :by the derivation shown in Figure 5.1. In a derivation like this, eah line is ob-tained either by applying the rule of substitution (subst) to a program lause, orby applying the rule of ground resolution (GR) to preeding lines in the deriva-tion. Sine eah line depends only on program lauses or lines that have beenderived before it, we an be sure that eah line (inluding the last) is entailed bythe program, and thus that the program entails the �nal onlusion.Although derivations are traditionally presented as linear lists, the struture ofa derivation an be shown more learly as a tree, as in Figure 5.2, where eahnumbered node refers to a line in the derivation of Figure 5.1. At the leaves ofthe tree are lauses derived from those in the program by the substitution rule.All the lauses at interior nodes are derived from their two hildren by a step ofground resolution. This example shows how the rules of substitution and groundresolution an be used to derive answers to goals of the form # :� P that onsistof a single literal P . We simply look for a way to derive a ground lause P [g℄ :�where P [g℄ is a ground instane of P .Although it works, this proedure is inonvenient for manual use and ineÆientfor mahine implementation, beause we are fored to guess the substitutions that



50 Inferene rules1. reverse(1:2:nil ; 2:1:nil) :� (rev.2), substreverse(2:nil ; 2:nil); append(2:nil ; 1:nil ; 2:1:nil):2. append(2:nil ; 1:nil ; 2:1:nil) :� append(nil ; 1:nil ; 1:nil): (app.2), subst3. reverse(1:2:nil ; 2:1:nil) :� 1, 2, GRreverse(2:nil ; 2:nil); append(nil ; 1:nil ; 1:nil):4. reverse(2:nil ; 2:nil) :� (rev.2), substreverse(nil ; nil); append(nil ; 2:nil ; 2:nil):5. reverse(nil ; nil) :� : (rev.1)6. reverse(2:nil ; 2:nil) :� append(nil ; 2:nil ; 2:nil): 4, 5, GR7. append(nil ; 2:nil ; 2:nil) :� : (app.1), subst8. reverse(2:nil ; 2:nil) :� : 6, 7, GR9. reverse(1:2:nil ; 2:1:nil) :� append(nil ; 1:nil ; 1:nil): 3, 8, GR10. append(nil ; 1:nil ; 1:nil) :� : (app.1), subst11. reverse(1:2:nil ; 2:1:nil) :� : 9, 10, GRFigure 5.1: Derivation of a reverse fatare needed to make the derivation �t together properly. For example, in writingdown the �rst line of the example, the author was fored to guess that the reverseof 1:2:nil would be 2:1:nil , and a mahine might not have the insight to makethat guess orretly. A wrong guess would have been revealed only later in thederivation, when the literals in the body of the lause would fail to math theheads of other lauses.To solve this problem, we need to use a di�erent inferene rule that ombinesfeatures of the rules of substitution and ground resolution, allowing deisionsabout what to substitute for variables to be delayed until information is availablethat allows the deision to be made orretly. We shall study this rule of generalresolution in the next hapter. First, however, we look at ways of using ourpresent inferene rules to solve a wider lass of problems.5.2 RefutationThe goal# :� append(1:2:nil ; 3:4:nil ;a); append(a; 5:6:nil ;b):asks for the lists 1:2:nil and 3:4:nil to be onatenated, and the result to beonatenated with 5:6:nil to give the �nal answer b. We an use a trik toextend our method of substitution and ground resolution to ope with goals likethis that ontain more than one literal.



5.2 Refutation 51

119 1031 2 4 6 78
5

Figure 5.2: Tree struture of the reverse derivationThe trik is to give a speial meaning to the symbol # that we have been usingto write goals. We add # to the alphabet of the program as a relation symbol #=0with no arguments, and add the goal to the program as an extra lause. Thenwe try to use substitution and ground resolution to derive the empty lause # :�from this augmented program. If we sueed, then we onlude that there arevalues of the variables in the original goal that make all its literals true. As weshall see, it is possible to �nd out from the derivation of # :� what these valuesare.Why does this method work? The preise laim is this: we start with aprogram T with alphabet L, and a list of literals P1, : : : , Pn. We add the lause# :� P1; : : : ; Pn: (�)to T to get an augmented program T 0 over L0 = L [ f#=0g, and laim thefollowing:PROPOSITIONIf T 0 j= (# :�) then for eah modelM of T , there is a ground substitution g suhthat j=M Pi[g℄ for eah i.Proof: Let M be a model of T . Then M is an interpretation over L, but we anuse it as an interpretation over L0 also. It makes # at like the propositional



52 Inferene rulesonstant false, beause # =2 M . We know that M is not a model of T 0, beauseT 0 j= (# :�) and # is false in M . So one of the lauses of T 0 is false in M , andit an only be the lause (�), beause all the lauses of the original program Tare true in M . This means that there is a ground substitution g that makes Pi[g℄true in M for eah i.This trik hanges our inferene rules from a proof system into a refutation sys-tem, beause the trik is to add to the program the opposite of the fat we wantto prove (sine # :� P is in e�et P ) false or notP ), and to show that theresulting set of lauses is inonsistent by deriving a ontradition. This refutesthe assumption that the goal is allowing false, allowing us to onlude that somehoie of substitution makes it true.5.3 CompletenessWe have seen how substitution and ground resolution an be used to deriveonsequenes from logi programs, and that the rules are sound, so that theonly onsequenes that an be derived are ones that really do follow from theprogram. A natural question is whether every valid onsequene of the programan be derived in this way. The answer is `yes', as the following theorem states:THEOREM [Completeness of substitution and ground resolution℄Let T be a program with alphabet L, and let P be a ground literal over L. IfT j= P , then the lause P :� an be derived from T by substitution and groundresolution.Proof: We prove the theorem by onstruting a speial modelM0 of T , alled theleast model of T , in whih a ground literal R is true exatly if R :� is derivablefrom T using substitution and ground resolution. If P is true in all models ofT , then it is true in this speial model M0, and we an onlude that P :� isderivable from T . So let M0 = fR j R :� is derivable from T g. We must showthat M0 really is a model of T . Let C = (Q :� R1; : : : ; Rn) be a lause of T ,and let g be a ground substitution. We must show that j=M0 C[g℄, i.e., that ifj=M0 Ri[g℄ for eah i then also j=M0 Q[g℄. Sine C is a lause of T , we an usethe substitution rule to derive the lauseC[g℄ = (Q[g℄ :� R1[g℄; : : : ; Rn[g℄):If j=M0 Ri[g℄ for eah i, then (by the de�nition of M0) all the lauses Ri[g℄ :� arederivable, so we an also derive Q[g℄ :� from these and C[g℄ by n steps of groundresolution. Thus j=M0 Q[g℄, and we may onlude that j=M0 C. Sine this is truefor eah lause C of T , we onlude that M0 is a model of T . This ompletes theproof.



5.3 Completeness 53The least modelM0 onstruted in the proof is atually more interesting than thetheorem itself. The ground literals that are true inM0 are those that are derivablefrom the program T . The losed world assumption of Chapter 3 states that theseliterals are the ones that are atually true: thus the losed world assumption isequivalent to saying that the least model of the program faithfully represents therelations that the program is intended to desribe. This is a safe assumption,beause the soundness of our inferene rules guarantees that the ground literalsthat are true inM0 are also true in every other model of the program. The losedworld assumption will beome important in Chapter 8, where we shall assumethat any ground literal that is not true in M0 is in fat false.The theorem establishes the ground-literal ompleteness of substitution andground resolution { in the sense that any ground literal that follows from aprogram an be derived from it using these rules. We shall also be interested intwo other kinds of ompleteness for systems of inferene rules:� refutation ompleteness: that if every model of T ontains values that satisfyP1, : : : , Pn, then the empty goal an be derived from the augmented programT 0 = T [ f# :� P1; : : : ; Png. This follows immediately from ground-literalompleteness, beause the symbol # is a ground literal.� answer ompleteness: that any orret answer to a goal an be extratedfrom a refutation. We shall explore this in Setion 7.4.In the next hapter, we shall abandon ground resolution in favour of the ompu-tationally more attrative rule of general resolution, but the work we have putinto the analysis of ground resolution will not be wasted, beause results aboutground resolution an often be extended to over general resolution too.Summary� Inferene rules are syntati rules that allow onlusions to be derived froma program.� An inferene rule is sound if it allows only valid onlusions to be derivedfrom valid premisses.� A system of inferene rules is omplete if it allows any valid onlusion tobe derived.� The rules of substitution and ground resolution are sound and omplete.Exerises5.1 Show that the following rule of ommutation is sound: from the lauseP :� Q1; Q2 derive the lause P :� Q2; Q1. [More generally, if � is a permutationof f1; : : : ; ng, then from P :� Q1; : : : ; Qn one may derive P :� Q�(1); : : : ; Q�(n):℄



54 Inferene rules5.2 Prove the soundness of the following rule of fatoring : if s is a substitutionsuh that Q1[s℄ = Q2[s℄, then from the lause P :� Q1; Q2 derive the lauseP :� Q1[s℄. [More generally, if Qi[s℄ = Qj[s℄, then from the lauseP :� Q1; : : : ; Qi; : : : ; Qj; : : : ; Qn:one may derive the lauseP [s℄ :� Q1[s℄; : : : ; Qi[s℄; : : : ; Qj�1[s℄; Qj+1[s℄; : : : ; Qn: ℄5.3 Prove the soundness of the following rule of diret resolution: from lausesP :� Q1; : : : ; Qn and Q :� R1; : : : ; Rm (not neessarily ground) with Q = Qj,derive the lauseP :� Q1; : : : ; Qj�1; R1; : : : ; Rm; Qj+1; : : : ; Qn:



Chapter 6Uni�ation and resolution

The inferene rules of substitution and ground resolution allow us to derive on-sequenes from programs, and the ompleteness theorem of Setion 5.3 showsthat any valid onsequene an be derived using the rules. But these partiularrules are rather inonvenient, beause all the substitutions of ground terms forvariables must be done in advane, at the leaves of the proof tree, and the in-formation needed to determine what substitutions are appropriate only beomesavailable when we look at internal nodes, where lauses are ombined by steps ofground resolution.In a step of ground resolution, the head of one lause is mathed with a literalin the body of another lause, and a new lause is made from them. For groundlauses, the mathing is simple: two literals math if they are idential. Our aimnow is to generalize the resolution rule so that it works on non-ground lauses.In a resolution step, two literals P and Q will math if they have a ommoninstane, i.e., if there is a substitution s suh that P [s℄ and Q[s℄ are idential.The new lause that results from the resolution step will have its variables �lledin by applying the substitution s. For example, the two literalsappend(1:2:nil ; 3:4:nil ;w ) and append(x :a;b;x :)have a ommon instane append(1:2:nil ; 3:4:nil ; 1:) that is obtained by applyingthe substitutionfx  1;a 2:nil ;b  3:4:nil ;w  1:gto both literals. We shall use this fat to justify an inferene step that beginswith the goal# :� append(1:2:nil ; 3:4:nil ;w ): 55



56 Uni�ation and resolutionand the program lauseappend(x :a;b;x :) :� append(a;b;):and from them derives the new goal# :� append(2:nil ; 3:4:nil ;):This new goal is obtained by applying the mathing substitution to the body ofthe program lause.This style of reasoning has a marked advantage, beause the values to besubstituted for the variables in the goal and program lause an be disoveredas part of the mathing proess between the literals involved in the resolutionstep, rather than being hosen in advane. The result of the step still ontainsa variable  , and its value an be hosen aording to the needs of subsequentsteps, without a�eting the validity of the present one.Unfortunately, the two literals that mathed have many other ommon in-stanes, suh as these:append(1:2:nil ; 3:4:nil ; 1:2:3:4:nil);append(1:2:nil ; 3:4:nil ; 1:3:v ):We therefore fae the problem of hoosing whih of the many ommon instanesto use in the resolution step. Choosing the last of the ommon instanes shownleads to a dead end, beause it results in the new goal# :� append(2:nil ; 3:4:nil ; 3:v ):and that goal has no answer. What has happened here is that a value has beenhosen for the variable  before the information was available to determine whatthat value should be. An impulsive guess has been made at the value of  , andthat guess turns out to be wrong.Lukily, there is a best hoie of a ommon instane, in the sense that any otherommon instane of the two literals an be obtained from it by applying a furthersubstitution. Later resolution steps may atually make further substitutions, andusing this `best' hoie of substitution in the present step does not restrit theirfreedom to do so. In our example, the best hoie of substitution is the �rstone we tried. In general, the best hoie an be found by a pattern-mathingalgorithm alled uni�ation.



6.1 Uni�ation 576.1 Uni�ationIf t and u are two terms, we say a substitution s is a uni�er of t and u if t[s℄ = u[s℄.The terms t and u may have many uni�ers, but we shall prove that if they haveany uni�ers at all, then they have a most general uni�er (m.g.u.). This is auni�er r of t and u with the additional property that every other uni�er s anbe written as s = r . w for some substitution w.THEOREM [Uni�ation℄If two terms t and u have any uni�ers at all, then they have a most generaluni�er.Proof: The proof of this theorem is onstrutive, in the sense that it does notonsist merely of evidene that a most general uni�er exists, but (at least impli-itly) ontains an algorithm for omputing one. We shall need this algorithm lateras part of the implementation of pioProlog, so we make the algorithm expliitas the program shown in Figure 6.1. The proof of the theorem is the proof thatthis program works.The program is written using data strutures suh as terms, substitutions,and sequenes, that are not diretly provided by a programming language likePasal. For now, it will be enough to prove that this abstrat version of thealgorithm works, and leave until later the details of how these data struturesan be implemented. The inputs to the program are two terms t and u, andthe outputs are a Boolean value ok that indiates whether the terms have anyuni�ers, and if they do, a most general uni�er r. As the program is exeuted,the internal variable S holds a sequene of pairs of terms that are waiting to bemathed with eah other.The sequene S is used rather like a stak. Sometimes a number of new pairsof terms are `pushed' onto it by the ommandS := h(p1; q1); : : : ; (pk; qk)i � S(in whih the notation h: : :i denotes a sequene with the elements listed, andthe � operator is onatenation of sequenes). Sometimes the �rst pair in S is`popped' by the ommands(p; q) := head(S);S := tail(S):The ommandS := S[x  q℄has the e�et of replaing eah pair (y; z) in S by the pair (y[x  q℄; z[x  q℄),in whih q has been substituted for x throughout. In the rest of the proof, we



58 Uni�ation and resolutionfuntion Unify(t; u: term; var r: substitution): boolean;var S: sequene of (term � term);ok : boolean;p; q: term;beginS := h(t; u)i; r := I; ok := true;while ok ^ (S 6= hi) do begin(p; q) := head(S); S := tail(S);if (p is f(p1; : : : ; pk)) ^ (q is g(q1; : : : ; qm)) then beginif f = g thenS := h(p1; q1); : : : ; (pk; qk)i � Selseok := falseendelse if (p is a variable x ) ^ (p 6= q) then beginif (x ours in q) thenok := falseelse beginr := r . fx  qg;S := S[x  q℄endendelse if (q is a variable x ) ^ (p 6= q) then beginif (x ours in p) thenok := falseelse beginr := r . fx  pg;S := S[x  p℄endendelsef t is a variable and t = u: do nothing gend;Unify := okend; Figure 6.1: Uni�ation algorithmsay a substitution k uni�es S if y[k℄ = z[k℄ for every pair of terms (y; z) in S.We are now ready to state the invariant that relate the values of the programvariables to the original terms t and u. The idea is that ok is false only if t andu have no uni�er, and if ok is true then any uni�er w of t and u an be writtenw = r . k for some substitution k that uni�es S. So r represents the part of a



6.1 Uni�ation 59uni�er for t and u that has been disovered so far, and S represents the parts oft and u that remain to be mathed. More formally stated, the invariant onsistsof the following two statements:� If t and u have a uni�er, then ok is true.� If ok is true, then t[w℄ = u[w℄ for any substitution w if and only if there isa substitution k suh that w = r . k and k uni�es S.We must �rst show that the invariant is true initially. The initialization sets Sto the sequene h(t; u)i that ontains just the pair (t; u), and r to the identitysubstitution I, and ok to true. In this state, the invariant is true, beause asubstitution k uni�es S exatly if k uni�es t and u, and so we an writew = I . w = r . k;where k = w uni�es S.The main part of the program is repeated until either ok is false, or the stakS is empty. Let S0 be the value taken by S at the start of an exeution of theloop body. The program removes a pair (p; q) from S, then performs one of thefollowing ations:Case 1: If p = f(p1; : : : ; pk) and q = g(q1; : : : ; qm) for some funtion symbols f=kand g=m, then the ation depends on whether f = g:� If f 6= g, then p and q have no uni�er, so there is no substitution that uni�esS0. The invariant lets us dedue that t and u have no uni�er either, so okan be set to false.� If f = g (and so k = m), then the program adds the k pairs (p1; q1),: : : , (pk; qk) to S. Any substitution that uni�es p and q also uni�es these kpairs of terms, and vie versa, so the invariant is maintained.Case 2: If p = x is a variable and p 6= q, the ation depends on whether thevariable x ours in q.� If so, then p and q have no uni�er: for any substitution s, the term q[s℄ willontain p[s℄ as a proper sub-term, so annot be equal to it. The ag ok anbe made false.� If x does not our in q , the program sets r to r . fx  qg and sets S toS[x  q℄, the result of applying the substitution fx  qg to every pair inS. For any substitution w, the invariant tells us that if w uni�es t and u,then w fators as w = r . k, where k uni�es S0. In partiular, k uni�es pand q. It follows that fx  qg . k = k, sinek(x ) = p[k℄ = q[k℄ = x [x  q℄[k℄ = (fx  kg . k)(x );



60 Uni�ation and resolutionand for any variable y di�erent from x ,k(y ) = y [k℄ = y [x  q℄[k℄ = (fx  qg . k)(y ):So w = r . k = r . (fx  qg . k) = (r . fx  qg) . k;and w fators through r . fx  qg just as it did through r. Also, k uni�esS[x  q℄, sine for any (y; z) in S,(y[x  q℄)[k℄ = y[fx  qg . k℄ = y[k℄;similarly (z[x  q℄)[k℄ = z[k℄, and y[k℄ = z[k℄ beause k uni�es S0.Conversely, if k uni�es S[x  q℄ then fx  qg . k uni�es S0, and so bythe invariant (r . fx  qg) . k uni�es t and u.Case 3: If q is a variable and p 6= q then the situation is symmetrial with Case 2.Case 4: If p = q = x is a variable, then the program leaves S equal to tail(S0).This maintains the invariant, beause any substitution uni�es S exatly if ituni�es S0.If the program terminates, either ok is false, or S is empty. If ok is false, the �rstpart of the invariant tells us that t and u have no uni�ers. On the other hand, ifok is true and S is empty, then every substitution k uni�es S. The seond partof the invariant then tells us (taking k = I) that the substitution r = r . I is auni�er of t and u. Also, if w is any other uni�er of t and u, then w fators asw = r . k for some substitution k. In short, if the program terminates, then itdoes so in a state where ok is true exatly if t and u have a uni�er, and if so, ris a most general uni�er of t and u.Our �nal task is to prove that the program does terminate, whatever the valuesof t and u. Notie that ase 2 (and by symmetry ase 3), if they do not lead toimmediate termination, redue by 1 the number of distint variables that ourin S, beause p = x ours in S0, but x does not our in q, and so does notour in S[x  q℄. Also, ases 1 and 4 leave the number of distint variablesunhanged, but redue by 2 the total number of funtion and symbols in elementsof S. Sine the number of symbols in t and u is �nite, these steps an only beexeuted a �nite number of times before S beomes empty.As we have explained it, the uni�ation theorem applies to pairs of terms. Lit-erals, however, have the same form as terms, di�ering only in that the outermostsymbol is a relation instead of a funtion. An analogous result applies to literals,and the same algorithm an be used to ompute most general uni�ers for them.



6.1 Uni�ation 61EXAMPLELet us apply the uni�ation algorithm to the literals append(w ;w ; 1:2:1:2:nil)and append(x :a;b;x :). The algorithm begins withS = h(append(w ;w ; 1:2:1:2:nil); append(x :a;b;x :))ir = I:In the �rst iteration, it ompares the two input literals and �nds they are bothonstruted with append=3. So Case 1 applies, and the new state isS = h(w ;x :a); (w ;b); (1:2:1:2:nil ;x :)ir = I:The next iteration involves omparing w with x :a; here Case 2 applies. Beausew does not our in x :a, the new omponent fw  x :ag is added to r andapplied to the rest of S, givingS = h(x :a;b); (1:2:1:2:nil ;x :)ir = fw  x :ag:Next, the algorithm ompares x :a and b. Here Case 3 applies, and the new stateis S = h(1:2:1:2:nil ;x :)ir = fw  x :a;b  x :ag:In the next iteration, both p and q are onstruted with :=2, so Case 1 applies,and the new state isS = h(1;x ); (2:1:2:nil ;)ir = fw  x :a;b  x :ag:Now the algorithm ompares the terms 1 and x . Case 3 applies, and the newvalue of r is obtained by omposing the new omponent fx  1g with theprevious value. The new value isr = fw  x :a;b  x :ag . fx  1g= fw  1:a;b  1:a;x  1g:Beause the substitutions are omposed, the value of x has been substituted intothe values reorded for w and b. The new state isS = h(2:1:2:nil ;)ir = fw  1:a;b  1:a;x  1g:



62 Uni�ation and resolutionA �nal appliation of Case 3 gives the stateS = hir = fw  1:a;b  1:a;x  1;  2:1:2:nilg;in whih S is empty. At this point, the algorithm terminates with ok true, andthe �nal value of r is a most general uni�er of t and u.The values taken by S at various stages in the example illustrates the subtletyof the argument that the algorithm terminates. The number of pairs in S growsand shrinks, but eah step involving a variable eliminates that variable from S,and eah other step redues the total size of the terms in S. The very �rst stepinreases the size of S from 1 to 3 pairs, but makes the total size of the termssmaller by eliminating two ourrenes of the append symbol.6.2 ResolutionThe inferene rule of resolution generalizes and ombines into one the two rulesof substitution and of ground resolution. Unlike ground resolution, it works onlauses that may ontain variables and produes a result that may also ontainvariables. Here is the statement of the rule of resolution:From the two lausesP :� Q1; : : : ; Qj; : : : ; Qn:and Q :� R1; : : : ; Rm:where there exists a substitution s suh that Q[s℄ = Qj[s℄, derive the lause(P :� Q1; : : : ; Qj�1; R1; : : : ; Rm; Qj+1; : : : ; Qn)[s℄:We all this lause the resolvent of the two lauses on Qj under the substitutions. It is obtained by replaing the literal Qj in the body of the �rst lause by thewhole body of the seond lause, then applying the substitution s to the wholelause. We immediately state and prove the soundness of this rule:PROPOSITIONLet M be an interpretation, and let the three lauses above be C1, C2 and C 0respetively. If j=M C1 and j=M C2 then j=M C 0.



6.2 Resolution 63Proof: Let g be any ground substitution; we shall show that j=M C 0[g℄. Sinej=M C1 and j=M C2, it follows by the substitution rule that j=M C1[s . g℄ andj=M C2[s . g℄. Also, Q[s . g℄ = Q[s℄[g℄ = Qj[s℄[g℄ = Qj[s . g℄, and C 0[g℄ is theground resolvent of C1[s . g℄ and C2[s . g℄ on the literal Qj[s . g℄. Thus by theground resolution rule, j=M C 0[g℄. Sine this is true for any ground substitutiong, it follows that j=M C 0.As before, soundness of the resolution rule follows immediately from this propo-sition. In applying the resolution rule, it is natural to hoose the substitution sto be a most general uni�er of Qj and Q. In this ase, we all the resulting lausethe resolvent of C1 with C2 on Qj. As we shall show in the next setion, theseare the only resolvents we need to onsider when searhing for a derivation.EXAMPLEHere is the reverse program from Chapter 5:reverse(nil ; nil) :� : (rev:1)reverse(x :a;) :� reverse(a;b); append(b;x :nil ;): (rev:2)append(nil ;b;b) :� : (app:1)append(x :a;b;x :) :� append(a;b;): (app:2)From this program, we an use resolution to derive the onlusionreverse(x1:x2:nil ;x2:x1:nil) :� :in whih x1 and x2 are variables. This onlusion overs as a speial ase theonlusion reverse(1:2:nil ; 2:1:nil) :� that we derived from the same program bysubstitution and ground resolution. In fat, as we shall see later, we an takeany derivation that uses ground resolution and produe a derivation that has thesame `shape', but uses general resolution instead, with a onlusion that oversthe original onlusion as a speial ase.Our derivation begins with variants of (rev.1) and (rev.2):1. reverse(x1:a1;1) :� (rev.2)reverse(a1;b1); append(b1;x1:nil ;1):2. append(x2:a2;b2;x2:2) :� (app.2)append(a2;b2;2):The head of (2) uni�es with the append literal in the body of (1). The unifyingsubstitution is fb1  x2:a2;b2  x1:nil ;1  x2:2g and the resolvent is3. reverse(x1:a1;x2:2) :� 1, 2, Rreverse(a1;x2:a2); append(a2;x1:nil ;2):



64 Uni�ation and resolutionNow we take a fresh variant of (rev.2) and a variant of (rev.1):4. reverse(x4:a4;4) :� (rev.2)reverse(a4;b4); append(b4;x4:nil ;4):5. reverse(nil ; nil) :� : (rev.1)The head of (5) uni�es with the reverse literal in the body of (4). The mathingsubstitution is fa4  nil ;b4  nilg, and the resolvent is6. reverse(x4:nil ;4) :� append(nil ;x4:nil ;4): 4, 5, RNow we take a variant of (app.1):7. append(nil ;b7;b7) :� : (app.1)and resolve it with (6). The mathing substitution is fb7  x4:nil ;4  x4:nilg,and the resolvent is8. reverse(x4:nil ;x4:nil) :� : 6, 7, RNow we an form a resolvent between (3) and (8), deriving9. reverse(x1:x2:nil ;x2:2) :� append(nil ;x1:nil ;2): 3, 8, RFinally, we resolve (9) with another variant of (app.1):10. append(nil ;b10;b10) :� : (app.1)We obtain the �nal result11. reverse(x1:x2:nil ;x2:x1:nil) :� : 9, 10, RTo a human eye, this derivation seems more ompliated than the original proofby ground resolution, beause eah step involves unifying two literals that mayboth ontain variables. But the ruial di�erene between this style of derivationand one using ground resolution is that uni�ation an be done by a systematialgorithm, and there is now no need to use insight in guessing what terms shouldbe substituted for variables to make the proof work.6.3 Derivation trees and the lifting lemmaOur aim in this setion is to show that derivations by ground resolution an be`lifted' to make derivations by general resolution. This provides a way of showing



6.3 Derivation trees and the lifting lemma 65that general resolution is omplete, beause every onsequene of a program anbe derived by ground resolution, and this derivation an be lifted to use generalresolution. In fat, the result is even more useful than this suggests, beauselifting a derivation preserves its tree struture. This omes in useful later, whenwe beome interested in the shapes of derivation trees that must be onsidered inthe searh for answers to a goal. Then, as now, we shall be able to work mostlywith ground resolution, and, as a �nal step, lift our results to the general ase.We begin with a more preise de�nition of derivation trees.DEFINITIONThe set of derivation trees for a program T , and the outome of eah derivationtree are de�ned as follows:1. If C is an instane of a lause of T , then leaf (C) is a derivation tree withoutome C.2. If D1 and D2 are derivation trees with outomes C1 and C2, and C is aresolvent of C1 with C2, then resolve(C;D1; D2) is also a derivation treewith outome C.Derivation trees are usually drawn like the tree in Figure 5.2, sine the ow oflogial impliation then goes down the page in a natural way. The root, labelledwith the �nal outome, is at the bottom, and at the top are leaves, eah labelledwith an instane of a program lause. Derivations by substitution and groundresolution are a speial ase of derivation trees, in whih the leaves are labelledwith ground instanes of lauses from T , and all the resolve nodes orrespondto steps of ground resolution. Another speial ase ours when the leaves arelabelled with variants of program lauses rather than more spei� instanes,and eah resolution step uses the most general uni�er of the two literals involved:we all suh a derivation tree strit.The reursive de�nition of derivation trees gives a method of proving generalresults about them: we an argue by strutural indution on derivations. Thisis quite di�erent from an argument by strutural indution on the lause thatis the outome of the derivation. In one ase, we are examining the reason whythe outome is a lause, and in the other, we are examining the reason why itis entailed by the program. This method of proof is used to establish our mostimportant result about derivation trees, the lifting lemma.LEMMA [Lifting lemma℄Let T be a program and D be a derivation tree for T . Then there is a stritderivation tree D0 for T suh that1. D0 has the same shape as D, in the sense that either D and D0 are bothleaves, or they are both onstruted by resolve, and in that ase, the twoimmediate sub-trees of D0 have the same shape as those of D.



66 Uni�ation and resolution2. Eah sub-tree of D has an outome that is an instane of the outome ofthe orresponding sub-tree of D0.Proof: We argue by indution on the struture of D. If D is a leaf leaf (C[s℄),where C is a program lause and s is a substitution, then we may take D0 to beleaf (C 0), where C 0 is any variant of C.If D has the form resolve(C;D1; D2), and the lifting lemma is true of D1 andD2, then let D01 and D02 be strit versions of D1 and D2. We may suppose thatno variable appears in both D01 and D02, sine we an hoose variants of programlauses to make this so. LetC1 = (P :� Q1; : : : ; Qj; : : : ; Qn)C2 = (Q :� R1; : : : ; Rm)be the outomes of D01 and D02. By hypothesis, there is a substitution s suhthat C1[s℄ and C2[s℄ are the outomes of D1 and D2 respetively. The lause Cis obtained from C1[s℄ and C2[s℄ by a step of resolution. Suppose it is resolutionon the literal Qj[s℄ under the substitution s0, so Q[s . s0℄ = Qj[s . s0℄, andC = (P :� Q1; : : : ; R1; : : : ; Rm; : : : ; Qn)[s . s0℄:Sine Q and Qj have a ommon instane, they have a most general uni�er r, ands . s0 fators through r, say s . s0 = r . k. Let C 0 be the resolvent of C1 and C2on Qj under r, and let D0 = resolve(C 0; D01; D02). Then D0 has the same shape asD, its outome C 0 is obtained by a resolution step under a most general uni�er,and C = C 0[k℄ is an instane of C 0. This ompletes the proof.6.4 Completeness of resolutionThe lifting lemma leads immediately to ompleteness results for general resolu-tion. An example of suh a result is the refutation ompleteness of resolution,that if a goal G an be solved by a program T , then there is a refutation ofT [ fGg by resolution.THEOREM [Refutation ompleteness of resolution℄Let T be a program and G a goal suh that T [ fGg j= #. Then there is a stritderivation tree for T [ fGg with outome # :�.Proof: By ompleteness of ground resolution, there is a derivation tree D forT [fGg with outome # :�. By the lifting lemma, we an �nd a strit derivationtree D0 (of the same shape) for T [fGg whose outome has # :� as an instane.But the lause # :� is an instane of no lause but itself, so D0 is the requiredstrit derivation tree.



6.4 Completeness of resolution 67Summary� If two terms have a ommon instane, then they have a most general om-mon instane, obtained by applying their most general uni�er to either ofthem.� The existene of most general uni�ers allows the rules of substitution andground resolution to be replaed by a single rule of resolution.� Any derivation that an be arried out using substitution and ground reso-lution an be mimiked using the rule of resolution.� Any goal that has a solution for a given program an be solved by refutationusing the rule of resolution.Exerises6.1 What (if any) are the most general uni�ers of the following pairs of terms?a. f (x ;y ) and f (g(y ); h(z)).b. f (x ;x ) and f (y ; g(y )).. p(x ; g(x ); h(y )) and p(g(y ); z ; h(a)).6.2 Suppose terms t, u and v are suh that t and u have a uni�er, and u andv have a uni�er. Prove or disprove the statement that t and v neessarily have auni�er.6.3 Let u1, u2, w1, w2 be terms. Consider the ompound terms t1 = f(u1; w1)and t2 = f(u2; w2), and suppose that u1 and u2 have a m.g.u. r and w1[r℄ andw2[r℄ have a m.g.u. s. Show the r . s is most general uni�er of t1 and t2.6.4 The onept of most general uni�er an be extended to sets of terms (in-stead of just pairs): we say r is a uni�er of a set S if t1[r℄ = t2[r℄ for all termst1; t2 2 S, and say r is a most general uni�er (m.g.u.) of S if any other uni�er sfators as s = r . k for some substitution k.If r is a m.g.u. of t1 and t2, and s is a m.g.u. of t1[r℄ and t3[r℄, prove that r . sis a m.g.u. of the set ft1; t2; t3g. Prove also that if this set has any uni�ers, thenit has a most general uni�er that an be obtained in this way.6.5 [Hard℄a. Let a relation � on terms be de�ned so that t � u if and only if t[s℄ = ufor some substitution s. Prove that � is reexive and transitive, and �ndan example that shows it is not anti-symmetri.b. Let �:Term �Term ! Var be a funtion that assigns a distint variable toeah pair of terms, and de�ne a binary operation u on terms as follows: if



68 Uni�ation and resolutionf is a funtion symbol of arity k, thenf(t1; : : : ; tk) u f(u1; : : : ; uk) = f(t1 u u1; : : : ; tk u uk);and for all other pairs of terms t and u, t u u = �(t; u). Prove that t u u isa greatest lower bound of t and u under u.. Explain how uni�ation an be used to �nd a least upper bound for twoterms t and u where one exists.



Chapter 7SLD{resolution and answer substitutions

Resolution is a better andidate for mahine implementation than ground reso-lution, but it still su�ers from some drawbaks. One is that there are severalways that resolution might be used to produe a refutation of a goal. We mighttry using lauses from the program diretly on the goal, mathing the lausehead with literals in the goal, and deriving a new goal, or we might try usingresolution to ombine program lauses with eah other, making new lauses thatan be used on the goal.This hoie of methods makes it appear that a mahine searhing for a refu-tation must explore a large and omplex searh spae, sometimes arrying outresolution steps that do not involve the urrent goal at all. But lukily this om-plexity is an illusion, beause (as we shall show in this hapter) every refutationan be reast in a `straight-line' form, where every resolution step involves a lausetaken diretly from the program and the goal that was produed in the previousstep. Derivation trees in straight-line form onsist of a long, thin spine, with theoriginal goal at the top and the empty goal at the bottom. All the nodes that arenot on the spine are leaves, labelled with variants of program lauses. This meansthat the mahine an searh for a refutation in a systemati way by starting withthe goal and repeatedly hoosing a program lause to resolve with it. There isstill some hoie here { and in fat it is this remaining element of hoie thatmakes logi programs non-deterministi { but the hoie is severely restrited.Another apparent soure of omplexity in searhing for a refutation is that agoal may have several literals, and we may hoose to solve them in any order.Even with straight-line derivations, we might hoose to work on any one of thegoal literals in the �rst resolution step, and subsequently we may hoose fromboth the other literals of the original goal and the new literals introdued by pre-vious resolution steps. It appears that, in order to sueed in �nding a refutation,we might have to onsider the literals in a partiular order, and even perhapsinterleave steps in the solution of one literal with the solution of other ones.Again, this omplexity is only apparent, beause every straight-line refutation69



70 SLD{resolution and answer substitutionsan be rearranged until the literals are solved in a predetermined order. To keepthe disussion simple, we shall onsider only the strit left-to-right order that isused by Prolog, but in fat the same argument shows that any hoie of order ispermissible.It is important to ut down the searh spae of derivations that a mahinemust examine, beause this makes exeution of logi programs more eÆient. Ifwe an show that every goal that has a refutation at all has one in a ertainrestrited form, then we an build an exeution mehanism that onsiders onlyrefutations in that restrited form. Also, if the form of refutations is restrited,it may be possible to use more eÆient data strutures to represent derivationsinside the implementation. The Prolog approah, in whih derivations have astraight-line form and literals are onsidered in a �xed order, is known as SLD{resolution. It allows a partiularly simple and eÆient form of searh, and allowsderivations to be represented by a simple stak-like data struture similar to theone used in implementing other programming languages.The �rst part of this hapter treats SLD{resolution in more detail, showingthat resolution remains omplete when we adopt the restritions of straight-lineform and a �xed order of solving literals. The seond part disusses a methodfor extrating an answer substitution from a refutation, so that solving a goaldoes not yield just a simple `yes' or `no', but also spei� values of variables thatmake the literals of the goal true if possible. Answer substitutions extrated bythis method are what Prolog displays when it has sueeded in solving a goal.We shall prove that the answers extrated from refutations are orret, and thatevery orret answer an be obtained in this way.7.1 Linear resolutionDEFINITIONWe say a derivation tree for an augmented program T [ fGg is linear if eitherit is a leaf, or it is of the form fork(C;D1; D2), where D1 is linear and D2 is aleaf.A linear tree looks like Figure 7.1. The lauses Ci are (instanes of) programlauses, and the lauses C 0i are derived by a resolution step that has a programlause as its right-hand input. Obviously, the head of C 0i+1 is an instane of thehead of C 0i, so if a linear derivation is atually a refutation, then all the lausesC 0i along the spine are goals, C0 is an instane of the original goal G, and C 0n isthe empty goal.We are now going to show how any refutation that uses ground resolutionan be reast in linear form. We shall then use the lifting lemma to argue thatrefutations using general resolution an also be put into linear form. The proofdepends on making moves that begin with a derivation that is not linear and endwith one that is a little bit more linear. Any non-linear derivation has at least



7.1 Linear resolution 71

C 0n�1 CnC 0n

C1C0 C 01 C2C 02 C3C 03

Figure 7.1: Linear derivation treeone fork node that is not on the spine, as shown in Figure 7.2. The spine of thederivation tree runs through C1 and C5, and C4 is a fork node that is not on thespine. The wavy-topped triangles labelled D1, D2 and D3 may be any derivationsthat have outomes C1, C2 and C3 respetively.If Figure 7.2 represents a valid derivation, then so does Figure 7.3. Thisderivation ontains the same lauses C1, C2 and C3 and has the same outomeC5, but it has a di�erent lause C4 inside. Suppose the lauses in the tree ofFigure 7.2 are as follows:C1 = (P :� Q1; : : : ; Qj; : : : ; Qn)C2 = (Q :� R1; : : : ; Rk; : : : ; Rm)C3 = (R :� S1; : : : ; Sp);with C4 obtained from C2 and C3 by resolving on R = Rk:C4 = (Q :� R1; : : : ; Rk�1; S1; : : : ; Sp; Rk+1; : : : ; Rm);



72 SLD{resolution and answer substitutions
D1 D2 D3C2 C3C4C5C1
Figure 7.2: A non-linear derivation tree
D1 D2 D3C2C1 C 04 C5 C3

Figure 7.3: Derivation tree after reshaping



7.2 SLD{resolution 73and C5 obtained from C1 and C4 by resolving on Q = Qj:C5 = (P :�Q1; : : : ; Qj�1; R1; : : : ; Rk�1;S1; : : : ; Sp; Rk+1; : : : ; Rm; Qj+1; : : : ; Qn):Remember that we are using ground resolution.In the new tree, C 04 is obtained by resolving the lauses C1 and C2 on Q = Qj:C 04 = (P :� Q1; : : : ; Qj�1; R1; : : : ; Rk; : : : ; Rm; Qj+1; : : : ; Qn);then C5 is obtained by resolving C 04 with C3 on R = Rk, with the same result asbefore. Thus Figure 7.3 shows a valid derivation.A move like this is possible whenever a tree ontains a fork node that is noton the spine, and it redues by one the number of suh nodes. So by makinga sequene of moves, we an redue any derivation tree to linear form. Moreformally, the move is the basis for an argument that every lause that an bederived from the augmented program by ground resolution an also be obtainedby linear ground resolution The argument is by mathematial indution on thenumber of o�-spine fork nodes.The refutation ompleteness theorem for ground resolution tells us that anygoal that is false in every model of a program has a refutation from the programby ground resolution. Combining this with the result we have just proved tellsus that suh a goal also has a linear ground refutation. Atually, we are moreinterested in general resolution than in ground resolution, so we now apply thelifting lemma. If T [ fGg j= # then (by refutation ompleteness of groundresolution) there is a derivation by ground resolution of # :� from T [ fGg. Aswe have just argued, this derivation may be put into linear form. Finally, we applythe lifting lemma: there is a strit derivation tree with the same shape as thislinear ground derivation (so it is also linear), suh that eah lause in the groundderivation is an instane of the orresponding lause in the strit derivation.In partiular, the outome # :� of the ground derivation is an instane of theoutome of the strit derivation. But this goal is an instane of nothing exeptitself, so the strit derivation is also a refutation of T [ fGg.7.2 SLD{resolutionAt eah step in onstruting a linear refutation, we must hoose whih literal inthe goal to math with program lauses. We now show that this hoie does notmatter, in the sense that if there is a refutation that takes the literals in anyorder, then there is one that takes them in left-to-right order. In other words,linear resolution remains refutation omplete if we further restrit it to operateon goal literals from left to right. We all a refutation that obeys this furtherrestrition an SLD{refutation. (SLD stands for `Seleted-literal Linear resolution



74 SLD{resolution and answer substitutions
G1 C1G2 C2G3

Figure 7.4: A fragment of a linear treefor De�nite lauses', and `de�nite lauses' are just Horn lauses under anothername.)Again, we use an argument based on a move that replaes a bad fragment ofderivation tree with a better one, and again we work with ground resolution �rstand then appeal to the lifting lemma, but the argument is a little more subtle thistime. The move begins with a fragment of a linear tree as shown in Figure 7.4;G1, G2 and G3 are goals, and C1 and C2 are instanes of program lauses. Letus suppose that the resolution step that derives G2 from G1 and C1 does not usethe �rst literal of G1, but that the resolution step that derives G3 from G2 andC2 does use the �rst literal of G2. Let the original goal and lauses beG1 = (# :� P1; P2; : : : ; Pk; : : : ; Pn)C1 = (P :� Q1; : : : ; Qm)C2 = (P 0 :� R1; : : : ; Rp):Let G2 be obtained from G1 and C1 by resolving on P = Pk where k > 1:G2 = (# :� P1; P2; : : : ; Pk�1; Q1; : : : ; Qm; Pk+1; : : : ; Pn):Beause k > 1, the �rst literal in G2 is idential with that in G1. Let G3 beobtained by resolving with C3 on this literal P 0 = P1:G3 = (# :� R1; : : : ; Rp; P2; : : : ; Pk�1; Q1; : : : ; Qm; Pk+1; : : : ; Pn):



7.2 SLD{resolution 75Our move exhanges the two resolution steps, so that now the �rst step resolvesG1 with C3 on P 0 = P1 to obtain the goalG02 = (# :� R1; : : : ; Rp; P2; : : : ; Pk; : : : ; Pn):Then the seond step resolves this with C2 on P = Pk to obtain the same out-ome G3 as before.What does a move like this ahieve? It moves the `good' resolution steploser to the top of the derivation tree, and pushes the `bad' step further down.Suppose we have a linear refutation of T [ fGg that does not obey left-to-rightorder. Let G be the goal # :� P1; P2; : : : ; Pm. At the top of the derivationtree is G, and at the bottom is the empty goal # :�. Sine all the literals ofG have disappeared by the time we reah the bottom of the tree, there mustbe some step that involves resolution on the leftmost literal P1 of G. Repeatedmoves an be used to bring this resolution step to the top of the tree, giving arefutation that begins with a `good' step, and these moves do not hange theheight of the tree.Now onsider the rest of the tree, beginning with the outome G1 of the �rst(now good) step. It is a linear ground refutation of G1, and it is one step shorterthan the original refutation of G0. This suggests an indutive argument; we anprove by indution on n that every linear refutation of length n an be arrangedto obey left-to-right order. The base ase n = 0 is trivial, beause the 0-stepderivation of # :� from itself is already an SLD{refutation. For the step ase,we �rst bring the right resolution step to the top of the tree by using a numberof our moves, then apply the indution hypothesis to all but the �rst step of thetree. This gives an SLD{refutation of G1, and putting bak the �rst step gives anSLD{refutation of G. Finally, this result extends to general resolution throughthe lifting lemma.As we shall see later, SLD{resolution an be implemented in an espeiallyeÆient way using a stak to hold the literals in the urrent goal. At eahresolution step, we pop a literal from the stak, math it with the head of aprogram lause by uni�ation, and if this is suessful, push instanes of theliterals in the body of the lause. This is the method used by Prolog.Although this method an be implemented eÆiently, and every goal has anSLD{refutation if it has any refutation at all, the searh for a refutation ansometimes be muh more diÆult with SLD{resolution than if the literals aretaken in a more `intelligent' order. For example, onsider using the lausegrandparent(a;) :� parent(a;b); parent(b;):to solve the goal # :� grandparent(x ; fred). Expanding the grandparent literalgives # :� parent(a;b); parent(b; fred):



76 SLD{resolution and answer substitutionsA stritly left-to-right strategy would ontinue by solving the leftmost literalparent(a;b). E�etively, the strategy would be to enumerate all pairs (a;b)where a is a parent of b, and hek eah of them to see if b is a parent offred . This is muh less e�etive than the alternative strategy of solving theliteral parent(b; fred) �rst (it an have at most two solutions), then looking forsolutions of parent(a;b) one the value of b is known. The left-to-right strategyfails beause it leads us to solve a literal that ontains no information that isspei� to the goal being solved.For this goal, it would be better to write the de�nition of grandparent in thelogially equivalent formgrandparent(a;) :� parent(b;); parent(a;b):sine the left-to-right order would then hoose the orret literal to solve �rst.But of ourse, that would not be any good if the goal were# :� grandparent(mary ;x ):In the absene of an intelligent seletion strategy, Prolog programmers sometimesneed to write several versions of a de�nitions, eah working well with a partiularpattern of known and unknown arguments. Often, however, the variety of pat-terns that atually ours in the exeution of a program is not very great, and asingle ordering of literals will work for all of them.7.3 Searh treesWe have shown that it is suÆient to use linear derivations, and to adopt theProlog strategy of working from left to right. The only remaining hoie we havein onstruting a refutation for a goal is whih lause to use in eah step. Thepossible hoies an be shown as a searh tree, in whih the original goal is shownat the root, and the hildren of eah node are the goals that an be derived fromit by using various lauses in a single step of SLD{resolution.As an example, Figure 7.5 shows the searh tree for the goal# :� append(a;b; 1:2:nil):with the usual two lauses for append . Eah ar is labelled with the lause andmathing substitution that is used. Thus either of the lauses may be used on theoriginal goal. The lause (app.1) leads to an immediate solution, with a = niland b = 1:2:nil , and the lause (app.2) has a mathing substitution with a = 1:a1and leads to the new goal # :� append(a1;b; 1:nil). The new goal generated byusing (app.2) an itself be resolved with either lause, leading to the solutionsa = 1:nil , b = 2:nil and, after another step, a = 1:2:nil , b = nil .



7.3 Searh trees 77# :� append(a;b; 1:2:nil):
# :� : # :� append(a1;b; 2:nil):

# :� : # :� append(a2;b;nil):
# :� :

(app.1), a = nil , b = 1:2:nil (app.2), a = 1:a1
(app.1), a1 = nil , b = 2:nil (app.2), a1 = 2:a2

(app.1), a2 = b = nil
Figure 7.5: Searh tree for an append goalIn this searh tree, all the branhes are �nite and end in the empty goal. Moretypial searh trees have branhes that end in failure, that is, a goal that is notempty but mathes no program lause. They may also have in�nite branhesthat orrespond to in�nite sequenes of resolution steps that never lead to failureor suess.Here is a program whose searh tree has branhes that end in failure, and alsoin�nite branhes that an be followed forever. It desribes the problem of makinga journey on a small airline serving European apitals (see Figure 7.6 for a map).ight(london; paris) :� :ight(london; dublin) :� :ight(paris; berlin) :� :ight(paris; rome) :� :ight(berlin; london) :� :journey(a;a) :� :journey(a;) :� ight(a;b); journey(b;):The �rst few lauses de�ne a relation ight(a;b) that is true if there is a diretight from a to b with seats available. The last two lauses de�ne a relationjourney(a;b) that is true if it is possible to make a journey of zero or moreights from a to b. One possible journey begins and ends at a without taking



78 SLD{resolution and answer substitutionsDublin
London

Berlin
Paris

RomeFigure 7.6: Map of airline ightsany ights. Other journeys begin with a ight from a to another ity b, andontinue with a further journey from b to the �nal destination  . Figure 7.7shows the searh tree when this program is used to exeute the goal# :� journey(london; rome):To save spae, the ity names are represented by their initial letters, d , l , r , et.The diagram shows three �nite branhes and an in�nite branh.The leftmost branh (1) ends in failure. It orresponds to a deision to y �rstfrom London to Dublin. Sine there are no available ights out of Dublin, thisleads to immediate failure. The next branh (2) ends in suess, and orrespondsto ying from London to Paris, then from Paris to Rome. Next to it is a failurebranh (3) that represents an attempt to y from London to Rome via Paris,then ontinue on a irular tour that ends in Rome. Sine Rome (like Dublin) isa dead end, the branh ends in failure. Finally, branh (4) represents a deisionto y round the iruit London{Paris{Berlin{London. After doing this, we areleft with the same problem we started with, namely the goal# :� journey(london; rome):The searh tree below this point is a opy of the entire searh tree, whih istherefore in�nite. The whole searh tree ontains an in�nite number of su-ess nodes, eah representing a sequene of ights that goes round the iruit



7.3 Searh trees 79# :� journey(l ; r):# :� ight(l ;x1); journey(x1; r):x1 = d x1 = p# :� journey(d ; r):(1) # :� journey(p; r):# :� ight(p;x2); journey(x2; r):x2 = r x2 = b
# :� :(2) # :� ight(r ;x3); journey(x3; r):(3)

# :� journey(b; r):# :� journey(r ; r): # :� ight(b;x4); journey(x4; r):x4 = l# :� journey(l ; r):(4)Figure 7.7: Searh tree for # :� ight(london; rome).a di�erent number of times before �nally ending in Rome. It also ontains anin�nite branh that orresponds to ying round the iruit forever.What will happen in pratie when we try to solve a goal that has an in�nitesearh tree? The answer depends on the searh strategy that is used to explorethe tree. Prolog's searh strategy is depth-�rst . It hooses one hild of the rootnode, and explores that hild and all its desendants before onsidering any of itsother hildren. In other words, the searh is a pre-order traversal of the searhtree. In Prolog, the order of visiting the hildren of a node orresponds to theorder in whih lauses appear in the program. Thus, in the example, a ight from



80 SLD{resolution and answer substitutionsLondon to Dublin will be onsidered before a ight to Paris, beause the lauseight(london; dublin) :� :appears earlier in the program than the lauseight(london; paris) :� :As we shall see in the last part of this book, depth-�rst searh an be im-plemented easily and eÆiently, beause the entire state of the searh an berepresented by a single ative path in the tree. However, depth-�rst searh spoilsthe ompleteness of SLD{resolution. If the searh tree ontains an in�nite branh,then depth-�rst searh will never reah any node that omes after that branhin the searh order. That is, any node that would be to the right of the in�nitebranh in a diagram of the tree. This means that a searh tree may ontain oneor more suess nodes, but depth-�rst searh may not �nd them beause it getsstuk on an in�nite branh �rst.In the example, the existene of an in�nite branh does not prevent depth-�rst searh from �nding the solutions, beause the in�nite branh is the rightmostone in the tree. This is just a fortunate oinidene, and a di�erent order forthe lauses in the ight relation would prevent the Prolog searh strategy from�nding any solutions. For some, programs, there may be no �xed order for thelauses that allows depth-�rst searh to �nd solutions.We all a searh strategy fair if eah node in the searh tree is visited even-tually, even if the searh tree has in�nite branhes. An example of a fair searhstrategy is breadth-�rst searh, whih visits all the nodes on eah level of thetree before beginning to visit the nodes on the next level. Thus breadth-�rstsearh visits the original goal, then all the goals that an be derived from it byone resolution step, then all the goals that an be derived in two resolution steps,and so on. For any node in the searh tree, there are only �nitely many nodesthat ome before it in this ordering, so the node will eventually be visited.Depth-�rst searh is not fair, beause nodes that are to the right of an in�nitebranh are never visited, no matter how long the searh ontinues. One solu-tion to this problem is to abandon depth-�rst searh in favour of a fair searhstrategy suh as breadth-�rst searh. Another solution, more pratial for Prologprogrammers, is to rewrite the program so that its searh spae no longer ontainsin�nite branhes. We shall look at tehniques for doing this for graph-searhingprograms in Chapter 9.7.4 Answer substitutionsSo far, our proof methods have been rather unsatisfying as ways of exeuting logiprograms, beause they have enabled us to say whether a goal an be solved, but



7.4 Answer substitutions 81have not given any information about what values for the variables lead to asolution. This information is impliitly present in the unifying substitutions thatare omputed as part of resolution, and we now look at ways of extrating theinformation from a refutation as an `answer substitution', as Prolog does whenit displays the answer to a goal.DEFINITIONLet T be a program and G = (# :� P1; : : : ; Pn) be a goal. An answer substitutionfor G with respet to T is a substitution s suh that T j= Pi[s℄ for eah i.The idea is that omposing all the uni�ers along the spine of an SLD{refutationwill give us an answer substitution. Atually, this `extrated' substitution isnot quite what we want, beause it may involve variables that were not in theoriginal goal, but were introdued from a program lause. So we de�ne also thesubstitution that is `omputed' by a refutation, in whih these extra variableshave been removed.DEFINITIONThe substitution s extrated from a derivation tree D for a program T is de�nedas follows:� If D = leaf (C[w℄), where C is a program lause and w is a renaming, thens = w.� IfD = fork(C;D1; D2), then s = s1.r, where s1 is the substitution extratedfrom D1 and r is the unifying substitution of the resolution step whihderived C.The substitution omputed by a refutation D of a goal G is the substitutions � vars(G), where s is the substitution extrated from D.In this de�nition, the notation s �A stands for the restrition of a substitution sto a set of variables A. It is de�ned by(s �A)(x ) = � s(x ); if x 2 Ax ; otherwiseThus s � A is the substitution that agrees with s on variables in the set A, andleaves other variables unhanged. The substitution extrated from a refutationD is thus the omposition of all the uni�ers along the leftmost branh of D,restrited to the set of variables that atually appear in the goal G at its top.Given these de�nitions, two questions naturally arise:� Are the substitutions omputed by refutations of a goal G orret answersubstitutions for G?



82 SLD{resolution and answer substitutions� Can every orret answer substitution for G be obtained as the substitutionomputed by a refutation of G?These questions orrespond losely to the onepts of soundness and ompletenessof inferene rules. The �rst question is answered positively by the followingtheorem:THEOREM [Answer orretness of resolution℄Let D be a refutation of T [ fGg, and let r be the substitution omputed by D.Then r is an answer substitution for G with respet to T .Proof: We shall show by indution that the substitution s extrated from D isan answer substitution for G. Sine r agrees with s on the variables that atuallyour in G, the theorem follows from this. For simpliity, we assume that thetop node of the SLD{refutation D is leaf (G) (with no renaming).We argue by indution on the length of D. If D has length zero, then itonsists of the single node leaf (# :�) and G is the empty goal # :�. For thisgoal, any substitution is (vauously) an answer substitution. If D has non-zerolength, suppose that the result holds for all shorter SLD{refutations. Considerthe �rst resolution step in D, and suppose it ombines the goalG = (# :� P1; : : : ; Pn)with the lauseC = (P :� Q1; : : : ; Qm)by mathing P and P1 with uni�er r. The outome of this step is the goalG0 = (# :� Q1; : : : ; Qm; P2; : : : ; Pn)[r℄:The remainder of the refutation D is an SLD{refutation of G0 one step shorterthan D, so we may assume that the substitution s0 extrated from it is an answersubstitution for G0. The substitution extrated from D itself is s = r . s0.Now let M be a model of T , and let g be any ground substitution. We areassuming that s0 is an answer substitution for G0. Thusj=M Qj[r℄[s0℄[g℄ for all j, 1 � j � m,and soj=M Qj[s℄[g℄ for all j, 1 � j � m.Beause j=M C, and so by substitution j=M C[s℄, it follows that j=M P [s℄[g℄, orequivalently that j=M P1[s℄[g℄. Also, j=M Pi[s℄[g℄ for 2 � i � n. Sine M and g



7.4 Answer substitutions 83are arbitrary, we may onlude that T j= Pi[s℄ for eah i. Hene s is an answersubstitution for G.So the answers omputed by refutations are orret. Now for the other question:Can all orret answers be obtained in this way? The answer is a quali�ed `yes'.If s is an answer substitution for G, then there is a refutation of G that omputesan answer substitution r suh that s = r . k for some k. If r is an answersubstitution, so is r . k for any k, so this is aeptable.THEOREM [Answer ompleteness of resolution℄Let s be an answer substitution for a goal G with respet to a program T . Thenthere is an SLD-refutation D of T [ fGg suh that the substitution r omputedby D satis�es s = r . k for some substitution k.Proof: Let vars(G) = fv1; : : : ;vng, and let the alphabet of T and G be L.Invent n new onstant symbols a1, : : : , an not in L. Let m be the substitutionfv1  a1; : : : ;vn  ang, and onsider the ground goal G[s.m℄ over the extendedalphabet L [ fa1; : : : ; ang.Let G = (# :� P1; : : : ; Pn). Beause s is an answer substitution for G, itfollows that j=M Pi[s℄ and so j=M Pi[s . m℄ for eah i and eah model M ofT , and so T [ fG[s . m℄g j= #. Hene by refutation ompleteness, there is anSLD{refutation D0 of G[s .m℄. Beause G[s .m℄ is a ground goal, D0 omputesthe identity substitution. The only plaes that the new onstants ai appear inthe refutation are along the spine, beause these onstants do not appear in anylause of the program T . So we an replae them by the original variables vi toobtain an SLD{refutation D of G[s℄ that also omputes the identity substitution.The refutation D begins with G[s℄, an instane of G. Now apply the liftinglemma to obtain an SLD{refutation D0 of G that has the same length as D. Infat, the refutation D0 onstruted in the proof of the lifting lemma omputes asubstitution r0 suh that s . r = r0 . k, where r is the substitution omputed byD (atually r = I) and k is another substitution. This fat an be proved byindution on the length of D. We onlude that s = r0 . k as required.Summary� Any derivation from a program an be put into linear form, in whih oneof the inputs to eah resolution step is a lause taken from the program.� A refutation that is in linear form an be rearranged so that subgoals aresolved in left-to-right order.� From any refutation, we an extrat a substitution that answers the goal.The substitutions that an be obtained in this way orrespond exatly withthe orret answers to the goal.



84 SLD{resolution and answer substitutionsExerises7.1 Redue the derivation of reverse(x1:x2:nil ;x2:x1:nil) given in Chapter 6 tothe form of a derivation by SLD{resolution.7.2 De�ne a relation palin(a) that is true of the list a is a palindrome, thatis, if it reads the same bakwards as forwards. For example, 1:2:3:2:1:nil is apalindrome, but 1:2:3:2:nil is not. Show the sequene of goals that are derivedin a suessful exeution of the goal # :� palin(1:x :y :z :nil). What answersubstitution is omputed?



Chapter 8Negation as failure

So far, we have treated in our theory only logi programs that are omposedentirely of Horn lauses, and have disallowed the use of the onnetive not.In Chapter 2, we saw that negation was useful in expressing the operation ofrelational di�erene, and { unlike the `or' onnetive involved in relational union{ it annot be avoided by rewriting the program. We therefore need to extendour theory to over negation, and we shall do so using the tehnique of negationas failure. The idea is that, at least for some formulas P , if we attempt to proveP and fail to do so, it is reasonable to dedue that notP is true.In the next setion, we apply this idea to the situation where goals may ontainuses of not, although the logi program itself ontains only pure Horn lauses.Setion 8.2 extends this to allow not to be used in the bodies of program lausesalso. Finally, Setion 8.3 explains how our semanti theory an be extended toover negation.8.1 Negation in goalsThe goal # :� member(5; 1:2:3:4:nil) asks whether 5 is a member of the list1:2:3:4:nil . Prolog exeutes this goal by omparing 5 with eah number inthe list and, �nding that it is di�erent from eah of them, gives the answer`no'. This suggests a method for exeuting goals that involves negation, suhas # :� notmember(5; 1:2:3:4:nil): delete the not and exeute the plain goalthat results. If Prolog answers `no' for the plain goal, give the answer `yes'for the negated goal, and if Prolog answers `yes' for the plain goal, give theanswer `no' for the negated goal. This method also gives the orret answerfor a goal like # :� notmember(2; 1:2:3:4:nil) that ought to fail. Prolog �ndsthat 2 is a member of 1:2:3:4:nil , so it gives the answer `yes' to the plain goal# :� member(2; 1:2:3:4:nil). Our method then tells us to answer `no' to thenegated goal. 85



86 Negation as failureThis method is alled negation as failure. It relies on the ompleteness of theresolution method used to exeute goals. If the goal has an answer, then we knowthat resolution will �nd it. Consequently, when resolution fails to �nd an answer,we may dedue that there is none, and thus that the literal in the goal is falsein the least model M0 of the program. Thus negation as failure interprets notwith respet to the least model, and relies on the losed world assumption, thatthe literals that are true in the intended use of the program are exatly the onesthat are true in its least model, and thus may be derived from it by resolution.Negation as failure works properly only for ground literals. If exeution ofa non-ground goal # :� P sueeds, we may onlude only that some groundinstane of P is true in the least modelM0, and not that every ground instane istrue; thus it would not be valid to onlude that every ground instane of notPis false, and doing so an lead to wrong answers. For example, onsider the goal# :� notmember(x ; 1:2:3:4:nil);x = 5: (�)We expet this goal to have the answer x = 5, beause 5 is not a memberof the list 1:2:3:4:nil . But if negation as failure is used to exeute this goal,together with Prolog's left-to-right strategy, then the following is what happens:the subgoal notmember(x ; 1:2:3:4:nil) is the �rst to be exeuted. Negation byfailure requires that we exeute the goal # :� member(x ; 1:2:3:4:nil) in its plaeand reverse the result. Now this goal has several solutions, inluding x = 1, sothe goal sueeds, and we make the negated literal fail. Consequently, the wholegoal (�) fails, although we expeted it to sueed.We ould try exeuting the goal# :� x = 5;notmember(x ; 1:2:3:4:nil):instead. This time, it is the subgoal x = 5 that is exeuted �rst. It sueeds,setting x to 5 and leaving the new goal# :� notmember(5; 1:2:3:4:nil):As we have seen, this goal sueeds under negation as failure, and the �nal resultis the orret answer x = 5. In Prolog, it is the programmer's responsibility toensure that any negated literal has beome a ground literal before it is seletedfor exeution. As the program is written, the literal may ontain variables, butthese variables must have been given ground values by the rest of the programbefore the literal is reahed in the usual left-to-right exeution order.Beause they must beome ground before they begin to be exeuted, negatedliterals an never ontribute anything to the answer substitution of a program,but an only be used to test values found elsewhere. This plaes a restritionon the use of negated literals in programs, but it is one that is satis�ed whennegation is used to ompute the di�erene of two relations as in the database



8.2 Negation in programs 87queries of Chapter 2. For example, the following goal asks for programs that areused by Mike, but not by Anna on the same mahine:# :� uses(mike; program ;mahine);not uses(anna; program ;mahine):If this goal is exeuted in left-to-right order, then a suessful attempt to solve the�rst subgoal uses(mike; : : :) results in spei� values for the variables programand mahine , and the funtion of the subgoal not uses(anna; : : :) is to apply afurther test to these known values.8.2 Negation in programsSo far we have restrited negation to goals that are ground literals, but it is alsouseful to write program lauses that have negated literals in their bodies. Indatabase queries, this allows us to de�ne views using relational di�erene, andthen use these views in formulating further views and queries.As another example of negation inside program lauses, here is a program thatde�nes the relation subset(a;b) that holds between known lists a and b if everymember of a is also a member of b:subset(a;b) :� notnonsubset(a;b):nonsubset(a;b) :� member(x ;a);notmember(x ;b):The relation nonsubset(a;b) holds if a is not a subset of b. This is so exatly ifthere is a member x of a that is not a member of b. The relation subset(a;b)holds exatly if the relation nonsubset(a;b) does not hold.This program an be used to hek that one list is a subset of another, and itdoes so by heking the members one by one. For example, onsider the goal# :� subset(2:4:nil ; 1:2:3:4:nil): (1)We �rst expand the subset literal to obtain# :� notnonsubset(2:4:nil ; 1:2:3:4:nil): (2)Now we use negation as failure, and try instead to solve the goal# :� nonsubset(2:4:nil ; 1:2:3:4:nil): (3)whih is immediately expanded into# :� member(x ; 2:4:nil);notmember(x ; 1:2:3:4:nil): (4)



88 Negation as failureThe exeution ontinues by solving the �rst subgoal member(x ; 2:4:nil) to givethe solution x = 2. We next try to solve the goal# :� notmember(2; 1:2:3:4:nil): (5)As we saw in the preeding setion, this goal fails, and this means that x = 2is not a solution of (4). We try again with the other solution to the subgoalmember(x ; 2:4:nil), that is, x = 4. This leads to the goal# :� notmember(4; 1:2:3:4:nil): (6)whih also fails. This exhausts the members of 2:4:nil , so the goal (4) fails, andso does (3). So by negation as failure, (2) sueeds, and so does the original goal(1). Thus negation as failure exeuted the goal (1) by heking that eah memberof the list 1:2:nil is also a member of 1:2:3:4:nil.For the exeution of a subgoal notP to work properly, it is neessary that Pshould have beome a ground literal before negation as failure is applied to it, forthe same reason that negation as failure ould only be used for ground literals ingoals. In the subset example, if lists a and b are known, then solving the subgoalmember(x ;a) makes x known, and the negated subgoal notmember(x ;b) isthen ground, so negation as failure an be used. If either of the lists a or b werenot ompletely known, however, the negated subgoal would not beome ground,and negation as failure ould not soundly be used.It is worth omparing the program for subset with an alternative de�nitionthat uses reursion instead:subset(nil ;b) :� :subset(x :a;b) :� member(x ;b); subset(a;b):Unlike the program that uses negation, this program an be used to generatesubsets of a given set, and unlike the other program, this one depends on thefat that sets are represented by lists. The program with negation depends onlyon the existene of a member relation de�ned on sets, and it would ontinue towork without hange if sets were represented by (say) binary trees instead oflists, provided a suitable member relation were de�ned.8.3 Semantis of negationThe semantis of programs that inlude negation poses a problem. Unlike pro-grams without negation, they do not neessarily have least models in the sense ofSetion 5.3. Consider, for example, the program that ontains the single lausep :� not q : (�)



8.3 Semantis of negation 89Here p and q are relation symbols with no arguments. This has a model in whihp is true and q is false, and also a model where p is false and q is true. Neitherof these models is smaller than the other, and their `intersetion' { in whih bothp and q are false { is not a model.One solution to this problem is to onsider only strati�ed programs, wherethe relations an be separated into layers, with relations in higher layers beingde�ned in terms of the ones in lower layers. Mutual reursion is allowed amongthe relations in any layer, but any use of negation must refer to a relation in alower layer than the one being de�ned. For example, the program for subset isstrati�ed: member is in the lowest layer, nonsubset (whih uses notmember) ina layer above it, and subset (whih uses notnonsubset) in a third layer.A strati�ed program has a natural model that is built up as follows: the �rstlayer ontains no negation at all, so we take the least model of that. Now wetreat relations from the �rst layer and their negation as �xed, and take the leastmodel of the seond layer that is onsistent with them. In this way we an takeleast models of eah suessive layer, and �nally build a model for the wholeprogram.For example, the single lause (�) is a strati�ed program with two layers. In thelower layer is the relation q (for whih there are no lauses). In the natural model,q is false. In the upper layer is p, whih is de�ned in terms of the negation of q.It is true in the natural model, beause not q is true. An example of a programthat is not strati�ed is the single lausep :� not p: (��)This fails to be strati�ed beause the lause de�nes p in terms of not p, and thatannot possibly refer to a lower level than the one ontaining p. Interestinglyenough, this program only has one model, the one in whih p is true.Summary� Negation as failure is a way of adding negation to Horn lause programs.� It works for negated ground literals, and treats them with respet to theleast model of the program.� The meaning of a program that ontains negated literals in its lauses anbe explained by dividing the program into layers.Exerises8.1 A route-�nding program for Amerian ities uses a list likenorth:east :west :north:nil



90 Negation as failureto represent a path that goes North for one blok, then East for a blok, thenWest for a blok, and �nally North again. This path an be optimized tonorth:north:nil , beause the instrutions to go East and then immediately Westagain an be deleted without a�eting the feasibility of the path or its startingand �nishing points.a. De�ne a relation optstep(a;b) that holds if path b is the result of deletingfrom path a a suessive pair of moves in opposite diretions.b. Use negation as failure to de�ne a relation optimize(a;b) that holds if pathb an be obtained from path a by repeated appliation of optstep, butannot be further optimized in this way. Your program should orretlyanswer questions like# :� optimize(north:east :west :north:nil ;b):where the �rst argument is a ground term.. Write another de�nition of optimize(a;b) by diret reursion on a. Com-pare the eÆieny of this de�nition with your answer to part (b).



Chapter 9Searhing problems

In Chapter 7, we used the problem of planning a sequene of airline ights toillustrate the onept of searh trees. In this hapter, we take a loser look at thisproblem and, more generally, the problem of �nding paths in a direted graph.Like a map of the airline network, a direted graph onsists of a olletion ofplaes or nodes and some onnetions or ars from one node to another. We allthe graph direted beause these ars have a diretion, and there an be an arfrom A to B without there being an ar from B to A.In searhing problems, we are interested in exploring the nodes that an bereahed from a spei�ed starting node by following the ars. The graph may havephysial loations as its nodes and physial onnetions as its ars, or it may bemore abstrat. An example is the famous `water jugs' problem. We are giventwo jugs, one that holds seven litres of water and another that holds �ve litres.We are allowed to �ll the jugs from a tap, empty them into the sink, or pourwater from one jug to another, and we are required to measure out four litres ofwater. We an represent this problem as searhing a graph in whih the nodesare labelled by the amount of water in eah jug, and the ars show the possiblemoves. For example, there is an ar from the node (5; 2) to the node (3; 5) thatorresponds to pouring water from the larger jug to the smaller one until thesmaller jug is full. The problem is to �nd a path in the graph from the startingnode (0; 0) to the node (4; 0) in whih the large jug ontains four litres of water.These problems all onern the transitive losure of a direted graph, a newgraph that shares the same nodes as the original graph, but has an ar from Ato B exatly if there is a path from A to B in the original graph. Another wayof desribing the transitive losure is to say it is the smallest graph (in the sensethat it has fewest ars) that ontains all the ars of the original graph, but is alsotransitive in the sense that whenever there is an ar from A to B and an ar fromB to C, there is also an ar from A to C. A useful variation on this theme is thereexive{transitive losure of a graph, whih also has an ar from eah node Ato itself. 91



92 Searhing problems9.1 Representing the problemIn logi programming, we an represent a direted graph by a relation ar(a;b)that holds if there is an ar on the graph from a to b. In simple examples, weould de�ne this relation by expliitly listing all the ars, but in more ompliatedsituations, the ar relation might be de�ned by a program. Logi programmingallows us to use the same graph-searhing program, however the ar relation isde�ned.In terms of ar, we an de�ne another relation onneted(a;b) that representsthe reexive{transitive losure. One way to do this makes expliit the fat thatonneted(a;b) holds if there is a path in the graph from a to b. In the followingprogram, a path of n ars is represented by a list of n+1 nodes, with eah nodeonneted to the next by an ar:onneted(a;b) :� ispath(p); �rst(p;a); last(p;b):ispath(a:nil) :� :ispath(a:b:p) :� ar(a;b); ispath(b:p):�rst(a:p;a) :� :last(a:nil ;a) :� :last(a:p;b) :� last(p;b):The program beomes shorter and more eÆient if we ombine the three on-ditions on p that are spei�ed in the de�nition of onneted into one relationpath(a;b; p), de�ning it diretly by reursion:onneted(a;b) :� path(a;b; p):path(a;a;a:nil) :� :path(a; ;a:b:p) :� ar(a;b); path(b; ;b:p):The path relation is often useful in itself, beause it an not only determinewhether a and b are onneted, but also return an expliit path between them.If the path is not required, we an simplify the program still further, like this:onneted(a;a) :� :onneted(a;) :� ar(a;b); onneted(b;):These three ways of de�ning the onneted relation are equivalent. This anbe shown using the program transformation methods that are the subjet ofChapter 13.



9.1 Representing the problem 93An alternative way to de�ne the onneted relation is by writing diretly thefat that it is a reexive and transitive relation ontaining ar:onneted(a;) :� onneted(a;b); onneted(b;):onneted(a;b) :� ar(a;b):onneted(a;a):As a Prolog program, this de�nition is muh less e�etive than the de�nitionsabove. Consider what happens if we try to solve a goal suh as# :� onneted(start ; �nish):in whih start and �nish are onstants. Assuming there is no diret ar fromstart to �nish, we must use the �rst lause to expand the goal into# :� onneted(start ;b1); onneted(b1; �nish):This an be expanded by using the �rst lause again, generating# :� onneted(start ;b2); onneted(b2;b1); onneted(b1; �nish):Obviously, this expansion proess ould go on forever, leading to an in�nitebranh in the searh tree. By way of ontrast, our earlier de�nitions of onnetedalways generate an ar subgoal as the �rst one to be solved after eah expansionstep. This means that, at least for �nite graphs without yles, the expansionproess must eventually terminate.Although this de�nition is not useful as a Prolog program, it gives us an op-portunity to be preise about what is meant by de�ning the reexive{transitivelosure as the `smallest' relation with ertain properties. As the program demon-strates, the properties in question an be expressed as a Horn-lause program,and the results of Setion 5.3 guarantee that this program has a smallest model.In this model, onneted is interpreted as the smallest reexive and transitiverelation that ontains the given ar relation.We an also hek that the two de�nitions of reexive{transitive losure areequivalent. Let r1 be the relation that holds between two nodes if there is a pathfrom one to the other, that is, r1 is the relation de�ned by our �rst series ofprograms for onneted . It is easy to see that r1 is reexive (beause a:nil is apath from a to a) and transitive (beause a path from a to b an be joined witha path from b to  to make a path from a to ), and that it ontains the arrelation. But the relation r2 de�ned by the new program is the smallest relationthat is reexive and transitive and ontains ar. So r1 ontains r2.Conversely, if r2 is the relation de�ned by the new program, then it satis�esthe lauses of our original program. The lauseonneted(a;a) :� :



94 Searhing problemsis true of r2 beause this is one of the lauses de�ning r2, and the lauseonneted(a;) :� ar(a;b); onneted(b;):is true of r2 beause it inludes ar and is transitive. Thus r2 is one of therelations that satisfy the lauses of our original program, so it ontains r1, thesmallest suh relation.9.2 Avoiding ylesThe �rst series of programs in the preeding setion work reasonably well forsearhing �nite graphs that have no yles, that is, where there is never anynon-trivial path from a node to itself. Suh graphs result in searh trees that are�nite. If the graph has yles, however, these programs behave badly, beausethe yles in the graph lead to in�nite branhes in the searh tree, and Prolog'sdepth-�rst strategy an lead it to get stuk exploring an in�nite branh. We sawan example of this in Setion 7.3.There are two solutions to this problem with depth-�rst searh. One is toabandon Prolog in favour of an implementation of logi programming that hasa fair searh strategy, suh as breadth-�rst searh. This solution sounds drasti,but it an be made feasible by using Prolog as a vehile for implementing fairsearhing. Prolog systems often inlude non-logial features that make this easier,but we look at a simple way of doing it in the next setion.Another way of avoiding the problems of depth-�rst searh is to rewrite ourprograms so that the searh tree no longer ontains in�nite branhes. For graphsearhing, we an use the tehnique of loop avoidane. We replae the relationonneted(a;b) with a new relation onn1 (a;b; s), for s a list of nodes, thatholds if a is onneted to b by a path that does not visit any member of s at anintermediate point. In writing a reursive de�nition of this relation, we an addeah node visited to the list s of nodes to avoid later in the searh. This ensuresthat no yli paths are onsidered. Here is the program:onn1 (a;a; s) :� :onn1 (a; ; s) :�ar(a;b);notmember(b; s);onn1 (b; ;b:s):The onneted relation an now be de�ned like this:onneted(a;b) :� onn1 (a;b;b:nil):



9.2 Avoiding yles 95It is easy to extend this program to ompute a path from a to b instead of just�nding whether on exists.With this modi�ed program, the searh tree for a �nite graph is �nite, even ifthe graph has yles. This is beause the number of nodes in the list s inreasesby one in eah suessive level of the searh tree, until s ontains every reahablenode in the graph. For example, in the airline ight problem shown in Figure 7.6,the beginning goal would be# :� onn1 (london; rome; london:nil):Taking the ight from London to Paris leads to the new goal# :� onn1 (paris; rome; paris:london:nil):There are now two possibilities. Taking the ight from Paris to Rome leads tothe new goal# :� onn1 (rome; rome; rome:paris:london:nil):that is solved immediately. Taking the ight from Paris to Berlin leads to thegoal # :� onn1 (berlin; rome; berlin:paris:london:nil):The important point is that it is not now possible to take the ight from Berlinto London, beause London is on the list of plaes that have already been visited.Thus Berlin beomes a dead end in the searh tree, and the whole searh tree ismade �nite.This tehnique of loop avoidane an also be used to solve the `water jugs'problem. We an represent a state of the system in whih the large jug ontainsx litres and the small jug ontains y litres by the term state(x ;y ). The arrelation an be de�ned using the built-in arithmeti relations of pioProlog. Hereis one lause that says it is possible to pour water from the large jug into thesmall one until the small jug is full:ar(state(x ;y ); state(u ; 5)) :�plus(x ;y ; z); plus(u ; 5; z):The two plus literals in the body of this lause state that the total amount ofwater z must be the same before and after the transfer. PioProlog allows onlynon-negative integers, so the �nal amount u in the large jug annot be negative.Other lauses for ar model the �lling of the jugs from the tap and their emptyinginto the drain, and other kinds of transfer from one jug to the other.



96 Searhing problems9.3 Bounded and breadth-�rst searhAnother method for removing in�nite branhes from the searh tree is to plae abound on the number of ars to be traversed. The e�et is to ut o� the searhtree below a ertain depth. Here is the de�nition of a relation onn2 (a;b;n), forn a natural number, that holds if there is a path from a to b of at most n ars:onn2 (a;a;n) :� :onn2 (a; ;n) :�plus(n1; 1;n);ar(a;b);onn2 (b; ;n1):Again, this program an easily be extended to return a path instead of just �ndingwhether one exists.To use this program, we have to hoose a suitable value for n . If the graphbeing searhed has a known diameter, that is, a known upper bound on theshortest path length from one node to another, then that provides a reasonablevalue for n . Otherwise, we an use a tehnique alled iterative deepening . Thismeans trying �rst a small value of n . If this does not work, we try suessivelylarger values until we �nd one that does give a solution. It is possible to writean outer Prolog program that alls the searhing program iteratively, and stopswhen a solution is found.An attration of iterative deepening is that it an be used with any ombina-torial searh problem, not just graph searhing. Any Horn lause program anbe modi�ed to plae a bound on the number of resolution steps. If the bound isexeeded in exeuting a goal, the goal is made to fail. The idea is to replae eahrelation r(x1; : : : ;xk) with a new relation r1 (x1; : : : ;xk ;b0;b) that holds if theorresponding instane of r holds, and it is solved in at most b0 resolution steps,and b is the di�erene between b0 and the number of resolution steps atuallyused.If the original program ontains the lauser(x ; z) :� q(x ;y ); r(y ; z):then the modi�ed program will ontain the following lause:r1 (x ; z ;b0;b) :�plus(b1; 1;b0); q1 (x ;y ;b1;b2); r1 (y ; z ;b2;b):We �rst ount one resolution step for using the lause, and pass to the q1 subgoalthe number of steps remaining. It returns the number of steps left after it hasbeen solved, and we pass these to the reursive r1 subgoal for its use. Finally,



9.3 Bounded and breadth-�rst searh 97r1 returns the number of steps still unused, and these are passed bak to theoriginal aller of r1 .By making this modi�ation systematially to every lause in the program,we obtain a version of the program that performs bounded searh. An outerwrapper an turn this into a program that searhes by iterative deepening.The method of breadth-�rst searh an be simulated inside a Prolog programif we hange slightly the way the graph is represented. In plae of the relationar(a;b), we use a relation next(a; s) that holds if s is the list of immediateneighbours of a, that is, a list that ontains in some order all the nodes b suhthat ar(a;b). Pure logi programming allows us to de�ne the ar relation interms of the next relation like this:ar(a;b) :� next(a; s);member(b; s):However, we annot de�ne next in terms of ar diretly, although many Prologsystems provide a built-in relation listof that makes it possible:next(a; s) :� listof (b; ar(a;b); s):The listof relation annot, unfortunately, be de�ned by a logi program.In terms of next , we an de�ne a relation reah(s;b), for s a list of nodes,that holds if b an be reahed from any node in the list s:reah(b:s;b) :� :reah(a:s;b) :�next(a;t);append(s;t ;u);reah(u ;b):Given a value for a, there is only one solution to the subgoal next(a;t), so thereis almost no branhing in the searh tree for this program. Instead, the programmaintains an expliit list of the nodes that are adjaent to nodes that it hasvisited, and visits them one by one, adding their neighbours to the list.The searh is in breadth-�rst order, beause the neighbours of eah node areadded to the bak of the list of nodes to visit, so all the neighbours of thestarting node will be visited before the nodes that are neighbours of these nodes inturn. Replaing the append literal with append(t ; s;u) would reverse this order,making the algorithm perform depth-�rst searh instead, visiting the hildren ofeah node before its siblings.



98 Searhing problemsSummary� Searhing a graph is an instane of the problem of omputing the transitivelosure of a relation. Depth-�rst searh performs badly if the graph hasyles.� Other searh strategies, suh as loop-avoidane, breadth-�rst searh andbounded searh, perform better for suh problems.� These searh strategies an be simulated in Prolog by modifying the pro-gram appropriately.Exerises9.1 Augment the loop-avoidane algorithm so that eah ar an have a name,and the relation ar(n ;a;b) holds if n is the name of an ar from a to b.Rede�ne the onn relation so that it assembles a list of ars in the path by name.Complete the de�nition of the ar relation for the `water jugs' problem, addinga name for eah move. What is the shortest method for measuring four litres ofwater, ending in the state state(4; 0)?9.2 Write a logi program to solve the following puzzle: A farmer must ferry awolf, a goat and a abbage aross a river using a boat that is too small to takemore than one of the three aross at one. If he leaves the wolf and the goattogether, the wolf will eat the goat, and if he leaves the goat with the abbage,the goat will eat the abbage. How an he get all three aross the river safely?9.3 Arithmeti expressions an be represented by terms that use the funtionsymbols add=2, subtrat=2, multiply=2 and divide=2, so that the expression (4 +4 � 4)=4 would be represented by the termdivide(add(4; times(4; 4)); 4):De�ne a relation trial(e) that holds if e represents a well-formed arithmetiexpression in whih the operands are four opies of the digit 4. How many suhexpressions are there? [Hint: suh expressions have a bounded depth and abounded number of operators.℄9.4 The puzzle alled `Towers of Hanoi' onsists of three spikes, on whih �veperforated diss of varying diameters an be plaed. The rules state that no dismay ever be plaed on top of a smaller dis. The diss are initially all on the �rstspike, and the goal is to move the diss one at a time so that they all end up (indereasing order of size) on the third spike. Formulate this puzzle as a graph-searhing problem. Calulate the number of states that the system an oupy,and suggest a searh method that will lead to a solution in a reasonable time.



Chapter 10Parsing

Parsing is the problem of determining whether a given string onforms to thesyntax rules of a language. It is an good appliation for logi programming,beause the rules of a language an be expressed as lauses in a logi program,and (at least in priniple) parsing a string amounts to solving a goal with thatlogi program.10.1 Arithmeti expressionsAs an example, we shall use the following set of rules for the syntax of arithmetiexpressions in the variables x and y:expr ::= term j term `+' expr j term `-' exprterm ::= fator j fator `*' term j fator `/' termfator ::= `x' j `y' j `(' expr `)'The �rst rule says that an expression (expr) may be either a term, or a termfollowed by a plus sign and another expression, or a term followed by a minussign and another expression. Thus an expression is a sequene of terms separatedby plus and minus signs. Similarly, a term is a sequene of fators separated bymultipliation and division signs. A fator is either a variable (`x' or `y'), or anexpression in parentheses.The simplest way to translate these rules into a logi program is to makeeah syntati lass suh as expr or term orrespond to a one-argument relation,arranging that expr(a) is true if and only if the string (list of haraters) a formsa valid member of the lass expr , and so on. Beause one form of expression issimply a term, we an write down the lauseexpr(a) :� term(a): 99



100 Parsingexpr(a) :� term(a):expr(a) :�append(b; ;a); term(b);append(\+"; e ;); expr(e):expr(a) :�append(b; ;a); term(b);append(\-"; e ;); expr(e):term(a) :� fator(a):term(a) :�append(b; ;a); fator(b);append(\*"; e ;); term():term(a) :�append(b; ;a); fator(b);append(\/"; e ;); term():fator(\x") :� :fator(\y") :� :fator(a) :�append(\(";b;a); append( ; \)";b); expr():Figure 10.1: First program for parsing expressionsAnother possibility for an expression is a term followed by a plus sign and anotherexpression. This an be expressed using the append relation:expr(a) :�append(b; ;a); term(b);append(d; e ;);d = \+"; expr(e):To be a valid expression of this kind, a string a must split into two parts b and , where b is a valid term, and  onsists of a plus sign followed by anotherexpression. This last ondition is expressed using another instane of append .Fixed symbols like `+' and `x' an be translated by onstant strings. A usefulnotation uses double quotes for strings, so that \+" means `+':nil and \mike"means `m':`i':`k':`e':nil . Using this notation, we an translate the whole set ofrules to give the logi program shown in Figure 10.1.This translation is orret in a logial sense, but it is very ineÆient when runas a program. For example, to parse the string \x*y+x", we must use the seondlause for expr , splitting the string into a part \x*y" that satis�es term, anda part \+x" that is a plus sign followed by an expr . The Prolog strategy usesbaktraking to ahieve this, splitting the input string at eah possible plae untilit �nds a split that allows the rest of the lause to sueed. This means testing



10.2 Di�erene lists 101eah of the strings \ ", \x", \x*" with the relation term, before �nally sueedingwith \x*y". Testing the subgoal term(\x*y") leads to even more baktraking,so the whole proess is extremely time-onsuming.10.2 Di�erene listsAn equivalent but more e�etive translation uses a tehnique alled di�erenelists to eliminate the alls to append and drastially ut down the amount ofbaktraking. The idea is to de�ne a new relation expr2 (a;b) that is true if thestring a an be split into two parts: the �rst part is a valid expression, and theseond part is the string b. This relation ould be de�ned by the single lauseexpr2 (a;b) :� append( ;b;a); expr():But we an do better than this by de�ning expr2 diretly, without using appendor expr . For example, the seond lause for expr leads to this lause for expr2 :expr2 (a;d) :� term2 (a;b); eat(`+';b;); expr2( ;d):Here we have used a relation term2 that is related to term as expr2 is relatedto expr , and a speial relation eat . The whole lause an be read like this: tohop o� an expression from the front of a, �rst hop o� a term to give a stringb, then hop o� a plus sign from b to give a string  , and �nally hop of anexpression from  to give the remainder d. The tehnique is alled `di�erenelists' beause the pair (a;d) represents a list of haraters that is the di�erenebetween a and d. The relation eat is de�ned by the single lauseeat(x ;a;b) :� a = x :b:It is true if the string b results from hopping o� the single harater x from thefront of a.Other rules an be re-formulated in a similar way. For example, the rulefator ::= `(' expr `)'an be re-formulated asfator2 (a;d) :� eat(`(';a;b); expr2(b;); eat(`)'; ;d):Figure 10.2 shows the omplete set of rules translated in this style. In order totest a string suh as \(x+y)-x" for onformane to the syntax rules, we formulatethe query# :� expr2 (\x*y+x"; \ "):



102 Parsingexpr2 (a;b) :� term2 (a;b):expr2 (a;d) :� term2 (a;b); eat(`+';b;); expr2( ;d):expr2 (a;d) :� term2 (a;b); eat(`-';b;); expr2( ;d):term2 (a;b) :� fator2 (a;b):term2 (a;d) :� fator2 (a;b); eat(`*';b;); term2( ;d):term2 (a;d) :� fator2 (a;b); eat(`/';b;); term2( ;d):fator2 (a;b) :� eat(`x';a;b):fator2 (a;b) :� eat(`y';a;b):fator2 (a;d) :� eat(`(';a;b); expr2(b;); eat(`)'; ;d):Figure 10.2: Seond program for parsing expressionsThis asks whether it is possible to hop o� an expression from the front of \x*y+x"and leave the empty string; in other words, whether \x*y+x" is itself a validexpression. Solving this goal involves baktraking among the di�erent rules,but muh less than before.10.3 Expression treesIn appliations suh as ompilers, it is useful to build a tree that represents thestruture of the input program. In our example of arithmeti expressions, wemight represent the expression \x*y+x" by the termadd(multiply(vbl(x ); vbl(y)); vbl(x )):Representing the expression like this makes it easy to evaluate it for given valuesof x and y, or to translate it into mahine ode in a ompiler.We an extend our parser so that it an build a tree like this, in additionto heking that a string obeys the language rules. We extend the relationexpr2 (a;b) into a new relation expr3 (t ;a;b) that is true if the di�erene be-tween string a and string b is an expression represented by t . One lause in thede�nition of expr3 is this:expr3 (add(t1;t2);a;d) :�term3 (t1;a;b); eat(`+';b;); expr3(t2; ;d):As before, this says that an expression may have the form term `+' expr . Theadded information is that if the term on the left of `+' is represented by the treet1, and the expression on the right is represented by t2, then the whole expressionis represented by the tree add(t1;t2).



10.3 Expression trees 103Other lauses in the parser an be augmented in similar ways. One lauseallows an expression in parentheses to be used as a fator; it turns into the newlausefator3 (t ;a;d) :�eat(`(';a;b); expr3 (t ;b;); eat(`)'; ;d):The tree for the whole fator is the same as the tree for the expression inside. Inthis way, we an be sure that parentheses have no e�et on the `meaning' of anexpression, exept insofar as they a�et the grouping of operators.One the whole parser has been augmented in this way, we an use it to analysestrings and build the orresponding tree. For example, the goal# :� expr3 (t ; \x*(y+x)"; \ "):will sueed, with the answert = multiply(vbl(x ); add(vbl(y); vbl(x ))):Rather unusually, the parser an also be used `bakwards', produing a stringfrom a tree. For example, the goal# :� expr3 (add(vbl(x );multiply(vbl(x ); vbl(y)));a; ):has several answers, and the �rst one found by Prolog is a = \x+x*y". Theother answers have extra parentheses added around various sub-expressions. This`unparsing' funtion might be useful for generating error messages in a ompiler,or for saving expression trees in a text �le so they ould be parsed again later.The parser for expressions has an unfortunate aw. The expression \x-y-x"would be assigned the treesubtrat(vbl(x ); subtrat(vbl(y); vbl(x )));that is, the same tree as would be assigned to the expression \x-(y-x)". This iswrong, beause the usual onvention is that operators `assoiate to the left', sothe orret tree would besubtrat(subtrat(vbl(x ); vbl(y)); vbl(x ));the same as for the expression \(x-y)-x". The problem is with the syntax ruleexpr ::= term `-' expr ;and others like it. This rule suggests that where several terms appear interspersedwith minus signs, the most important operator is the leftmost one. The other



104 Parsingminus signs must be ounted as part of the expr in this rule, not part of the term,beause a term annot ontain a minus sign exept between parentheses.We ould orret the syntax rules by replaing this rule withexpr ::= expr `-' term;but unfortunately this would lead to the lauseexpr(a;d) :� expr(a;b); eat(`-';b;); term( ;d):This lause behaves very badly under Prolog's left-to-right strategy, beause aall to expr leads immediately to another all to expr that ontains less infor-mation. For example, the goal expr(\x-y"; \ ") immediately leads to the subgoalexpr(\x-y";b), and so to an in�nite loop. This is alled left reursion, beausethe body of the rule for expr begins with a reursive all. Left reursion ausesproblems for top{down parsing methods like the one that naturally results fromProlog's goal-direted searh strategy.The solution to this problem is to rewrite the grammar, avoiding left reursion.The following syntax rules are equivalent to our original ones, in that they aeptthe same set of strings:expr ::= term exprtailexprtail ::= empty j `+' term exprtail j `-' term exprtailterm ::= fator termtailtermtail ::= empty j `*' fator termtail j `/' fator termtailfator ::= `x' j `y' j `(' expr `)'The idea here is that an exprtail is a sequene of terms, eah preeded by a plusor minus sign. In order to build the tree for an expression, we translate the rulesfor exprtail into a four-argument relation exprtail(t1;t ;a;b) that is true if thedi�erene between a and b is a valid instane of exprtail , and t is the result ofbuilding the terms onto the tree t . By building on the terms in the right way,we obtain the orret tree for eah expression. The omplete translation of thenew set of rules is shown in Figure 10.3.10.4 Grammar rules in PrologThe tehnique of building parsers by diret translation of syntax rules is so usefulthat many Prolog systems implement a speial notation for it. In this notation,the lauseexpr(add(t1;t2);a;d) :�term(t1;a;b); eat(`+';b;); expr(t2; ;d):



10.4 Grammar rules in Prolog 105expr(t ;a;) :� term(t1;a;b); exprtail(t1;t ;b;):exprtail(t1;t1;a;a) :� :exprtail(t1;t ;a;d) :�eat(`+';a;b); term(t2;b;);exprtail(add(t1;t2);t ; ;d):exprtail(t1;t ;a;d) :�eat(`-';a;b); term(t2;b;);exprtail(subtrat(t1;t2);t ; ;d):term(t ;a;) :�fator(t1;a;b); termtail(t1;t ;b;):termtail(t1;t1;a;a) :� :termtail(t1;t ;a;d) :�eat(`*';a;b); fator(t2;b;);termtail(multiply(t1;t2);t ; ;d):termtail(t1;t ;a;d) :�eat(`/';a;b); fator(t2;b;);termtail(divide(t1;t2);t ; ;d):fator(vbl(x );a;b) :� eat(`x';a;b):fator(vbl(y);a;b) :� eat(`y';a;b):fator(t ;a;d) :�eat(`(';a;b); expr(t ;b;); eat(`)'; ;d):Figure 10.3: Final program for parsing expressionsis written asexpr(add(t1;t2))! term(t1); [`+'℄; expr(t2):An arrow replaes the usual `:�' sign, and means that the literals in the head andbody of the lause are translated speially. Eah ordinary literal in the lausehas two impliit arguments for their input and output strings. Atual symbolsare written in square brakets, and translate into alls to eat .Many Prolog systems allow grammar rules like this to be inluded in anyprogram, and perform the translation as the program is loaded into the Prologsystem.



106 ParsingSummary� Syntax rules an be represented diretly as logi programs.� The tehnique of di�erene lists makes them work well as Prolog programsfor parsing.� Parsers written in this way an also build a representation of expressions astrees.� Many Prolog systems provide speial notation for building parsers.Exerises10.1 Use the tehnique of di�erene lists to write a de�nition of the relationatten (from Chapter 3) that does not use append .10.2 The parser for expressions in the text does not allow spaes to appear inexpressions, so that \x*y+x" is reognized as a valid expression, but \x * y + x"is not. De�ne a relation spae(a0;a) that is true if the di�erene between a0 anda onsists of zero or more spaes, and use this relation to write a new parser forexpressions that ignores spaes before eah symbol.10.3 De�ne a relation number(n ;a;b) that holds if the di�erene between aand b is a non-empty sequene of deimal digits, and the integer n is the integervalue of this number. Use this relation to extend the parser for expressions toallow integer onstants in addition to the existing forms of expressions.10.4 A good sequene onsists either of the single number 0, or of the number1 followed by two other good sequenes: thus 1:0:1:0:0:nil is a good sequene, but1:1:0:0:nil is not. De�ne a relation good(a) that is true if a is a good sequene.Modify your program if neessary so that the Prolog goal # :� good(a) willenumerate all good sequenes in order of inreasing length.



Chapter 11Evaluating and simplifying expressions

In the preeding hapter, we saw that algebrai expressions an be representedby tree-strutured terms, and de�ned parsing relations that link the textual formof an expression with its representation as a tree. This representation of expres-sions as trees is an important tehnique in building ompilers, where algorithmsfor heking language rules and generating objet ode are muh more readilyexpressed in terms of the tree than in terms of the textual form of an expression.This hapter introdues some of the tehniques that are used to build ompil-ers and other programs that manipulate symboli expressions, by showing logiprograms that evaluate or simplify algebrai expressions represented as trees.11.1 Evaluating expressionsSimple arithmeti expressions are made up of operators like addition and mul-tipliation, together with integer onstants. We an represent the operators byfuntion symbols add and multiply , and the onstants diretly by integers, so thatthe expression 3 � 4 + 5 would be represented by the term add(times(3; 4); 5).PioProlog provides a built-in relation integer(x ) that is true if x is a (positive)integer, and built-in relations plus(x ;y ; z) and times(x ;y ; z) that are true if zis the result of adding or multiplying the integers x and y . These relations allowus to de�ne reursively a relation value(e ;v ) that is true if v is the value ofexpression e :value(x ;x ) :� integer(x ):value(add(e1; e2);v ) :�value(e1;v1); value(e2;v2);plus(v1;v2;v ): 107



108 Evaluating and simplifying expressionsvalue(multiply(e1; e2);v ) :�value(e1;v1); value(e2;v2);times(v1;v2;v ):The value of an expression that is an integer onstant is that onstant itself,and the value of an expression suh as add(e1; e2) an be found by taking thevalues of the sub-expressions e1 and e2 separately, then adding them together.We ould put this program together with a parser built along the lines suggestedin Chapter 10 to de�ne a relation alulator(s;v ) that holds if v is the value ofthe string s onsidered as an arithmeti expression:alulator(s;v ) :� expr(e ; s; \ "); value(e ;v ):For example, the goal # :� alulator(\(3+4)*5";x ) would give the answerx = 35. Our relation for evaluating expressions does not need to deal expli-itly with expressions that ontain parentheses, beause these are handled bythe parser. The tree it builds for an expression reets the grouping that isimplied by parentheses, and the evaluation is done aording to this groupingstruture.The next step in sophistiation is to allow expressions that ontain variables aswell as onstants. For example, the expression x+ 3 � y, whih we an representby the term add(vbl(x );multiply(3; vbl(y))). The variables in this expression arerepresented by terms like vbl(x ). Notie that, from pioProlog's point of view,this term is a onstant that onsists of the funtion symbol vbl applied to theatomi onstant x . The term vbl(x ) represents a ompletely known expression,whereas vbl(x ) is an unknown expression that might be either the expressionvbl(x ) or the expression vbl(y).To evaluate an expression that ontains variables, we need to know what valueto give to eah variable when it appears in the expression. This information anbe represented by a list of terms val(x ;v ) where x is a variable name like x ory , and v is an integer, its value. For example, the listval(x ; 3):val(y ; 4):nilrepresents the state of a�airs in whih x has value 3 and y has value 4. We allsuh a list an assignment.Here is the de�nition of a relation lookup(x ;a;v ), for a an assignment, thatholds if a gives the value v to variable x :lookup(x ;a;v ) :� member(val(x ;v );a):This de�nition uses the member relation from Chapter 3 in a lever way, beausetypially the variable x in the term val(x ;v ) will be known when the memberliteral omes to be solved, but the value v will not be known. The e�et is



11.2 Simplifying expressions 109that val(x ;v ) will be mathed with suessive elements of the list a until anelement is found that has x as its �rst omponent, and the value of v is then theorresponding seond omponent. We ould also de�ne lookup by diret reursionlike this:lookup(x ; val(x ;v ):a;v ) :� :lookup(x ; val(y ;w ):a;v ) :� lookup(x ;a;v ):This lookup relation gives us the vital ingredient needed to extend the valuerelation de�ned earlier, giving a relation eval(e ;a;v ) that holds if v is the valueof expression e under assignment a:eval(x ;a;x ) :� integer(x ):eval(vbl(x );a;v ) :� lookup(x ;a;v ):eval(add(e1; e2);a;v ) :�eval(e1;a;v1); eval(e2;a;v2); plus(v1;v2;v ):eval(multiply(e1; e2);a;v ) :�eval(e1;a;v1); eval(e2;a;v2); times(v1;v2;v ):The rules for addition and multipliation are as before, exept that the assign-ment a supplied for the whole expression is passed on to the reursive alls ofeval that deal with the operands. The real hange is the lause that deals withvariables, whose values are found by using lookup and the assignment a.11.2 Simplifying expressionsUsing terms to represent algebrai expressions makes it easy to write programsthat manipulate expressions symbolially. The aim in this setion will be toexplore this idea by de�ning a relation simplify(e1; e2) that holds for expressionse1 and e2 if e1 an be simpli�ed algebraially to give e2. Suh a relation mightbe used in a ompiler to optimize expressions, reduing the number of arithmetioperations needed to evaluate them. It an also be used to arry out a simplekind of algebrai proof, beause we an prove that two expressions are equal bysimplifying both of them and heking that the results are the same.In the domain of Boolean expressions, we say that an expression is a tautologyif it has value 1 or true whatever Boolean values are given to the variables itontains. One way of heking that an expression is a tautology is to evaluate itfor every ombination of values, heking that the answer is 1 eah time. Anotherway is to simplify the expression algebraially and hek that the result is thelogial onstant 1. The pratial exerise at the end of this hapter asks you toimplement both these methods.



110 Evaluating and simplifying expressionsSimplifying an expression involves some spei� information about the oper-ators that may be present in the expression. For example, we might use thefat that adding 0 to an expression or multiplying it by 1 leaves the value ofthe expression unhanged. We an express this information by lauses like thefollowing:simp(add(e ; 0); e) :� :simp(multiply(e ; 1); e) :� :simp(add(0; e); e) :� :simp(multiply(1; e); e) :� :These lauses form part of the de�nition of a relation simp(e1; e2) that holds ife1 an be simpli�ed in one step to give e2. Later, we shall use simp to de�ne ourdesired relation simplify , taking into aount at that stage the possibility thatsimplifying an expression will take several steps, with eah step leading to thenext.We might also use the fat that multipliation distributes over addition, i.e.,that a � (b+ ) = a � b+ a � , by adding the following lause to simp:simp(multiply(a; add(b;));add(multiply(a;b);multiply(b;))) :� :Suh a simpli�ation step might be useful in proving algebrai identities, but ina ompiler we might hoose to use the equation the other way, thereby reduingthe number of multipliations needed to evaluate the expression.These spei� rules for simp ontain some of the information we need aboutthe algebrai properties of the operators, but they are not very useful on theirown. For example, one of the rules will allow us to simplify x � 1 { representedby the term multiply(vbl(x ); 1) { to obtain the result x, but it will not allow usto simplify the expression x � 1 + y, whih is represented by the termadd(multiply(vbl(x ); 1); 0):This happens beause the left-hand side of our simpli�ation rule appears not asthe whole expression to be simpli�ed, but only as a sub-expression, and our rulesso far work only on whole expressions.This problem is solved by adding rules that show how to simplify expressionsby simplifying their sub-expressions.simp(add(a;b); add(a1;b)) :� simp(a;a1):simp(add(a;b); add(a;b1)) :� simp(b;b1):simp(multiply(a;b);multiply(a1;b)) :� simp(a;a1):simp(multiply(a;b);multiply(a;b1)) :� simp(b;b1):



11.2 Simplifying expressions 111The �rst lause here says that if we an simplify the expression a, then we analso simplify the expression add(a;b) { we simply replae a by its simpli�ed formand leave b unhanged. The seond lause says that we an simplify the sameexpression by replaing b instead of a with a simpli�ed form, and the third andfourth lauses say the same things for an expression multiply(a;b).If both a and b an be simpli�ed, say to a1 and b1 respetively, then the ex-pression add(a;b) an undergo two stages of simpli�ation, giving �rst add(a1;b)then add(a1;b1). Thus it is not neessary to allow expliitly for simplifying theexpression add(a;b) on both sides at one, provided we provide the more gen-eral faility of simplifying an expression in several steps. This faility is useful inother ontexts. For example, the expression (x+ 1) � y an be simpli�ed �rst tox � y + 1 � y using the fat that multipliation distributes over addition, then inanother step to x�y+y, using the fat that 1 is a unit element for multipliation.We an provide this kind of multi-step simpli�ation by using the reexive{transitive losure of the simp relation, rather than simp itself. The relation wede�ne should be reexive, beause the original expression may not allow anysimpli�ation, and it should be transitive, beause several steps may be neededto put an expression into its simplest form. Using simply the reexive{transitivelosure of simp would give a relation that holds between any expression and allits simpli�ed forms, whether they are fully simpli�ed or still subjet to furthersimpli�ation. We an de�ne a more useful relation by restriting the simpli�edexpression to be irreduible, so that no more simpli�ation is possible. Negationas failure is useful for this:simplify(x ;y ) :� simp(x ;x1); simplify(x1;y ):simplify(x ;x ) :� not reduible(x ):reduible(x ) :� simp(x ;y ):A speial relation reduible has been introdued here: reduible(x ) holds if thereis any y suh that simp(x ;y ) is true. The requirement that negated literalsshould be ground is satis�ed in the program, beause the variable y is hiddeninside the de�nition of reduible.Summary� Algebrai expressions an be represented as trees.� The value of an algebrai expression an be obtained by analysing the ex-pression reursively, alulating the value of the expression in terms of thevalues of its sub-expressions.� Algebrai expressions an be simpli�ed by applying equations as left-to-rightrewriting rules.



112 Evaluating and simplifying expressionsExerises11.1 Using the pioProlog built-in relations plus, times and integer , extendthe de�nition of the relation value(e ;v ) to allow operators subtrat(x ;y ) anddivide(x ;y ) for subtration and division without frational or negative results.Combine this with your answer to a previous exerise to show how the numbersfrom 0 to 9 an eah be written using exatly four opies of the digit 4.11.2 The value of an expression let x = e1 in e2 under an assignment a is thesame as the value of e2 under an assignment where x takes the value that e1 isgiven under a, so that the expression let y = x+ 1 in y � y has value 4 � 4 = 16under an assignment that gives x the value 3. De�ne a relation update(a;x ;v ;b)that holds if b is an assignment that agrees with a exept that it gives x thevalue v . Representing let-expressions by terms of the form let(x ; e1; e2), extendthe eval relation of Setion 11.1 to handle them.Pratial exeriseBoolean expressions ontaining operators like ^, _, : and ) an be representedby tree strutures, just like arithmeti expressions. For example, the expressionp _ (q ^ :p) ould be represented by the termor(vbl(p); and(vbl(q); neq(vbl(p)))):(neg is used here as the name for : to avoid onfusion with pioProlog's built-innot.)Write a program that heks whether a given Boolean expression is a tautology.Part of this program should be a relation eval(e ;a;v ) that holds if the Booleanexpression e has truth-value v (either 0 or 1) when its variables take the valuesgiven by pairs val(x ;u) in the list a. You will also need:� a relation variables(e ;b) that holds if b is the list of variables that appearin expression e , with dupliates removed. Example:variables(or(vbl(p); and(vbl(q); neg(vbl(p)))); p:q :nil)� a relation assign(b;a) that holds if a is a list of assignments for the variablesin the list b, eah hosen from the values 0 and 1. Examples:assign(p:q :nil ; val(p; 0):val(q ; 0):nil)assign(p:q :nil ; val(p; 0):val(q ; 1):nil)assign(p:q :nil ; val(p; 1):val(q ; 0):nil)assign(p:q :nil ; val(p; 1):val(q ; 1):nil)



11.2 Simplifying expressions 113These three relations eval , variables and assign then allow us to build a tautology-heker as follows:tautology(e) :� not falsi�able(e):falsi�able(e ;b) :� variables(e ;b); assign(b;a); eval(e ;a; 0):That is, a formula is a tautology if it is not falsi�able, and a formula is falsi�ableif there is a way of assigning values to the variables that our in it that makes theformula have the value 0. An optional extension to this part of the exerise wouldbe to build a parser for Boolean expressions, using the methods of Chapter 10,and integrate it with the tautology heker.Another possibility is to build a program that simpli�es Boolean expressionsusing algebrai rules. Some of the rules that ould be inluded are that 1 is aunit element for ^ and a zero element for _, and vie versa:P _ 0 = P = 0 _ PP _ 1 = 1 = 1 _ PP ^ 0 = 0 = 0 ^ PP ^ 1 = P = 1 ^ POther useful rules are that ^ distributes over _, and _ distributes over ^:P ^ (Q _R) = (P ^Q) _ (P ^ R)P _ (Q ^R) = (P _Q) ^ (P _ R)You ould also add de Morgan's laws, and the equation ::P = P , but addingthe fat that _ and ^ are ommutative results in disaster (Why?).Lengthy sequenes of simpli�ations will ause pioProlog to run out of mem-ory, beause the program requires too muh information to be saved in asebaktraking is needed. The following de�nition of the simplify relation is equiv-alent to the one in the text, exept that it produes only one simpli�ed form of anexpression, and it does not onsume more and more storage spae if simplifyingan expression takes many steps:simplify(x ;y ) :� onestep(x ;x1; f); simplify1(f ;x1;y ):onestep(x ;y ; yes) :� simp(x ;y ); !:onestep(x ;x ; no) :� :simplify1 (yes;x ;y ) :� simplify(x ;y ):simplify1 (no;x ;x ) :� :



114 Evaluating and simplifying expressionsSome programming triks have been used to make this program more eÆient.These triks depend on Prolog's ut operation (!), whih is explained in Se-tion 14.3.� The ut operation redues the amount of potential baktraking in the pro-gram, on the assumption that we are only interested in �nding one simpli-�ed form of a given expression, and not all possible simpli�ed forms. Thismeans that pioProlog does not need to store information that is used inbaktraking.� Adding the ut makes it possible to delete the test that the �nal expressionis irreduible, beause the ontrol behaviour of the program ensures thatsimpli�ation steps will be taken for as long as they are possible.� Most importantly, the program has been rearranged so that the main rela-tion simplify is reognized as being `tail reursive'. This makes it possiblefor pioProlog to treat the reursive de�nition of simplify as if it were a loop,saving the stak spae that would be needed to exeute a truly reursiverelation.The eÆient program is less easy to understand than the original one, but thisdoes not matter muh, beause we an keep the original program as a spei�ationfor what the optimized program should do, and the optimization a�ets onlyone small part of the whole program for simplifying expressions: all the spei�knowledge about algebra is ontained in the relation simp, and that is una�etedby this optimization.



Chapter 12Hardware simulation

This hapter shows how logi programming an be used to build simple simu-lations of CMOS logi iruits. These iruits are built from two types of tran-sistors: p{transistors and n{transistors (see Figure 12.1). Eah transistor hasthree wires alled the soure, the gate and the drain. In the simple model of tran-sistor behaviour that we shall use, a p{transistor ats as a swith that onnetsthe soure and drain together if the gate is onneted to the ground rail (whihrepresents logi 0). If the gate is onneted to the power rail (representing logi1), then the soure and drain are not onneted together. With an n{transistor,the roles of logi 0 and logi 1 are reversed, and it is when the gate is onnetedto the power rail that the transistor onnets its soure and drain together.This model of CMOS logi ignores the fat that transistors are really analoguedevies that an respond to voltages intermediate between the two supply rails.It also ignores dynami e�ets that depend on timing and the storage of harge,modelling only the stable states of a iruit. All these simpli�ations mean thatthe simulations we shall build are not very aurate. The most we an hope foris that ombinational iruits that do not work in our simulation are guaranteednot to work in pratie. This is better than nothing, beause it allows us to usesimulation as a way of testing iruit designs and �nding at least some of themistakes in them.The simplest CMOS iruit is the inverter shown in Figure 12.2. This iruitontains two transistors, a p{type and an n{type. The n{transistor is arranged sothat it onnets the output z to logi 0 when it onduts, and it does so when itsgate, onneted to the input a, is a logi 1. The p{transistor has a symmetrialfuntion, and onnets z to logi 1 whenever the input a is at logi 0. Together,the two transistors ensure that the output is onneted to the appropriate logilevel whatever level is present at the input.We an build a simulation of this iruit using logi programming. The �rststep is to build simulations of individual transistors. A p{transistor is simulatedby de�ning a relation ptran(s;g;d) that is true if there is a stable state of a115



116 Hardware simulation soure draingate gatedrain sourep{type n{typeFigure 12.1: p{ and n{transistorspower
groundinput a output z

Figure 12.2: CMOS inverterp{transistor in whih the signals at the soure, gate and drain are s, g andd respetively. There are two stable states for the p{transistor. In one state,the gate is onneted to ground, so the transistor is onduting, and the soureand drain have the same voltage. In the other state, the gate is onneted to thepower rail, so the transistor is not onduting, and the soure and drain may havedi�erent voltages. These stable states are reeted in the following de�nition ofptran:ptran(x ; 0;x ) :� :ptran(x ; 1;y ) :� :In the �rst lause, the requirement that the soure and drain have the samevoltage is reeted by using the same variable x for both arguments. An n{transistor is modelled by the relation ntran(s;g;d), de�ned as follows:ntran(x ; 1;x ) :� :ntran(x ; 0;y ) :� :



12 Hardware simulation 117This simply reverses the roles of 0 and 1.Apart from the wires, the only other omponents in the inverter iruit arethe power and ground rails, and we an simulate them with two relations pwr(x )and gnd(x ), de�ned like this:pwr(1) :� :gnd(0) :� :Atually, we ould manage without these relations and just substitute 0 and 1wherever they are needed, but using these relations allows a more systemati wayof onneting iruits together.We are now ready to put the omponents together to make a simulation ofthe inverter iruit. The inverter has two external onnetions, so it is simulatedby de�ning a relation inverter with two arguments, so that inverter(a; z) is trueif there is a stable state of the iruit in whih the input has voltage a andthe output has voltage z . A iruit is in a stable state if all its omponentsare stable, and every wire arries the same voltage at all its onnetions. Theinverter relation is de�ned as follows:inverter(a; z) :�pwr(p); gnd(q);ptran(p;a; z);ntran(z ;a;q):The body of this lause ontains one literal for eah omponent, and variablesare used instead of wires to join the omponents together. For example, point pof the iruit is onneted to the power rail and to the soure of the p{transistor,so p appears as the argument of the pwr literal and as the �rst argument ofthe ptran literal. Internal onnetions are neatly hidden, beause some of thevariables that appear in the lause body do not appear as arguments of thelause head.Having de�ned this relation, we an ask questions about the stable states ofthe iruit. For example, this goal asks what the output may be if the iruit isstable with input 1:# :� inverter(1; z):The only answer is z = 0, beause the n{transistor onduts, onneting theoutput to ground. We an also supply a value for the output and ask whatvalues of the input would lead to a stable state:# :� inverter(a; 0):The only answer is a = 1, beause if a were zero, then the p{transistor wouldondut, onneting the output to power.



118 Hardware simulation power

ground
input a output z
input b

Figure 12.3: NAND gateThis bi-diretional behaviour of the simulation is useful in some ways, beauseit extends the variety of questions we an ask about the iruit. In other waysit is a disadvantage, beause it reveals that our model of CMOS iruits doesnot distinguish properly between inputs and outputs. If we make a the inputand z the output, the iruit of Figure 12.2 works orretly as an inverter, withthe transistors driving the output to the opposite logi level to the input. But ifwe try to make a the output and z the input, the iruit fails to work, beausetransistors annot drive their gates. Our simulation does not reet this fat.Nevertheless, it is interesting to build simulations of more omplex iruits.Figure 12.3 shows a NAND gate with two inputs a and b and one output z .The output is logi 1 unless both inputs are at logi 1, in whih ase the outputis logi 0. The iruit ontains two p{transistors in parallel that are responsiblefor driving the output high when either one input or the other is low. The twon{transistors in series are responsible for driving the output low when both theinputs are high.Here is a lause that simulates the NAND iruit:nand(a;b; z) :�pwr(p); gnd(q);ptran(p;a; z); ptran(p;b; z);ntran(z ;a;r); ntran(r;b;q):Like the inverter simulation, this de�nition of nand(a;b; z) an be used forwardsto alulate the output z from the inputs a and b, or bakwards to to �nd whatvalues of the inputs an lead to a given output.



12 Hardware simulation 119NAND INVab w zFigure 12.4: AND gate
x power

groundFigure 12.5: Short iruitThe next step in building simulations is to put together small iruits like ourNAND gate and inverter to make larger iruits. For example, Figure 12.4 showshow a NAND gate and an inverter an be onneted to make an AND gate, whoseoutput is logi 1 exatly if both inputs are a logi 1. To build a simulation of theAND gate, we de�ne and(a;b; z) in terms of the nand and inverter relations:and(a;b; z) :�nand(a;b;w );inverter(w ; z):The and relation simulates our iruit by simulating the individual transistorsthat make it up, but we have onstruted it by putting together larger buildingbloks.What happens if we try to simulate a short iruit like the one shown inFigure 12.5? The simulation of this iruit is de�ned byshort(x ) :� pwr(x ); gnd(x ):With this de�nition, the goal # :� short(x ) has no answers. This means thatthe iruit has no stable states, and urrent will always ontinue to ow. Oursimple physial model of CMOS logi does not over this situation. In reality,the urrent that ows may be so large that the iruit overheats.A similar phenomenon ours if we try to onnet the output of an inverterbak to its input, as shown in Figure 12.6. This iruit is simulated by the goal# :� inverter(x ;x ). Again, this goal has no solutions, indiating that the iruit



120 Hardware simulation
INVinput outputFigure 12.6: Inverter with feedbakNAND
NAND

a x
by Figure 12.7: A ip-ophas no stable states. In pratie, the iruit will either osillate, or it will enter astate in whih both transistors of the inverter are partially onduting, and theoutput is at an unpreditable voltage intermediate between logi 0 and logi 1.Neither outome is overed by our model.Summary� The stable states of a single transistor an be modelled by a logi program.� Ciruits that ontain many transistors an be modelled by de�ning newrelations in terms of the transistor relations, using variables to representthe wires.� Simulations of omplex iruits an be made by ombining relations in away that reets the hierarhial struture of the iruit itself.Exerises12.1 Write a program that simulates the iruit shown in Figure 12.7, in whihtwo NAND gates are onneted in a ring. Determine the stable states of theiruit and explain why it an be used to build omputer memory.



12 Hardware simulation 121power
output z
ground

input a
input b

Figure 12.8: An XOR gate12.2 Figure 12.8 shows a lever implementation of an XOR gate using only sixtransistors. (Both transistors in the parallel pair are needed beause of eletriale�ets that are not aptured in our simulations.) Build a logi program thatsimulates the iruit, and show that the output z is at logi 1 if exatly one ofthe inputs a and b are at logi 1.



Chapter 13Program transformation

We have seen that only SLD{resolution is needed to exeute logi programs,and that it involves only resolution steps in whih one of the input lauses is agoal, and the other is a lause from the program. In this hapter, we look atan appliation for the more general kind of resolution in whih both inputs maybe proper lauses. The appliation is transforming a logi program to obtainanother program with the same meaning. The hope is that, if the transformationis arried out with the right intuitions, then the new program will be more eÆientthan the old one.Although pure logi annot help us to estimate whether a transformed programis more eÆient than the original one, it an guarantee that the transformedprogram gives the same answers. The reason for this is simple; if we derive eahlause in the new program from the lauses of the original program, then anyonlusion derived from the new program ould also be derived from the originalprogram by joining the derivations together.13.1 Unfolding and symboli exeutionThe simplest kind of transformation is to unfold a program, replaing a all toa relation by the body of a lause. The following three lauses de�ne a relationord(a) that is true if a is an ordered list of numbers:ord(nil) :� : (ord:1)ord(x :nil) :� : (ord:2)ord(x :y :a) :� x < y ; ord(y :a): (ord:3)The �rst two lauses deal with the speial ases where a has zero or one elements,and the third deals with lists of two or more elements. Suh a list is ordered ifthe �rst element is less than the seond and the tail of the list is also ordered.122



13.2 Fold{unfold transformation 123If this de�nition of ord were used in a program that often tested short lists tosee if they were ordered, then it might be more eÆient to treat lists of length2 as a speial ase also. We an derive a lause that overs exatly this aseby using resolution on the lauses in the de�nition. Taking lauses (ord.2) and(ord.3), we an math them up like this:ord(x :y :a) :� x < y ; ord(y : a )ord(u :nil) :�The mathing substitution is fa nil ;u  yg, and the resolvent is the lauseord(x :y :nil) :� x < y :This is preisely the speial ase we wanted.This kind of unfolding is similar to the transformation we an do to ordinaryimperative programs by expanding subroutine alls in-line. The bene�ts andosts are the same, in that we save the ost of a subroutine all or resolution stepat the expense of making the program larger. More radial transformations anbe ahieved by unfolding a program, rearranging the result, then folding again.13.2 Fold{unfold transformationHere is a de�nition of the relation elem(a;n ;x ) that is true when the element ofthe list a at position n is x , ounting from zero:elem(x :a; 0;x ) :� : (elem:1)elem(x :a; s(n);y ) :� elem(a;n ;y ): (elem:2)In plae of the built-in numbers of Prolog, this de�nition uses a number system inwhih zero is represented by the term 0, and n+1 is represented by the term s(n){ so 3 would be represented by s(s(s(0))). This number system would be veryineÆient if we atually used it in a program, but it will make the transformationwe are about to do more onvenient. In terms of elem, we an de�ne a relationonse(x ;y ;a) that is true if x and y are onseutive elements of a:onse(x ;y ;a) :� elem(a;n ;x ); elem(a; s(n);y ): (onse:1)Now the hallenge is this: to design a version of onse that does not use elem.We an begin by resolving (onse.1) with a variant of (elem.1):onse(x ;y ;a) :� elem( a; n ;x ); elem(a; s(n);y ):elem(z :b; 0; z ) :�



124 Program transformationThis generates the resolventonse(x ;y ;x :b) :� elem(z :b; s(0);y ):Two more resolution steps, one with (elem.2) and another with (elem.1) allow usto derive the lauseonse(x ;y ;x :y :) :� :This lause is one of the lauses in our desired de�nition of onse, overing thease that the �rst element seleted is the very �rst element of the list.Another lause an be obtained by resolving (onse.1) with (elem.2):onse(x ;y ;a) :� elem( a; n ; x ); elem(a;n ; s(x ))elem(z :b; s(m);w ) :� elem(b;m ;w )The resolvent isonse(x ;y ; z :b) :� elem(b;m ;x ); elem(z :b; s(s(m));y ):Now we resolve again with (elem.2), this time hoosing the seond elem literal.The result isonse(x ;y ; z :b) :� elem(b;m ;x ); elem(b; s(m);y ):The body of this lause is just a variant of the body of (onse.1), so we make a�nal folding step, replaing the body with a all to onse:onse(x ;y ; z :b) :� onse(x ;y ;b):We have now derived two lauses that together make up a new de�nition ofonse:onse(x ;y ;x :y :) :� : (onse:2)onse(x ;y ; z :b) :� onse(x ;y ;b): (onse:3)This new de�nition is more eÆient than the old one, even ignoring the inef-�ieny aused by using terms to represent numbers. To �nd two onseutiveelements of a list, the old de�nition would ount the position of one element,then ount again to �nd the other one, requiring two traversals of the list. Thenew de�nition �nds both elements in a single traversal, saving about half thework.



13.3 Improving the reverse program 125The steps in deriving the new program from the old one have, with one exep-tion, been steps of resolution between lauses drawn from the old program. Theexeption is the folding step, whih uses the de�nition of onse bakwards. Ourde�nition of onse tells us that the lauseonse(x ;y ; z :b) :� elem(b;m ;x ); elem(b; s(m);y ):follows from the lauseonse(x ;y ; z :b) :� onse(x ;y ;b):But we want to know the onverse! Although there are models of the program inwhih the �rst of these lauses is true but the seond is false, we are interested inthe least model of the program, where the ground atoms that are true are exatlythose that an be derived from the program. In this model, the folding step isjusti�ed, beause we know that an atom onse(x ;y ;b) an be derived only byusing the lause (onse.1).Logially speaking, what we have done is this: if T0 is the program ontaining(onse.1) together with the de�nition of elem, and T1 is the program ontaining(onse.2) and (onse.3), we have shown that any ground atom P that an bederived from T1 ould also be derived from T0. In short, we have shown that T1gives no answers that would not also be given by T0. The new program is at leastpartially orret, in that all the answers it gives are orret.We an hek that the new program is totally orret, giving all the answersthat ould be given by the original program, by examining the searh tree in theold program for the goal # :� onse(x ;y ;a), shown in Figure 13.1. At eahnode of the tree all mathing lauses are shown, and we an hek that everypath has been overed by the lauses we have derived. So if any pair of elementsX and Y an be shown to satisfy onse(x ;y ;a) using the old program, theyan be shown to do so using the new program also.13.3 Improving the reverse programSo far, our transformations have used only unfolding and folding, staying entirelywithin the logi of Horn lauses. More sophistiated transformations may needus to apply laws that annot be expressed purely as Horn lauses.The reverse program from Setion 5.1 provides an example:reverse(nil ; nil) :� : (rev:1)reverse(x :a;) :� reverse(a;b); append(b;x :nil ;): (rev:2)append(nil ;b;b) :� : (app:1)append(x :a;b;x :) :� append(a;b;): (app:2)



126 Program transformation# :� onse(x ;y ;a):# :� elem(a;n ;x ); elem(a; s(n);y ):
# :� elem(b; 0;y ):# :� :

n = 0;a = z :b# :� elem(z :b; s(0);y ):
b = y :

n = s(m);a = z :b
# :� elem(b;m ;x ); elem(z :b; s(s(m));y ):# :� elem(b;m ;x ); elem(b; s(m);y ):

Figure 13.1: Searh tree for # :� onse(x ;y ;a).Although it is a simple de�nition of reverse, this program is rather ineÆient,beause it repeatedly uses append to add elements to the end of the reversed list.This makes the running time of the program quadrati in the length of the inputlist. We an derive a more eÆient program for reverse by transformation.The �rst step is to introdue a new relation revapp that ombines reverse andappend , perhaps inspired by the body of lause (rev.2):revapp(a; ;d) :� reverse(a;b); append(b; ;d):We an now start to unfold. Resolving the de�nition of revapp with (rev.1) givesthe new lauserevapp(nil ; ;d) :� append(nil ; ;d):in whih the mathing substitution has �lled in the �rst argument with thespei� value nil . We an resolve this with (app.1) to obtain the lauserevapp(nil ; ;) :� :that deals diretly with the ase that revapp's �rst argument is nil .What if the �rst argument is non-nil? We an resolve the de�nition of revapp



13.3 Improving the reverse program 127p vu wqzFigure 13.2: Assoiativity of appendwith (rev.2) to obtainrevapp(x :e ; ;d) :�reverse(e ; f); append(f ;x :nil ;b); append(b; ;d):So far we have used just Horn lause reasoning, but the next step uses the fatthat provided p and q do not appear elsewhere in the lause, the two literalsappend(u ;v ; p); append(p;w ; z)an be replaed by the two literalsappend(v ;w ;q); append(u ;q; z):As Figure 13.2 shows, this transformation uses the fat that appending lists is anassoiative operation. A formal proof of this fat would need indution on lists.Applying the transformation results in the following lause:revapp(x :e ; ;d) :�reverse(e ; f); append(x :nil ; ;g); append(f ;g;d):The term x :nil now appears as the �rst argument of append , so we an use thede�nition of append to unfold the literal and solve it. In two resolution steps, wederive �rstrevapp(x :e ; ;d) :�reverse(e ; f); append(nil ; ;h); append(f ;x :h ;d):and thenrevapp(x :e ; ;d) :�reverse(e ; f); append(f ;x : ;d):



128 Program transformationThe �nal step is to notie that the body of this lause is an instane of the bodyof the lause de�ning revapp, so we an fold to obtainrevapp(x :e ; ;d) :� revapp(e ;x : ;d):The �nal part of the transformation proess is to show that reverse an be de�nedin terms of revapp. This requires another law, that the literal append(a; nil ;b)an be interhanged with a = b, in other words, that nil is a right unit for theappend operation. We apply this law as follows: start with the (evidently true)lausereverse(a;b) :� reverse(a;); = b:Now replae  = b by the equivalent append literal:reverse(a;b) :� reverse(a;); append( ; nil ;b):Finally, fold with the de�nition of revapp:reverse(a;b) :� revapp(a; nil ;b):This ompletes the derivation of a de�nition of reverse that does not use append :reverse(a;b) :� revapp(a; nil ;b): (rev:3)revapp(nil ;b;b) :� : (revapp:1)revapp(x :a;b;) :� revapp(a;x :b;): (revapp:2)This program an solve a goal # :� reverse(a;b), where a is a list of length n,in n + 2 resolution steps: (rev.3) is applied �rst, followed by n appliations of(revapp.2) that redue a to nil , and �nally an appliation of (revapp.1). This ismuh more eÆient than the quadrati version of reverse we began with.Summary� Unfolding allows speial-ase lauses to be derived from a program by sym-boli exeution.� Folding, ombined with unfolding, allows programs to be transformed toimprove their pattern of reursion.� More general transformations ombine folding and unfolding with the useof algebrai properties of the relations involved.



13.3 Improving the reverse program 129Exerises13.1 Use unfolding to derive a lause for the ord relation that deals with listsof length 3.13.2 Write a de�nition of onse in terms of append , and use program trans-formation to derive from it the same diret reursive de�nition of onse thatwas derived in the text.13.3 Use program transformation to show the equivalene of the �rst and se-ond de�nitions of onneted given in Setion 9.1.13.4 A path in a binary tree is a list of tokens, eah l or r . For example, thepath r :l :nil is a path in the treefork(tip(1);fork(fork(tip(2); tip(3));tip(4)))that leads to the sub-tree fork(tip(2); tip(3)).a. De�ne by reursion a relation selet(t ; p;u) that holds if p is a path in thetree t that leads to sub-tree u .b. De�ne a relation replae(t ; p;u ;t 0) that holds if t 0 is the result of replaingin t the sub-tree seleted by p with the new sub-tree u .. Find a non-reursive de�nition of selet in terms of replae.d. The relation hange is de�ned byhange(t ;u ;u 0;t 0) :�selet(t ; p;u); replae(t ; p;u 0;t 0):By unfolding and folding, transform this de�nition of hange into a reursivede�nition that does not use the auxiliary relations selet and replae.



Chapter 14About pioProlog

The remainder of this book ontains a desription of pioProlog, a simple butomplete implementation of a logi programming language similar to Prolog.The main di�erenes are that real Prolog has a more exible { and thus moreompliated { syntax, and that implementations of real Prolog ome with a largerseletion of `built-in' relations. Many of these relations have no real meaning interms of logi, but perform useful funtions onneted with input/output and soon. Despite the small size of the pioProlog implementation presented here (itonsists of about 2000 lines of Pasal), it runs at a useful speed, and an be usedto run all the logi programs ontained in earlier hapters of the book.The implementation is an interpreter, that is, a program that inputs a logiprogram and arries out diretly the ations required to exeute it. Many Pro-log implementations also inlude a ompiler, a program that translates a logiprogram into mahine ode that when it is run arries out the ations desribedby the logi program. As with any language implementation, ompiling logiprograms instead of interpreting them an provide an immense improvement inexeution speed, beause the analysis of what ations are needed to exeute theprogram is arried out one and for all by the ompiler, and objet ode thatis generated speially for eah program an ahieve these ations faster thanthe general-purpose ode in an interpreter. For simpliity, in this book we on-sider only an interpreter, although many of the data strutures used to representlogi programs and states of exeution would be the same in a ompiler-basedimplementation.There are several reasons to present an implementation of logi programmingin a book that also disusses the theory behind logi programs and the pratieof writing them. One reason is to omplete the story behind the proof theoryof Horn lause programs ontained in Chapters 5 to 7, by showing that SLD{resolution an be used as the basis of an eÆient exeution mehanism, andon�rming that the ations of a Prolog system an (with a few reservations) beviewed as symboli reasoning using resolution.130



14.1 The pioProlog language 131Another purpose is to give the reader some understanding of the ost in spaeand time of exeuting typial logi programs. Too many Prolog programs areunneessarily ramped in style, beause their designers suspet that any pro-gram that does not losely resemble a onventional, imperative program will behopelessly ineÆient. Often, the reverse is true, and a program that exploits theunique features of logi programming an be made to work well. Suh a programis often faster than an equivalent program written in a more imperative style.This is partiularly likely if the `imperative' program relies on the non-logialfeatures of many Prolog systems, whih an be used to simulate the e�et of theassignment ommand of imperative programming, but only in a very ineÆientway.The �rst part of this hapter is a summary of the pioProlog language, andan be used as a manual for the pioProlog system. Chapters 15 and 16 desribein more detail the most interesting parts of the system, the part that implementsdepth-�rst searh of the SLD{tree of a goal, and the part that implements substi-tutions and uni�ation. Chapter 17 ontains notes on the Pasal dialet in whihthe interpreter is written and the maro proessor that is used to extend Pas-al for present purposes. The hapter also desribes the supporting parts of thepioProlog system, suh as the syntax analyser that parses pioProlog programs.Chapter 18 desribes three optimizations that are inluded in the pioProloginterpreter. Though not essential to a working Prolog system, these optimiza-tions greatly redue the exeution time and memory needs of Prolog programs.In partiular, they allow programs that have a simple iterative form to run inonstant spae.14.1 The pioProlog languageThe input to pioProlog is a program written in an asii variant of the notationwe have been using throughout this book. Here is a summary of the syntax ofthe language:program ::= f lause glause ::= [ atom j `#' ℄ `:-' [ literal f `,' literal g `.'literal ::= [ `not' ℄ atomatom ::= ompound j term `=' termterm ::= primary [ `:' term ℄primary ::= ompound j variable j number j string j har j `(' term `)'ompound ::= ident [ `(' term f `,' term g `)' ℄As in our earlier disussion of parsing (Chapter 10), eah equation de�nes aertain lass of phrases in the language. Here we use a few extra notations foronveniene: [ stu� ℄ stands for an optional ourrene of stu� , and the notation



132 About pioPrologf stu� g stands for `zero or more' ourrenes of stu� . In partiular, the notationterm f `,' term g stands for one or more instanes of term separated by ommas.Various sorts of primitive symbols are not de�ned by the syntax summary above:� an ident is any non-empty sequene of letters, digits and undersore har-aters that begins with a lower-ase letter.� a variable is any non-empty sequene of letters, digits and undersore har-aters that begins with an upper-ase letter or an undersore.� a number is any non-empty sequene of digits.� a string is any sequene of haraters other than the double-quote harater("), enlosed in double-quotes.� a har is any single harater, enlosed in single quotes.Numbers and haraters are atomi objets in pioProlog. Strings are equivalentto lists of haraters, so that the string "mike" is a shorthand for the list written'm':'i':'k':'e':nil. This means that ordinary list-proessing relations likeappend and reverse work equally well on strings. The routine that prints answersto queries in the pioProlog system examines eah list to see if it is atually astring, and if so it uses string notation to print it.Another thing not shown in the syntax summary is the fat that ommentsan appear in pioProlog programs. Like the omments of Pasal, they beginwith /* and end with */. Comments do not nest, and may appear anywhere ablank spae would be allowed.14.2 Built-in relationsThe pioProlog language has a number of built-in relations.� The relation plus(x ;y ; z) holds if x , y and z are numbers and x +y = z .The relation times(x ;y ; z) holds if x , y and z are numbers and x�y = z .These relations are implemented in suh a way that any two of x , y andz an be spei�ed, and pioProlog will �nd the third number (if any) thatompletes the equation. If fewer than two values are known at the timepioProlog tries to solve the goal, a run-time error ours.� The relation integer(x ) is true if x is a known integer, and the relationhar(x ) is true if x is a known harater. Both relations are judged false ifx is an unknown variable at the time of solving the goal, even though thereare many substitutions for x that would make them true.� If p is a term that would be a valid literal, then the relation notp is trueif attempting to prove p results in failure, and it is false if attempting toprove p results in suess. Provided p is a ground literal at the time ofsolving the goal, this is an implementation of negation as failure. If p isnot a valid literal (for example, if it is a number or an unknown variable),



14.3 The ut symbol 133a run-time error ours. If p is a valid literal but is not ground, the resultsare unpreditable.� The relation x = y is de�ned exatly as if the pioProlog program ontainedthe lause x = x :� . It is provided as a built-in relation for the sake ofonveniene.� The relation false (with no arguments) is de�ned to be always false, just asif it were de�ned by the empty set of lauses. It is provided as a built-inrelation for onveniene. PioProlog reports an error if a program ontains aall to any other relation with no lauses, beause that is usually a mistake.� The relation `!' (with no arguments) is the ut symbol. Its e�et is desribedin the next setion.Most Prolog implementations have many more built-in relations than are pro-vided by pioProlog. The small number of built-in relations in pioProlog providea guide to the way others are implemented.14.3 The ut symbolThe ut symbol `!' may appear as a literal in the body of a goal or lause. It istreated by pioProlog as if it is logially true, but it has the side-e�et of ausingpioProlog to disard ertain alternatives to the derivation that lead to the ut.This e�et is most easily explained through an example:p(x ) :� q(x ):p(x ) :� r(x ;y ); !; s(y ):p(x ) :� t(x ):This de�nition has three lauses, and pioProlog's top-to-bottom rule for tryinglauses means that they will be tried in the order that they are written. In solvingthe goal # :� p(fred), pioProlog will reah the seond lause only if the �rstlause has failed beause q(fred) is false. If it reahes the ut symbol, then it hasjust found the �rst solution to the literal r(fred ;y ), and if the ut symbol werenot there, it would be just about to attempt the literal s(y ) for some value of y .At this point, pioProlog is exploring a partiular derivation, but it is keepingseveral alternatives for later exploration if this one fails. There may be othersolutions of r(fred ;y ); there may be derivations that use the third lause in thede�nition of p, and there may be alternatives to the derivation that lead to thegoal # :� p(fred) in the �rst plae.The ut symbol disards all but the last group of alternatives; that is, itdisards all the alternatives that have been reated sine the p(fred) literal wasseleted for exeution. This means that if the p(fred) literal is going to be solvedat all, it will be by solving s(y ), with the urrent value for y that was obtained bysolving r(fred ;y ). Alternative derivations that were reated before the seletion



134 About pioPrologof the p(fred) literal are not disarded by the ut, and neither are alternatives(suh as alternative ways of solving s(y )) that are reated after the ut has beenexeuted.There are several reasons for introduing ut symbols into a program. Dis-arding alternatives to the urrent derivation an allow pioProlog to relaim thestorage spae that is used to save them, and to save the time that would be spentin exploring them. It may be that we know these alternatives annot lead to asolution, so that disarding them does not a�et the set of solutions generatedby the program, or it may be that we are interested only in the �rst solutionfound by the program, and do not are if other solutions are disarded. In thatase, adding uts to the program an make it more eÆient without a�eting itsproper funtioning.For example, in the program for p(x ), we might know that the value of xwould always be supplied, and that no value of x an lead to both a solutionof r(x ;y ) and a solution of t(x ). Perhaps r(x ;y ) an be satis�ed only if xis an even number (and for only one value of y ), and t(x ) is satis�ed onlyif x is odd. In that ase, the ut symbol shown in the program would notdisard any alternatives that ould possibly lead to a solution. When the utsymbol is reahed, we know that x is even, and in that ase the third lausefor p annot possibly be used. Disarding this alternative instead of exploringit saves the time that would be wasted in trying to solve t(x ) for an even valueof x , and allows the spae needed to reord the alternative to be relaimedand re-used.A ommon use of uts is in reursive de�nitions that de�ne a relation on listsby pattern mathing. For example, here is a version of append that has a ut inone of its lauses:append(x :a;b;x :) :� !; append(a;b;):append(nil ;b;b) :� :This de�nition is useful if append is always used in suh a way that the �rstargument is known (i.e., it is not a variable). If the head of the �rst lausemathes the goal, we know that the �rst argument of append is of the formx :a, so it annot math the nil that appears in the head of the seond lause.This makes the ut harmless, beause we know that the seond lause will onlybe disarded if it annot math the goal. It is also bene�ial, beause it savesthe time needed to math the seond lause, and it allows storage spae to bereovered. In fat, the ut makes it possible for pioProlog to reover all theworking spae needed for append . We an also see that if the seond lausemathes a goal, then the �rst lause annot math. However, there is no need fora ut in the seond lause, beause if pioProlog reahes the seond lause, thenit has already tried and disarded the �rst one.Adding a ut like this spoils the generality of the append program, beause weannot use the version that ontains a ut to split a list into two parts. The ut



14.3 The ut symbol 135disards all but the �rst solution to a goal like# :� append(a;b; 1:2:3:4:nil):That is, it disards all but the solution with a = 1:2:3:4:nil and b = nil . Anappliation that needed to do both jobs would need two versions of append , onewith the ut and one without.Whether it is atually neessary to inlude uts like this one depends on thesophistiation of the Prolog implementation being used. Many systems are ableto determine by analysing the program that the seond lause annot math ifthe �rst argument of append is known and the �rst lause mathes, so they areable to ahieve the same eÆieny without an expliit ut. With suh systems,the same version of append an be used both to join lists and to take them apart,without any loss of eÆieny. Even in pioProlog, the indexing feature desribedin Chapter 18 means that (at least in simple situations like this one) the ut isnot needed.The use of uts to improve the eÆieny of a program is easy to defend onpratial grounds. A less defensible use of uts is to over up a logial error inthe program. For example, suppose we de�ne max (x ;y ; z) to be true if z is themaximum of x and y :max (x ;y ;x ) :� geq(x ;y ):max (x ;y ;y ) :� lt(x ;y ):(where geq means `greater or equal' and lt means `less than'). This program isdesigned to be used when the �rst two arguments are known integers, and thethird is an unknown variable, intended to reeive the output. As a �rst step inimproving the eÆieny, we notie that it is pointless to try the seond lause ifthe test geq(x ;y ) has sueeded. So we an add a ut like this:max (x ;y ;x ) :� geq(x ;y ); !:max (x ;y ;y ) :� lt(x ;y ):This ut improves the eÆieny of the program without a�eting its logial mean-ing. But now we see that if the seond lause is tried at all, then it must bebeause the test geq(x ;y ) has failed. In that ase, the test lt(x ;y ) is bound tosueed, and we may as well delete it, like this:max (x ;y ;x ) :� geq(x ;y ); !:max (x ;y ;y ) :� :This last hange improves the speed of the program a little more, but it meansthat we an no longer read and understand the meaning of eah lause separately,beause the seond lause says something that is true only if we have already tried



136 About pioPrologand rejeted the �rst lause. Also, the program works properly only if the �rstand seond arguments of max are known and the third is unknown at the timethe lauses are used. If we ask# :� max (4; 3; 3):then the exeution goes like this: the goal does not math the head of the �rstlause, beause the �rst and third arguments in the goal are di�erent. So the �rstlause is disarded, and we try the seond lause. This mathes, so we produethe answer `yes'. Of ourse, the orret answer is `no', beause the maximum of4 and 3 is not 3 but 4.Cuts of the �rst kind, whih disard no solutions at all, or disard only solutionsthat are atually orret but not of any interest, are often alled green uts.Cuts of the seond kind, like the one in our max program, are alled red uts.They disard solutions that would otherwise be found by the program, but areinorret in terms of the problem to be solved. Red uts tend to make programsmore diÆult to understand, and it is best to avoid them if the eÆieny gainis minor, as it would be in the max example. In other situations, the saving ofwork may be muh larger than avoiding a superuous test lt(x ;y ), and then theuse of a red ut may be justi�ed.14.4 Implementation overviewPioProlog is implemented by a program of about 2000 lines, written in a subsetof standard Pasal. The program is divided into 20 modules that are largelyindependent of eah other (see Table 14.1). Beause the pioProlog program iswritten in Pasal, the boundaries of these modules are not marked formally inthe soure ode, and they annot be heked by the ompiler, but this does notredue the bene�ts of designing the program in a modular way.Some of these modules implement general-purpose failities that are either notprovided in standard Pasal, or are provided in a form that is not quite the onewe need. Among these, the string bu�er module provides storage for variable-length harater strings, and the harater input module provides simple inputof haraters from text �les and the keyboard. The memory alloation modulemanages the bloks of storage that are used to store the pioProlog program andthe data strutures that represent an exeuting goal.Other modules use standard ompiler tehniques to analyse the syntax ofa pioProlog program and build a data struture that represents it internally.There is a symbol table that stores information about eah identi�er or vari-able name that appears in the program, and an additional table of variablenames that reords information about the variables that appear in the presentgoal or lause. The pioProlog program is divided into meaningful tokens bythe sanner, and the tokens are assembled into goals and lauses by a parser,



14.4 Implementation overview 1371. Coding onventions2. Error handling3. String bu�er4. Representation of terms5. Memory alloation6. Charater input7. Representation of lauses8. Stak frames and interpreter registers9. Symbol table10. Building terms on the heap11. Printing terms12. Sanner13. Variable names14. Parser15. Trail16. Uni�ation17. Interpreter18. Built-in relations19. Garbage olletion20. Main program Table 14.1: Modules of pioPrologwhih onstruts an internal representation of the program that is later used toexeute it.The most interesting parts of the implementation are those that exeute goals.At eah stage, the state of exeution is reorded in a stak, and there is a modulethat de�nes the layout of stak frames, eah representing a goal that has beenderived from the original goal by SLD{resolution. The main interpreter manip-ulates this stak in order to exeute the goal by depth-�rst searh, and alls theuni�ation algorithm to math goal literals against the heads of lauses. An extrastak, alled the trail , reords whih variables in the pioProlog program havehad values assigned to them by the unifying substitution in eah resolution step,so that these assignments an be removed when the exeution baktraks.A few more modules omplete the implementation. There is a olletion ofproedures for building terms that is used by the parser, and a proedure forprinting terms that is used to display the answers when exeution sueeds.Another module implements the built-in relations. Finally, there is a garbageolletor that reyles storage that has been alloated but is no longer aessible.The next few hapters desribe the implementation of pioProlog in moredetail. Chapter 15 explains how to use a stak to represent the state of a depth-�rst searh, and Chapter 16 explains how substitution and uni�ation are im-plemented. The ruial question in both these hapters is how the abstrat



138 About pioPrologstrutures of logi an be made onrete in omputer memory in an eÆient way,so that eah step in the exeution of a pioProlog program has a ost that isproportionate to the progress it ahieves.Chapter 17 is a more onrete aount of pioProlog, inluding notes on themaro proessor that is used to implement small extensions to Pasal, and in-formation about the supporting routines (suh as the parser) that omplementthe exeution mehanism desribed in the earlier hapters. Chapter 18 desribessome re�nements that make pioProlog more eÆient: the garbage olletor, anindexing sheme and the optimization of tail reursion.A omplete listing of the soure ode of pioProlog appears in Appendix C,and Appendix D ontains a ross-referene listing that lists the line numberswhere eah identi�er is used. For details of how to get a mahine-readable opyof the soure ode, see the Prefae.



Chapter 15Implementing depth-�rst searh

The basis of the pioProlog interpreter is an implementation of a depth-�rstsearh in the searh tree of a goal. This hapter ontains an outline of the algo-rithms and data strutures used in the implementation. We begin by showing thevery simple searh algorithm as a logi program, then desribe how the algorithman be translated into Pasal, and how the state of the searh an be representedso that eah resolution step has a small, �xed ost. Finally, we disuss someoptimizations to the algorithm and some details of the hoie of data strutures.15.1 Depth-�rst searhGiven a logi program P , we an de�ne a binary relation ` on goals as follows:G ` G0 if and only if G0 is obtained from G by a step of SLD{resolutionwith a lause from the program.The problem solved by the pioProlog interpreter is this: given a goal G0, �ndwhether there is an SLD{refutation of G0; that is, whether G0 `� ~, where~ = (# :�) is the empty goal, and `� is the reexive{transitive losure of `.Atually, we are also interested in the answer substitutions omputed by SLD{refutations of G0, but we an add them later. Thus the problem to be solvedby the pioProlog interpreter is an instane of the graph-searhing problemsdisussed in Chapter 9, and it uses one of the searhing methods studied there,depth-�rst searh. We begin with a version of the program from Setion 9.3, inwhih we imagine that the goals of one logi program have been represented byterms that an be manipulated by another logi program:exe(g0) :� dfs(g0:nil): 139



140 Implementing depth-�rst searhdfs(g:s) :� suess(g):dfs(g:s) :� next(g;a); append(a; s; s1); dfs(s1):Here exe(g0) is the relation that is true if the goal represented by g0 has anSLD{refutation, and dfs(s) is true of a list of goals s if any one of them hasan SLD{refutation. The program uses the two relations suess(g), true if grepresents the empty goal, and next(g;a), true if a is the list of goals g 0 suhthat g ` g 0.We shall begin our development of pioProlog by translating this logi programinto Pasal. At �rst, we shall use an extended version of Pasal that has sequenesas a data type, with a number of built-in operations. Later we shall explainhow these sequenes an be represented and manipulated using the data typesand operations of standard Pasal. The advantage of presenting the pioPrologsystem in this way is that it allows us to separate the explanation of the broadstrategy for implementing logi programming from the details of how to �t thedata strutures into omputer memory.We shall use a number of simple operations on sequenes in our initial designs.We write hx1; x2; : : : ; xni for the sequene s that ontains the n elements x1, x2,: : : , xn in that order. We write length(s) for its length n, and for 1 � i � n, wewrite s(i) for the element xi that appears in position i of s, ounting from 1. If sis non-empty, then head(s) = x1 is the �rst element of s, and last(s) = xn is itslast element. The sequene tail(s) = hx2; : : : ; xni ontains all elements of s butthe �rst, and front(s) = hx1; : : : ; xn�1i ontains all elements of s but the last. Wewrite s � t for the onatenation of sequenes s and t, a sequene that ontainsall the elements of s in their original order, followed by all the elements of t.Figure 15.1 shows a translation of this logi program into our extended dialetof Pasal. The program uses a Boolean funtion suess(G) that returns true ifG is the empty goal, and a sequene-valued funtion next(G) that returns { insome order { the list of goals G0 suh that G ` G0. There are two invariants thatare maintained in the program:� Every goal G in the sequene s is derivable from the original goal G0, thatis, G0 `� G.� If G0 has a refutation, so does some goal G in the sequene s, that is, ifG0 `� ~ then G `� ~ for some G 2 s.These invariants are �rst established by the initialization s := hG0i, and they aremaintained by the assignments := next(G) � tail(s)in the loop body, so they are true throughout exeution of the loop, and remaintrue at its end. If the loop terminates, then either found is true, or s = hi. Iffound is true, then head(s) is the empty goal, and the �rst invariant tells us that



15.2 Representing the goal list 141funtion Exeute(G0: goal): boolean;var s: sequene of goal ;G: goal ;found : boolean;begins := hG0i; found := false;while (s 6= hi) ^ : found do beginG := head(s);if suess(G) thenfound := trueelses := next(G) � tail(s)end;Exeute := foundend; Figure 15.1: Depth-�rst searhG0 `� ~, so the searh has sueeded. If s is empty, then the seond invarianttells us that G0 has no refutation, so the searh has ended in failure.This reasoning from invariants allows us to onlude that the depth-�rst searhproedure is partially orret, in the sense that if the proedure terminates, thenthe answer { yes or no { that it gives is the right one. Unfortunately, depth-�rstsearh is not totally orret, beause it may fail to terminate even if the goal G0has a solution. The searh may beome stuk in an in�nite branh of the searhtree, and never �nd solutions that are present in other branhes.15.2 Representing the goal listIn the depth-�rst searh algorithm, the sequene s ontains goals that are waitingto be investigated. Solving any one of these goals would omplete a solution of theoriginal goal. The sequene variable behaves like a stak, in that eah step in thesearh involves `popping' the �rst element of s, and `pushing' in its plae the list ofgoals that an be derived in a single resolution step. An eÆient implementationof pioProlog must make the operations needed in eah resolution step as heapas possible, so we must look for an appropriate way of representing s to makethis pushing and popping quik.The representation used in pioProlog (and in most other Prolog implementa-tions) depends on the insight that s is always made up of fragments of next(G)for various goals G. For example, suppose that initially s = hG0i, and sup-pose that next(G0) = hG1; G2; G3; G4i, next(G1) = hi, next(G2) = hH1; H2i, andnext(H1) = hK1; K2; K3i. Then suessive values of s after eah iteration of the



142 Implementing depth-�rst searhloop will behG0ihG1; G2; G3; G4ihG2; G3; G4ihH1; H2; G2; G3; G4i = hH1; H2i � hG2; G3; G4ihK1; K2; H2; G2; G3; G4i = hK1; K2i � hH2i � hG2; G3; G4i:At eah stage, the value of s is made up by onatenating suÆxes of the varioussequene next(G) where G = G0, G2, or H1. By a suÆx of a sequene t, we meana sequene v suh that t = u � v for some u. In general, the sequene s an bewritten in the forms = sn � sn�1 � : : : � s1;where eah si is a suÆx of next(G) for some goal G. If s has this form, so doesthe new sequene next(G) � tail(s) that is assigned to s in the loop body. If snis non-empty, then this new sequene an be written asnext(G) � tail(sn) � sn�1 � : : : � s1:This insight suggests that, instead of representing s diretly (say by a linked list),we should store the sequene of sequenes ss = hs1; : : : ; sn�1; sni of whih s ismade up, beause this grows or shrinks by only one element per resolution step.This indiret way of representing s will be an eonomial one provided that wean �nd a good way of representing the sequenes si that are suÆxes of next(G)for a goal G, and we turn to this problem next.For any goalG, let pro(G) be the list of program lauses for the relation that isnamed in the �rst literal of G. These are the lauses that an potentially be usedin the �rst step of solving G. Then next(G) is the sequene of lauses obtainedby resolving G with suessive elements of pro(G), and olleting the resolventsfrom those resolution steps that do not fail. This allows us to represent next(G)and its suÆxes by ordered pairs (G; t), where t is a suÆx of pro(G). Buildinga pair like this does not require that we immediately ompute the resolvents ofG with eah program lause, as would be required if we represented next(G)diretly. Also, there are very few possible sequenes pro(G) { just one for eahrelation in the program { so these sequenes an be omputed in advane. Weshould use a representation for these lists of lauses that makes it easy to takesuÆxes, for example, linked lists.Combining these two deisions { to represent s as a sequene of sequenes,and to represent the individual sequenes as (G; t) pairs { leads us to onsiderrepresenting s as a stak of frames, with eah frame ontaining a goal and a listof lauses. As we develop the implementation further, we shall add more �elds



15.3 Representing goals 143to eah frame, but the essential meaning of a stak frame will remain the same:it represents the sequene of goals that an be obtained by resolving a ertaingoal with eah member of a list of lauses, and solving any one of these goalsompletes the solution of the original goal G0.A partiular bene�t of this representation is that resolution steps are delayeduntil their results are needed. It may happen that a solution is found beforesome of the goals in next(G) are reahed in the searh. In this ase, any e�ortspent in omputing these goals would be wasted, and our representation avoidsthis waste.Resolution is still needed when we need to know expliitly what goal is thehead of the sequene s, so that it an be stored as part of a new frame, or testedto see if it is the empty goal. To allow for this, we introdue a new variableurrent that represents expliitly the �rst element of s, and a ag ok to saywhether urrent is valid. If ok is true, then the sequene s onsists of the expliitgoal urrent , followed by all the goals stored in stak . Otherwise, s onsists ofjust the goals in stak , disregarding the ontents of urrent . Adding the urrentvariable also makes it possible to represent the initial state, where s = hG0i: wejust set urrent to G0 and stak to the empty sequene.15.3 Representing goalsIn the preeding setion we hose a way of representing sequenes of goals thatallowed the operations we needed to be implemented heaply. But goals arethemselves sequenes of literals, and we must also hoose a representation forthem that makes resolution eÆient.When a goal # :� P1; P2; : : : ; Pn takes part in a resolution step, the �rst literalP1 is replaed by the body of a program lause to give a new goal, say# :� Q1; : : : ; Qm; P2; : : : ; Pn:If we onsider the �rst goal to be (in e�et) the sequene hP1; P2; : : : ; Pni, thenwe an write this new goal ashQ1; : : : ; Qni � hP2; : : : ; Pni:The unifying substitution must be applied to this new goal, but let us ignorethat for the moment. Substitution apart, the operation of replaing the head ofa sequene with another sequene is the same one that we saw with lists of goals.Just as the list of goals waiting to be solved is made up of suÆxes of proedures,so eah goal is made up of suÆxes of lause bodies.We an exploit this fat as follows: instead of storing a omplete goal in eahframe, we store just the �rst few literals, together with diretions for where tolook for the rest of the goal. The literals that are stored diretly are the remaining



144 Implementing depth-�rst searhFrame 3: goal = hQ2; : : : ; Qmiparent = 1pro = proedure for Q2parent = 1Frame 2: goal = hQ1; Q2; : : : ; Qmipro = rest of proedure for Q1Frame 1: goal = hP1; P2; : : : ; Pniparent = 0pro = rest of proedure for P1Figure 15.2: Stak layoutpart of the �rst lause body that makes up the goal. The rest of the goal is madeup of parts of lause bodies from further down the stak, so the `diretions' leadto a parent frame, another stak frame where the next part of the goal an befound.To ontinue the example, suppose the �rst resolution step (using the lauseP1 :� Q1; Q2; : : : ; Qm) is followed by another one that uses the unit lause Q1 :� .Then the stak will look like Figure 15.2. Frame 3 ontains a representation ofthe goal# :� Q2; : : : ; Qm; P2; : : : ; Pn:The �rst few literals are stored in the frame itself, and the rest are found inframe 1, the parent of frame 3.Frame 1 ontains the sequene hP1; P2; : : : ; Pni, but P1 is the literal that tookpart in the resolution step that reated frame 2 and lead to frame 3. So in thegoal that is represented by frame 3, this literal is replaed by the subgoals Q1,Q2, : : : , Qm, and we an ignore it. The parent of frame 1 is shown as frame 0,beause there are no more literals in the goal.In general, a goal will onsist of piees from many lauses, and there will bea longer hain of pointers to parent frames. The goal onsists of all the literalsfrom its own frame, followed by all literals but the �rst from eah sueedingparent frame.



15.4 Answer substitutions 14515.4 Answer substitutionsWe have been ignoring the fat that the unifying substitution must be applied tothe new goal after eah resolution step. This means that the result of a resolutionstep annot be formed just by onatenating piees of the goal and lauses thatwere the inputs of the resolution step, and our representation will need to behanged to reet this fat. A solution to this problem is not to store the goalitself, but to store separately the urrent answer substitution and a goal to whihthe substitution should be applied to get the urrent goal. At eah resolutionstep, we add the unifying substitution to the aumulated answer by omposingthem, but leave for the future the task of applying the substitution to the newgoal. The answer substitution ould be applied to eah literal just before it takespart in a future resolution step, or (as we shall see in the next hapter) the task ofapplying the substitution ould be merged with the task of omputing a uni�er,so that the substitution does not have to be arried out separately.To use this idea, we must add another �eld to eah stak frame that will ontainthe answer substitution built up so far, whih should be applied to the goal aspart of future resolution steps. Frames nearer the top of the stak represent theresults of arrying out more resolution steps than those further down the stak,so they will ontain more spei� answer substitutions. For the present, we willpostpone the question of how substitutions are represented, and just imaginethat our programming language has a type subst of substitutions, and also hasthe operations on substitutions that we need, suh as applying a substitution toa term, unifying two terms to give a substitution, or omposing two substitutionsto give a third one.15.5 Depth-�rst searh revisitedWe now apply the ideas we have disussed so far by showing a version of thedepth-�rst searh algorithm that uses the data strutures we have designed. Itdi�ers from the ode shown in Appendix C in several respets:� Substitutions are treated here as an abstrat data type provided with theoperations we need. We disuss the implementation of this data type inChapter 16, and that implementation is used in the ode.� Sequenes or lists, whih we use to represent goals, lauses and staks,are also treated as an abstrat data type, with operations like head , tailand onatenation (�). The hoie of appropriate representations of thesesequenes, say as arrays or linked lists, is disussed in Setion 15.7.� The program fragments given here use the reord types of Pasal to repre-sent objets with several omponents. In the ode of Appendix C, marosare used in plae of these reord types. We shall later de�ne these marosso that reords an be represented as segments of a large array.



146 Implementing depth-�rst searhThe interpreter operates on a stak of frames, eah one a reord with this type:type frame = reordf goal : goal ; f answer : subst ;f parent : integer ;f retry : sequene of lause;end;The program uses several variables:varstak : sequene of frame;ok : boolean;urrent : goal ; answer : subst ;goalframe: integer ;pro: sequene of lause;The sequene stak is the stak of frames. The Boolean ag ok indiates whetherthe other variables have any signi�ane; it is true just after a suessful resolutionstep, and false if a resolution step has just failed. When ok is true, urrentontains the �rst part of the goal urrently being solved, and answer ontainsthe answer substitution built up so far. The rest of the urrent goal is found in ahain of stak frames linked by their parent �elds, starting at stak(goalframe).The variable pro has signi�ane only within the main loop of the interpreter;there, it ontains a list of lauses that have yet to be tried on the urrent goal.The top level of the interpreter algorithm is ontained in proedure Exeute:proedure Exeute(G0: goal);beginstak := hi; ok := true;urrent := G0; answer := I; goalframe := 0;while true do beginif ok then beginif urrent = hi then return;pro := Pro(urrent)endelse beginBaktrak ;if : ok then return;end;Step;if ok then Unwindendend;



15.5 Depth-�rst searh revisited 147Eah iteration of the main loop arries out one resolution step. The �rst partof the loop body �nds the goal that should take part in the step and the list oflauses pro that have yet to be tried on it. If ok is true, this is the new goal thatwas generated in the last resolution step, and all the lauses from its proedurehave yet to be tried. Otherwise, there is no urrent goal, and the proedureBaktrak is alled to reset the stak to a previous state. It resets urrent to apreviously saved value, and sets pro to the list of lauses that were not triedbefore. On return from Baktrak , the value of ok indiates whether it sueededin �nding a plae to begin searhing again.The next part of the loop body is a all to the proedure Step, whih arriesout a resolution step between the goal and the �rst lause of pro. It sets ok tofalse if the step fails, and true if it sueeds. In that ase, it updates urrent ,goalframe and answer to represent the new goal and answer substitution. Finally,if the step sueeds, a proedure alled Unwind is alled. This unwinds the hainof parent pointers, until it �nds a frame where there are still literals to be solved,or it reahes the end of the hain. This ensures that the variable urrent ontainsthe empty sequene only if the urrent goal is itself empty.There are two ways that Exeute an return. One way is if urrent beomesempty, indiating suess. The other way is if Baktrak fails to �nd an unex-plored alternative after a resolution step has failed. This means that the entiresearh tree for the goal has been explored without �nding a solution, so the wholeexeution has ended in failure.We now look at the details of arrying out a resolution step, as implementedby the proedure Step.proedure Step;var uni�er : subst ;beginif pro = hi thenok := falseelse beginPushFrame;ok := Uni�er(Apply(head(urrent); answer);Apply(head(pro): lhs ; answer); uni�er);if ok then beginurrent := head(pro): rhs;answer := answer . uni�erendendend;On entry to this proedure, urrent ontains the �rst part of a goal, and proontains a list of lauses that have not yet been tried on it. Our job here is totry the �rst of these lauses, saving the rest in a stak frame to be tried later.



148 Implementing depth-�rst searhThe proedure �rst deals with the ase that the pro is empty; in that ase,the attempt at resolution fails. Otherwise, it alls PushFrame to reate a newframe on the stak. This frame will ontain the urrent values of the interpretervariables, together with the tail of pro. Then it alulates the results of applyingthe urrent answer substitution to the �rst literal of the goal and the head of the�rst lause in pro, and tries to unify them. If the uni�ation sueeds, the newgoal is the right-hand side of lause, followed by the rest of the previous goal. Thenew answer substitution is obtained by omposing the old answer substitutionwith the uni�er that was just omputed.Creating a new frame on the stak is simple, beause we just need to make aframe reord that ontains opies of the urrent values of the interpreter variablesand add it to the end of stak :proedure PushFrame;var f : frame;beginf:f goal := urrent ;f:f answer := answer ;f:f parent := goalframe;f:f retry := tail(pro);stak := stak � hfi;goalframe := length(stak);end;If a resolution step fails, we need to �nd an earlier goal that still has untriedlauses. This is ahieved by the Baktrak proedure:proedure Baktrak ;beginwhile (stak 6= hi) ^ : ok do beginurrent := last(stak):f goal ;answer := last(stak):f answer ;goalframe := last(stak):f parent ;pro := last(stak):f retry ;stak := front(stak);ok := (pro 6= hi)endend;The loop repeatedly disards the top frame from the stak until either the stakis empty, or a frame is found with a non-empty f retry �eld.After a suessful resolution step, Unwind is alled. The new goal is repre-sented as the literals in urrent , followed by the unompleted parts of goals ina hain of anestor frames, linked together by their parent �elds. If the lause



15.6 Choie points 149used in the resolution step was a unit lause, urrent will now be empty, eventhough there are still unsolved literals further along the hain. Unwind searhesthe hain until either it �nds a frame that ontains some literals that are stillto be solved, or it reahes the end of the hain, meaning that the new goal isatually empty.During the searh, it may be that a frame that has been ompleted is the topone on the stak, and that it ontains no alternative lauses that have yet to betried. If so, then we say that the orresponding lause has sueeded determi-nately, and the top frame an be disarded, beause it will be never be neededagain. This `suess-popping' gives an important eÆieny improvement, beauseit means that solving a subgoal will leave nothing behind on the stak unless thereis a possibility of baktraking. In e�et, subgoals that sueed determinatelybehave like subroutine alls in onventional programming languages. One wayof ensuring that a subgoal sueeds determinately is to plae appropriate uts inthe lauses that are used solve it.proedure Unwind ;var parent : integer ;beginwhile (urrent = hi) ^ (frame > 0) do beginurrent := tail(stak(goalframe):f goal);parent := stak(goalframe):f parentif (goalframe = length(stak)^ (stak(goalframe):f retry = hi) thenstak := take(stak ; goalframe � 1);goalframe := parentendend;This ompletes the implementation of depth-�rst searh.15.6 Choie pointsIn the Baktrak proedure, frames are removed from the stak one at a time,until a frame is unovered that ontains untried lauses. Several frames may bethrown away in this proess, and it is pointless to remove them one at a time ifthey ould all be removed together. This suggests that it might be worth keepingtrak of the latest hoie point, that is, the nearest frame to the top of the stakthat ontains some untried lauses. Then Baktrak ould go straight to the rightframe.We an do this by adding an interpreter variable hoie that ontains the indexof the hoie point, or zero if there have been no hoies so far. To enable thevalue of this variable to be restored on baktraking, we also add a �eld hoie



150 Implementing depth-�rst searhto eah frame that reords the value of hoie when the frame was reated. TheBaktrak proedure an now be rewritten like this:proedure Baktrak ;var prev : integer ;beginok := (hoie > 0);if ok then beginurrent := stak(hoie):f goal ;answer := stak(hoie):f answer ;goalframe := stak(hoie):f parent ;pro := stak(hoie):f retry ;prev := stak(hoie):f hoie;stak := take(stak ; hoie � 1);hoie := prevendendThe take funtion is de�ned so that take(s; k) ontains the �rst k elements ofsequene s. If s = hx1; x2; : : : ; xni and 0 � k � n thentake(s; k) = hx1; x2; : : : ; xki:Take is used here to disard the part of the stak that has been added sine thelast hoie point.Keeping trak of the latest hoie point osts some time and some spae, and itwould not be worthwhile if the only bene�t were a slight inrease in the eÆienyof baktraking. The real bene�ts will be revealed in the next hapter, wherewe disuss the representation of terms and substitutions. In short, we shall beable to treat variables in an espeially eÆient way on baktraking of they havebeen reated sine the last hoie point. Reording the last hoie point alsoprovides a way to implement the ut symbol. When a ut is exeuted, the hoievariable is simply reset to the value it had when the frame for the urrent goalwas reated. This auses any hoie points that have ourred sine then to beignored in baktraking, thereby �xing the hoies that have been made.15.7 Choosing representationsThe deisions we have made about representing states of the interpreter haveintrodued several kinds of sequenes and lists. The entire state of the interpreteris a sequene of stak frames, eah frame ontains a list of untried lauses, andeah goal or lause body is a list of literals. Beause the sequene types wehave used are not really part of Pasal, we must hoose a real Pasal data type



15.7 Choosing representations 151to represent eah kind of sequene. There are several Pasal types to hoosefrom: a sequene an be represented by an array, or a linked list, or even by a�le. Eah hoie makes some operations on the sequene eÆient, and some lesseÆient. For example, an array makes it easy to �nd an element of the sequeneby numerial index, but hard to add a new element at the front. A linked listmakes it easy to add new elements in any position, but harder to �nd an elementby number.Here are the hoies of representation that pioProlog uses for eah kind ofsequene:� Interpreter states are represented by linked lists of stak frames. We addto eah stak frame a pointer to the immediately preeding frame, so thewhole stak is linked by pointers from the bak to the front. This makes iteasy to add and delete frames at the end of the stak.We have desribed the parent and hoie �elds of stak frames as thenumeri indexes of frames in the stak, and �nding elements by number isnot very eÆient with linked lists. To avoid this problem, we an replaethese �elds by pointers to stak frames.It would also be possible to represent the stak as an array of frames, andthe parent and hoie �elds ould then remain as simple indexes. PioPrologdoes not use this solution, beause it would mean alloating a �xed amountof storage for the array, whereas using a linked list allows storage for stakframes to be alloated from the same pool that is used for other kinds ofobjet.� Lists of lauses are represented by linked lists. This makes it eÆient to takethe head and tail of a list of lauses. In a resolution step, we try mathingwith the lause at the head of the list, and save the tail of the list for use onbaktraking. This representation also makes it easy to add more lausesto the proedure for a relation as pioProlog reads in its program from a�le.� The lists of literals in goals (and lause bodies) are represented by segmentsof a large array A. Eah segment ontains a series of pointers to the literalsof a goal, and is terminated by a null pointer. A goal is represented by astarting index s in the large array, and the literals of the goal extend fromthat point as far as the next null pointer. The literals in the goal startingat s areA[s℄; A[s+ 1℄; : : : ; A[s+ n� 1℄;where A[s+ n℄ is the �rst null pointer following A[s℄. This representationmakes it easy to �nd the head and tail of a goal: the head of the goalstarting at s is A[s℄, and its tail is the goal starting at s + 1. The emptygoal is represented by an index s suh that A[s℄ is a null pointer.



152 Implementing depth-�rst searhSummary� Prolog uses depth-�rst searh, implemented using a stak.� For eÆieny, resolution steps are delayed until their results are needed.� Goals and lists of lauses an be represented in a way that allows resolutionto use little time and storage.



Chapter 16Representing terms and substitutions

The disussion of depth-�rst searh in Chapter 15 ignored the question of howterms and substitutions should be represented, pretending that data types ofterms and substitutions were available in our extended dialet of Pasal, togetherwith operations suh as unifying two terms to give a substitution, or applying asubstitution to a term. We now turn to the problem of implementing these datatypes.In pioProlog, terms are represented as referene-linked tree strutures. Spaefor these strutures is alloated from two storage pools:� the heap area holds the lauses that make up the pioProlog program. Theontents of this area do not hange as a goal is exeuted.� the global stak area holds terms that are reated during exeution of a goal.Spae is alloated from this area as new terms are reated in resolution steps,and spae is released when baktraking happens, and terms that have beenreated during reent resolution steps are no longer needed.In addition to these two storage pools, there is also a loal stak area, used toalloate storage for stak frames.16.1 Representing termsThe onventional tehniques of Pasal programming provide a natural way torepresent terms as referene-linked tree strutures. Eah term is represented bya variant reord with a tag that identi�es the kind of term, and other �elds thatgive information relevant to terms of that kind (see Figure 16.1).� Compound terms have kind = fun ; they have a funtion symbol funand a number of arguments, eah one a term itself. The arguments are153



154 Representing terms and substitutionstypeterm = "blob;blob = reordase kind : (fun ; int ;hrtr;ell;ref) offun :(fun: symbol ;arg : array [1 : :max ℄ of term);int :(ival : integer);hrtr:(val : har);ell:(val : term);ref :(index : integer);end; Figure 16.1: Representation of termsrepresented by an array arg of pointers to other reords. Ideally, this arrayof pointers would have a di�erent size in di�erent reords, beause di�erentfuntion symbols may have di�erent numbers of arguments, but Pasal doesnot allow that, so the array is shown here as always having a �xed size max .� Other kinds of term like integers (with kind = int) and haraters (withkind = hrtr) have a �eld that ontains the value, a simple integer orharater.� Variables are represented by two kinds of reords. Those with kind = refare the variables that appear in program lauses, and those with kind =ell are variables that have been introdued during exeution of a goal.The interpretation of the index and val �elds of these reords is explainedlater, in Setion 16.2. Together, these two kinds of reord allow an eÆientrepresentation of the answer substitution for the derivation urrently beingexplored, and eÆient renaming of variables in a program lause that isused to extend the derivation.As we shall see in Chapter 17, the pointers and reord strutures of Pasal donot provide quite what we need for implementing pioProlog, beause there isno provision for variable-size arrays, and beause Pasal fores on us a storagealloation mehanism for pointers (via new and dispose) that is not adequate forour needs. For the present, we ignore these diÆulties; later, I shall explain howthey an be overome by replaing reords and pointers by segments of a largearray and indexes into the array, thereby getting round the limitations of Pasal.



16.2 Substitutions 15516.2 SubstitutionsAlthough substitutions were de�ned in Chapter 4 as in�nite funtions from vari-ables to terms, the substitutions we enounter in exeuting pioProlog programsatually a�et only a �nite number of variables, so it is suÆient to represent thesubstitution as a �nite mapping, ignoring all the variables that have not so farbeen used in the exeution.There are several ways in whih these �nite mappings ould be stored. Forexample, we ould use an array a[1::maxvars℄ of terms to represent a mapping,so that a[i℄ is the term that should be substituted for the variable numbered i.This representation an be made to work, but it does not take into aount themain operation on substitutions that is needed in pioProlog. That operation isomposition, and spei�ally the operationr := r . fx  u[r℄gwhere r is a Pasal variable that holds the urrent answer substitution, andfx  u[r℄g is a fragment of a uni�er that is being omputed during a resolutionstep. This operation is ostly if the substitution r is represented by an arraya, beause it requires the new fragment of substitution w = fx  u[r℄g to beapplied to eah element a[i℄:for i := 1 to maxvars do a[i℄ := Apply(a[i℄; w)This takes time that is (at the very best) proportional to the number of variablesin use.A better way of representing substitutions takes into aount the fat thatthe uni�ation algorithm builds them up by suessive omposition. Instead ofdiretly storing the funtion that maps variables to the terms that are substi-tuted for them, we store a binding funtion from whih this information an bereovered. Like a substitution, a binding funtion maps variables to terms, but itis used di�erently. The di�erene is most easily seen by omparing the operationt[r℄ of applying a substitution r to a term t with the operation thbi of applyinga binding funtion b to the same term. Here is the de�nition of t[r℄, opied fromSetion 4.4: v [r℄ = r(v )f(t1; : : : ; tk)[r℄ = f(t1[r℄; : : : ; tk[r℄):Compare this with the following de�nition of thbi:v hbi = � b(v )hbi; if v 2 dom bv ; otherwisef(t1; : : : ; tk)hbi = f(t1hbi; : : : ; tkhbi):



156 Representing terms and substitutionsThe big di�erene is in the way variables are treated. The substitution r givesdiretly the term to be substituted for a variable v , but the binding funtiongives a term b(v ) that needs to be subjeted to substitution by b again to obtainthe �nal answer b(v )hbi. This reursive substitution stops with variables that areoutside the domain of the funtion b, sine for them v hbi is simply equal to v .We say a substitution r is represented by a binding funtion b if t[r℄ = thbi forall terms t. It is not immediately obvious that all the substitutions we need anbe represented by binding funtions, nor that the de�nition of thbi is suÆientlywell-founded to serve as an implementation of the operation t[r℄. The alulationsinvolved in verifying this are too ompliated to give here, but it is neverthelesstrue that every answer substitution omputed in pioProlog an be representedby a binding funtion, and that the de�nition of thbi an be used to extratanswer substitutions from the binding funtions that represent them.The major advantage of using binding funtions rather than using substitu-tions diretly is that the operationr := r . fx  u[r℄gthat is used in the uni�ation algorithm an be replaed byb := b [ fX 7! ug;the operation of extending the funtion b so that it maps x to the term u. If bitself is represented (say) by an array, then this operation an be arried out byhanging a single element of the array, whih is muh heaper than applying thenew substitution to every element. The onditions under whih this represen-tation works an be expressed in terms of the substitution r that b represents.They are as follows: that r is idempotent, i.e., r . r = r, that x [r℄ = x , andthat x does not our in u[r℄. Lukily, all three onditions are met whenever thisoperation is needed in pioProlog.Another advantage of binding funtions is that the operation b := b[fx 7! ugis reversible by removing x from the domain of b again, an operation we maywrite asb := bnfxg:If b is represented by an array, this orresponds to resetting the appropriateelement of the array to a null value.In the algorithm for depth-�rst searh developed in Chapter 15, we kept asubstitution in eah stak frame, so that the urrent answer substitution ouldbe restored to its former value on baktraking. The fat that extending a bind-ing funtion is a reversible operation makes this unneessary, and we need keeponly the urrent answer substitution itself. If we need them, previous answersubstitutions an be reovered by undoing the intervening binding operations,



16.3 Renaming 157provided we keep a reord of whih variables have been added to the bindingfuntion at eah stage. In pioProlog, this set of variables is reorded in a speialstak alled the trail.Keeping only one answer substitution means that we need to represent onlya single binding funtion b. This means that b an be stored by having a singleterm-valued �eld val in the reord for eah variable v . If v is in the domain ofb, then this �eld ontains b(v ); otherwise it ontains nil .16.3 RenamingSo far, we have been ignoring the problem of renaming the variables in programlauses. Before a lause an be used in a resolution step, its variables must berenamed, so that they are di�erent from the variables that have appeared inearlier steps of the derivation. This is partiularly obvious if the same lause isused more than one in a derivation, beause without renaming the variables inthe lause would have to take the same values eah time the lause was used.A naive way of implementing renaming would be to opy out eah lause beforeit was used, systematially replaing eah variable with a fresh one. This wouldbe time-onsuming, taking a time that was proportional to the size of the lause.What is worse, the e�ort of opying out the lause might be ompletely wasted,beause the head of the lause might fail to math the urrent goal, ausing theresolution step to fail and the lause to be disarded immediately.We need a way to implement renaming without opying, with a ost that isproportional to the number of di�erent variables in the lause, rather than thesize of the whole lause. This is ahieved by the following plan: before saving alause as part of the program, we replae all its variables by numbered markers,represented by nodes with kind = ref . For example, the familiar lauseappend(x :a;b;x :) :� append(a;b;)would be stored asappend(�1:�2;�3;�1:�4) :� append(�2;�3;�4);where the symbol �i means a ref node with index = i. To make a renamedvariant of a lause stored in this way, we make an array of n fresh variables(where n is the number of variables in the original lause), and pair it up withthe stored form of the lause.Storage for this array of fresh variables an onveniently be alloated as partof a stak frame, sine renaming always takes plae as part of a resolution stepthat reates a new frame. The loal variables are elements of an array loal thatwe now add to eah stak frame. Thus a variant of the lause is represented bya pair (; f), where  is the stored skeleton of the lause { with ref nodes in



158 Representing terms and substitutionsplae of the variables { and f is the address of a loal stak frame that ontainsthe fresh variables f":loal [1℄, : : : , f":loal [n℄. Creating suh a pair is relativelyheap, sine the skeleton an be shared by all instanes of the lause.Using lauses that are represented by (; f) pairs requires a hange throughoutthe interpreter. Every lause, and every term that may be part of a lause, mustbe aompanied by a pointer to the stak frame that ontains its variables. Partsof the interpreter suh as the uni�ation algorithm, or the subroutine that printsout a term, need a frame pointer as an extra argument. Whenever they enountera ref node, they look up the orresponding variable in the stak frame and usethat instead.A problem arises when a term that is part of a lause is to be assigned as thevalue of a variable, beause we have not provided spae to store the frame thatgoes with the term. There are two solutions to this problem: one is to add a �eldto eah variable for storing the frame part of the (; f) pair. This approah isalled `full struture-sharing'. Its advantage is that it is never neessary to makea opy of a term, but making it work well requires a areful analysis of the Prologprogram to determine whih variables need spae on the global stak, and whihan exist purely on the loal stak.We shall adopt the other approah, alled `opy-on-use'. In this sheme, vari-ables have only a single �eld that ontains a term. If a term that omes witha frame pointer is to be assigned to the variable, it is neessary to make a opyof the term in the global stak, with ref nodes replaed by the atual variablesfrom the stak frame. This approah requires some opying of terms, but formany programs it is as e�etive as full struture-sharing, without the need for aomplex analysis of the Prolog program.16.4 Printing termsThe subroutine PrintTerm prints a readable representation of a term. It nielyillustrates the ombined e�et of our two mehanisms for representing substitu-tions, using binding funtions and val �elds to represent answer substitutions,and using skeletons and frames to implement renaming. This subroutine is usedby the pioProlog system to print the answer substitution after exeution of agoal has sueeded, by printing eah variable that appeared in the goal togetherwith its image under the answer substitution.Figure 16.2 shows a simpli�ed version of PrintTerm that prints all ompoundterms using the basi notation f(t1; : : : ; tn). The version inorporated into pio-Prolog itself is more ompliated, beause it attempts to use notations like in�x`:' and `=' for appropriate terms, and to display strings in double quotes ratherthan as lists of haraters.Like many proedures that manipulate terms, PrintTerm uses the funtionDeref to handle substitution and renaming. The name of this funtion reetsthat fat that it `dereferenes' terms by following the pointers assoiated with



16.4 Printing terms 159proedure PrintTerm(t: term; e: frame);var t1 : termbegint1 := Deref (t; e);ase t1":kind offun :PrintCompound(t1 ; e);int :write(t1":ival : 1);hrtr:write(''''; t1":val ; '''');ell:PrintVar(t1 )endend;proedure PrintCompound(t: term; e: frame);var f : symbol ; i: integer ;beginf := t":fun;WriteString(name(f));if arity(f) > 0 then beginwrite('(');PrintTerm(t":arg[1℄; e);for i := 2 to arity(f) do beginwrite(', ');PrintTerm(t":arg[i℄; e)end;write(')')endend; Figure 16.2: Code for printing termsell and ref nodes. The arguments to Deref are a term and a frame. Its resultis also a value of type term that represents the same term as the arguments, butthe result is never a ref node, and if it is a ell node, then its val �eld is nil ,so it represents a variable that is not a�eted by the urrent answer substitution.Thus the rest of the ode for PrintTerm need not be onerned with renamingvariables and applying the answer substitution.One Deref has been applied to the argument t, we an examine its kind�eld to determine what kind of term it is. Integers and haraters are easy toprint. Compound terms are printed by the PrintCompound routine, whih alls



160 Representing terms and substitutionsfuntion Deref (t: term; e: frame): term;var t1 : termbegint1 := t;if t1":kind = ref thent1 := e":loal [t1":index ℄;while (t1":kind = ell) ^ (t1":val 6= nil) dot1 := t1":val ;Deref := t1end Figure 16.3: Code for DerefPrintTerm reursively to print eah argument. Variables that survive Deref arenot a�eted by the answer substitution. PioProlog prints them using names like`L106' that are alulated from the address of the variable.The ode for Deref (Figure 16.3) reveals the steps that may need to be followedin renaming variables and applying the answer substitution. First, a term maybe a ref node that refers to a variable in the frame. Beause of the opy-on-userule, the value of a variable annot ontain any ref nodes, so the frame need beused at most one. On the other hand, the val �elds that represent the answersubstitution an make a hain of many links that must be followed before the �nalvalue is found. These long hains an be made if several variables have been madeto `share' before one of them is eventually assigned a non-variable term as value.16.5 The trailThe depth-�rst searh algorithm of Chapter 15 saved an answer substitution ineah frame. We have now deided to represent substitutions as binding funtions,and have observed that the operation of extending a binding funtion is reversible.This means that we need keep only one answer substitution, provided we an keeptrak of whih variable bindings must be undone in order to return to a previousstate.A good way to keep trak of variable bindings is to add another stak, the trail,to the interpreter. It ontains pointers to variables that have beome bound,and we reord the position of the stak pointer for the trail when eah stakframe is reated on the loal stak. When baktraking beomes neessary, theprevious binding state an be restored by popping variables o� the trail stakand resetting them until the stak pointer is bak where it was when the hoieframe was reated.Items are added to the trail stak as variables beome bound, and are removedon baktraking, so the trail stak grows and shrinks in the same way as the global



16.6 Uni�ation 161stak. In pioProlog, the trail is implemented as a linked list using spae alloatedin the global stak area. Sine eah variable appears in the trail at most one,the total amount of spae used for the trail is at most linear in the number ofvariables used in the exeution.Some variables that beome bound during exeution do not need to be reordedon the trail. There is no need to reord the binding of variables that havethemselves been reated sine the last hoie point, sine these variables willbe disarded when baktraking happens, and it does not matter whether theyare reset before being disarded or not. We all other variables ritial. They willsurvive baktraking, so they need to be reorded on the trail when they beomebound. Eah time a variable beomes bound, we test whether it is ritial and(if so) reord it on the trail.When a ut is exeuted, the latest hoie point may be removed, so that thehoie point reverts to an earlier frame. This means that variables that wereritial before the ut may no longer be ritial afterwards, and part of the workof exeuting a ut is to remove entries for these variables from the trail.16.6 Uni�ationThe uni�ation algorithm used by pioProlog is similar to the one desribedin Setion 6.1, but uses reursion in plae of an expliit stak to store pairsof terms waiting to be uni�ed. We present the algorithm here as operating onabstrat substitutions by omposition, though the atual program ats on bindingfuntions by extension, as was desribed in Setion 16.2.The funtion Unify takes two terms as arguments, and returns a Boolean valuethat indiates whether the two terms an be uni�ed. As a side e�et, the value ofthe global variable answer is augmented by omposing it with the most generaluni�er of the two terms. The initial value of answer is also applied to the twoterms before uni�ation, so that the statementok := Unify(t1; t2)sets ok to true if t1[answer ℄ and t2[answer ℄ are uni�able, and in that ase, the�nal value of answer is answer0 . r, where answer0 is the initial value of answer ,and r is a most general uni�er of t1[answer0℄ and t2[answer0℄. This dependeneon the answer variable makes our version of Unify rather speialized, but thisversion is exatly the one needed in the proedure Step of Setion 15.5, and ithas the eÆient implementation shown in Figure 16.4.The funtion begins by applying Deref to both arguments. After Deref hasdone its work, the rest of the task amounts to a ase analysis. If either term is avariable, then the most general uni�er simply substitutes the other term for it.If neither term is a variable and they are not both integers or both haraters orboth ompound terms, they annot be uni�ed. Two integers or two haraters



162 Representing terms and substitutionsfuntion Unify(t1 ; t2 : term): boolean;var u1 ; u2 : term;i: integer ;math: boolean;beginu1 := Deref (t1 ; answer); u2 := Deref (t2 ; answer);if u1 = u2 thenUnify := trueelse if u1":kind = ell then beginanswer := answer . fu1  u2 [answer ℄g;Unify := trueendelse if u2":kind = ell then beginanswer := answer . fu2  u1 [answer ℄g;Unify := trueendelse if u1":kind 6= u2":kind thenUnify := falseelsease u1":kind offun :if u1":fun 6= u2":fun thenUnify := falseelse begini := 1; math := true;while math ^ (i � arity(u1":fun)) do beginmath := Unify(u1":arg[i℄; t2":arg[i℄);i := i+ 1end;Unify := mathend;int :Unify := (u1":ival = u2":ival);hrtr:Unify := (u1":val = u2":val)endend; Figure 16.4: Code for uni�ation



16.6 Uni�ation 163an be uni�ed (by the identity substitution) if they have the same value, and nototherwise. Two ompound terms an be uni�ed if they have the same funtionsymbol, and the arguments an be uni�ed umulatively, with the uni�er fromthe �rst pair of arguments being applied to the rest of the arguments beforeuni�ation, and so on. Beause the answer substitution is impliitly applied tothe arguments of Unify , this umulative e�et is ahieved by making a series ofreursive alls of Unify, one for eah pair of orresponding arguments.A vital element that is missing here is the `our hek', that the variable vdoes not our in the term w when an element fv  wg is added to the answersubstitution. Omitting the our hek is a tradition in Prolog implementation,and it means that Prolog does not implement the logi of Horn lauses orretly.This is a great weakness, but it is partly justi�ed by the observation that thefastest orret uni�ation algorithms known are still too slow to be used in apratial Prolog implementation. We want the ost of mathing a pattern suhas x :a against input data suh as 3:1:4:1:nil to be proportional to the size of thepattern alone. Corret uni�ation requires an our hek that also sans thewhole of the input data, and this data may be arbitrarily large. In the example,before binding a to the term 1:4:1:nil , it is neessary to hek that this list on-tains no ourrenes of a, and that would be bound to take proportionally morework if the list ontained 1000 elements instead of just three. This explains whyProlog implementors �nd the ompromise of omitting the our hek impossibleto resist.Summary� Substitutions are represented in Prolog systems in a way that allows eÆ-ient omposition of an existing answer substitution with a new substitutionomponent.� Clauses are kept as skeletons, allowing their variables to be renamed simplyby alloating a frame on the stak.� The our hek, whih is needed for a orret uni�ation algorithm, isusually omitted in Prolog implementations for the sake of speed.



Chapter 17Implementation notes

In this hapter are olleted some notes on the parts of pioProlog that surroundand support the exeution mehanism disussed in the preeding two hapters.There is a parser that reads pioProlog programs and builds the internal stru-tures that represent them, with a lexial analyser and symbol table, all builtusing onventional ompiler tehniques. There are also routines that managethe di�erent areas of storage that are used to store and exeute pioProlog pro-grams. The purpose of this hapter is to provide information that will be usefulin projets that extend or improve the pioProlog system.PioProlog is implemented in a tiny subset of Pasal that avoids nested pro-edures and funtions, proedures and funtions that take other proedures orfuntions as arguments, onformant array parameters, arrays indexed by typesother than integer , sets, typed �le I/O, oating-point numbers, pointers, enu-merated types, variant reords, non-loal goto statements and with statements.By keeping to this small subset, the author hopes to make the program easierto translate into other languages, and easier to understand by those who do notknow Pasal very well.On the other hand, we extend the Pasal subset by using maros. The soureode of the pioProlog system must be passed through a simple maro proessorbefore it is submitted to the Pasal ompiler. The primary reason for this is thatPasal's reord and pointer types are almost useless for the kind of programminginvolved in eÆient implementation of Prolog. In Pasal, reords have a �xed size,and there is no alternative to the primitive storage alloation faility provided bynew and dispose. So instead of using reords and pointers, most of the data inpioProlog is kept in a big array mem . Instead of reords, we alloate ontiguoussegments of mem, and instead of pointers, we use indexes into the array. The seg-ments of mem alloated for di�erent reords of the same kind an have di�erentsizes, provided we take are that one reord does not overlap another one.There is a big disadvantage of this deision to ignore the data struturingfeatures of Pasal, beause in plae of the usual notation p":val for the val �eld164



17.1 Maros 165of the reord pointed to by p, we are fored to write something like mem[p+ 2℄.This is obsure, and likely to ause bugs if the layout of reords is ever hanged,espeially if di�erent kinds of reord have di�erent information at o�set 2. Apartial solution to this problem would be to de�ne a family of Pasal funtionsfor aessing the �elds of eah kind of reord. For example, one of them wouldbe a funtion Val that takes a pointer value p (represented by an integer), andreturns the ontents of the reord's val �eld, taken from the mem array:funtion Val(p: integer): integer ;beginVal := mem [p+ 2℄end;This is a little ineÆient, sine eah aess to a �eld of a reord would require afuntion all. More seriously, it does not provide a way of hanging the �elds ofa reord, beause you annot write an assignment like Val(p) := 3 and hope thatit will be equivalent to mem[p+ 2℄ := 3. A better solution is to use maros. Weould de�ne t val as a maro so that the expression t val(p) is textually replaedby mem [p + 2℄ before the program is ompiled. This avoids the ineÆienyof a funtion all, and works whether the expression appears on the left-handside of an assignment or one the right-hand side. For example, the assignmentt val(p) := t val(q) is textually expanded into mem[p+ 2℄ := mem[q+ 2℄, a legalPasal statement that has the desired e�et.17.1 MarosThe maro proessor used for ompiling pioProlog is alled `ppp' (for PasalPre-Proessor). Pasal soure ode for ppp is inluded in the distribution kitfor pioProlog. It is a simpli�ed version of the maro proessor desribed inChapter 8 of the book Software Tools in Pasal by B. W. Kernighan and P.J. Plauger (Addison{Wesley, 1981).A maro all looks very muh like a Pasal funtion all: it onsists of anidenti�er, possibly followed by a list of arguments in parentheses. To make iteasier to distinguish maros from funtions, most of the maros in the pioPrologode have been given names that ontain an undersore harater. Not all Pasalompilers allow identi�ers that ontain an undersore, but this does not matter,beause all maro names are eliminated during the maro proessing stage beforethe ode reahes the Pasal ompiler.Whenever ppp �nds an identi�er that has been de�ned as a maro, it ol-lets the arguments of the maro as follows: if the identi�er is immediately fol-lowed by an left parenthesis, then ppp reads the following text without expandingmaros until it �nds a mathing right parenthesis. Thus the whole argumentlist is a text in whih left and right parentheses are properly nested. Inside the



166 Implementation notesargument list, eah argument is separated from the next by a omma that is notenlosed in parentheses. For example, if t_arg is de�ned as a maro, then thetext t_arg(t_arg(p,1),i) is a maro all with arguments t_arg(p,1) and i.The �rst omma does not separate two arguments beause it appears inside aninner set of parentheses.Eah maro is assoiated with a de�nition, a text that may ontain the argu-ment markers $1, $2, and so on up to $9. After olleting the arguments of amaro, ppp replaes the whole maro all with a opy of the de�nition, expand-ing eah argument marker with a opy of the orresponding argument. Missingarguments are replaed by the empty text.Continuing the example, if the t_arg maro is de�ned as mem[$1+$2+2℄, thenthe maro all t_arg(t_arg(p,1),i) will be replaed by the text mem[t_arg(p,1)+i+2℄. The fat that one of the arguments ontains another maro all doesnot a�et the expansion proess at this stage.After the replaement has been made, ppp examines the whole text againto look for further maro alls. It is at this point that maro alls are re-ognized within the replaement text of a maro, or inside the arguments of amaro all. In the example, the nested all t_arg(p,1) is now expanded. Itsarguments are p and 1, so the all is replaed by mem[p+1+2℄, giving the resultmem[mem[p+1+2℄+i+2℄. This text no longer ontains any maro alls, so it isoutput as the �nal result of maro expansion.In the example, the expression that results from maro expansion ould besimpli�ed a little by replaing the sub-expression p+1+2 by p+3. This simpli-�ation is not attempted by ppp. Although the simpli�ed expression might beevaluated a little more quikly, the e�et is not big enough to have a notieablee�et on performane. In any ase, simpli�ations like this one are often doneautomatially by optimizing ompilers, so there is some hope that the ineÆienywill be eliminated at a later stage in the ompilation proess.There are two maros that are not expanded in the usual way, but are built-into ppp. One of these is the define maro that is used to de�ne other maros.It takes two arguments, and has the e�et as de�ning the �rst argument as thename of a maro, with the seond argument as its de�nition. The t_arg marothat we have been using as an example would be de�ned like this:define(t_arg, mem[$1+$2+2℄)Eah all of the define maro is replaed by the empty text, so no trae of thede�nition is left after maro expansion. If the same maro is de�ned several times,it is the most reent de�nition that is used at eah point. The define maro analso be used with only one argument. The e�et is to de�ne the argument as thename of a maro, with the empty text as its de�nition.The other built-in maro is ifdef. It is alled with either two or three ar-guments. If the �rst argument is the name of a maro, then a all of ifdefis replaed by its seond argument. If the �rst argument is not the name of a



17.1 Maros 167maro, then the all is replaed by the third argument if present, and otherwiseby the empty text. It is partiularly useful to ombine ifdef with define. Forexample, the textdefine(abort, goto 999)ifdef(turbo, define(abort, halt))has the e�et of de�ning abort as an abbreviation for goto 999 in most versionsof pioProlog. To install the program using Turbo Pasal, we add the de�ni-tion define(turbo) at the beginning of the program. This auses abort to berede�ned as a all to Turbo Pasal's built-in halt proedure.A ouple of extra rules about argument expansion should be mentioned. Oneis that the speial argument marker $0 is replaed by the list of all the argumentsof the maro, separated by ommas. This allows a limited kind of maro witha variable number of arguments, like the following pani maro that prints amessage and stops the program:define(pani, begin writeln('Pani: ', $0); abort end)Calls like pani(n, ' is too large') an be used to print a message that ismore than a simple string. It expands to the textbegin writeln('Pani: ', n, ' is too large'); abort endThis provides a onvenient way around Pasal's limitations that prohibit variable-length strings and variable numbers of arguments to proedures. Another speialargument marker is $$, whih expands to a single dollar sign.Maro alls are not expanded inside Pasal string onstants or inside om-ments delimited by urly brakets. This prevents surprises when a maro nameis aidentally used inside a string, and even makes it possible to `omment out'maro de�nitions.In addition to providing a more readable way to aess data strutures, marosare used in the ode of pioProlog to get round a few other small limitations ofPasal. We have already seen one of these, the pani maro. Maros also let usget round the silly restrition that labels must be numbers instead of meaningfulnames. We simply de�ne a few maros that have meaningful labels as their namesand expand to plain numbers:define(found, 1)define(exit, 2)define(done, 3)Then we an write goto found instead of goto 1. Many implementations ofPasal allow identi�ers as labels, but using maros makes this feature availablein all implementations.



168 Implementation notesOne drawbak of using maros is that the ompiler reads a di�erent text fromthe one that the programmer wrote, making its error messages a little morediÆult to understand. Also, if any maro alls or replaement texts ontainnewline haraters, then lines in the output of the maro proessor may notmath up with lines in the original program text, so ompiler error messages thatmention line numbers may be misleading. This an be frustrating, espeially ifthe error messages are otherwise unhelpful.17.2 String handlingStandard Pasal provides only very weak failities for handling harater strings.Many implementations of Pasal ontain better failities as extensions, but usingthese extensions would make pioProlog more diÆult to move from one Pasalimplementation to another. Instead, pioProlog inludes its own simple olletionof routines for handling strings.There are two representations for strings: either as a �xed-length array of har-aters (a tempstring), or as a segment of the global array harbuf (a permstring).The tempstring representation is used to store the haraters of a string as theyare input, and the funtion SaveString (line 96) an then be used to alloate a seg-ment of the harbuf array and turn the string into a permstring, where the stringis represented by the index in harbuf of its �rst harater. In both representa-tions, the end of a string is indiated by a speial harater endstr. In the asiiharater set, endstr an be de�ned as the otherwise unused harater hr(0)with numeri value 0.The tehnique of alloating segments of a large harater array is useful be-ause it makes it possible to store long strings, without wasting spae if thestrings turn out to be short. If most strings are stored in the harbuf array, thenwe an a�ord to be generous with the maximum length of a tempstring, and thisis the only �xed limit on the length of a string.17.3 Memory alloationSpae for the data strutures desribed in previous hapters is alloated fromthree parts of a single large array mem. The areas are de�ned by the globalvariables hp, lsp and gsp:� The heap area is used to store the lauses of a pioProlog program. Itextends from mem[1℄ to mem [hp℄. During exeution of a goal, the programis �xed and so the size of the heap does not hange, but the heap growsupwards when the program is being input.� The loal stak area is used for stak frames and their loal variables. Itextends from mem[hp + 1℄ to mem [lsp℄, and grows upwards.



17.3 Memory alloation 169
gsp:memsize:
lsp:hp:1:

GlobalStak
LoalStakHeapFigure 17.1: Layout of the mem array� The global stak area is used for terms onstruted during exeution of agoal. It extends from mem[gsp℄ to mem[memsize ℄ and grows downwards.The portion of the array from mem[lsp+1℄ to mem[gsp�1℄ is free, and both thestaks an grow by oupying parts of the free portion at opposite ends. Sinethe heap does not hange as a goal is exeuted, there is no need for a free spaebetween it and the loal stak.As the pioProlog program runs, both staks expand and ontrat. The loalstak expands as frames are added for suessive resolution steps, and ontratswhen a lause body is ompleted determinately. The global stak grows as newterms are reated, and both staks ontrat on baktraking. Most of the time,this stak-like behaviour is enough to ensure that some free memory is alwaysavailable. However, if the staks ever grow so large that the free area vanishes,then exeution must stop for lak of memory spae.If this happens, one last possibility remains. Some of the spae that hasbeen alloated on the global stak may store terms that are no longer needed,beause the loal variables that pointed to them have been disarded. PioProloginludes a garbage olletor that traes pointers to determine whih storage isreally needed. It relaims any `garbage' spae that is no longer needed, and makesit available for re-use by ompating together all the needed objets in the globalstak area. More details of the garbage olletor appear in Chapter 18.



170 Implementation notes17.4 Symbol tableThe symbol table ontains an entry for eah identi�er or variable name used inthe pioProlog program. It is organized as a hash table, with ollisions handledby searhing adjaent elements of the table. The symbol table has two purposes.One is to allow symbols to be represented in the rest of pioProlog by simplenumbers rather than the strings that are their names, so that omparing sym-bols for equality is a heap operation. Eah identi�er appears just one in thesymbol table, so its index an be used as a unique representation of the identi-�er. Two identi�ers are equal if and only if they oupy the same entry in thesymbol table.The other purpose of the symbol table is to store ertain information abouteah identi�er. A funtion or relation symbol has a �xed number of argumentsthat is kept in the arity �eld of its entry in the symbol table. Relation symbolseither have a list of lauses stored in the pro �eld, or have an ation ode thatidenti�es them as built-in relations.The primary interfae to the symbol table is the funtion Lookup (line 344),whih takes a name represented as a tempstring and returns the index of theentry for that name in the symbol table, reating a new entry if neessary. It �rstomputes a hash funtion from the string, and this determines the starting pointfor a sequential searh of the table. The searh �nishes when it reahes eitherthe desired symbol, or a vaant slot, indiated by a name �eld that ontains �1instead of a valid permstring value. If the symbol is not found, then it is enteredinto the vaant slot.Good performane for this kind of hash table depends on having plenty of va-ant reords where unsuessful searhes an be stopped, so Lookup does not allowthe table to beome more than hashfator per ent full, where hashfatoris about 90. It is better to stop immediately than to let the system grind slowlyto a halt beause the table is too full.The proedure InitSymbols (line 394) puts all the built-in symbols of pioProloginto the hash table using the same look-up mehanism. A few moments ouldbe saved eah time pioProlog starts by pre-omputing the loations of thesesymbols, but the time saved would not be worth the risk of getting the loationswrong.17.5 Lexial analysisThe parts of pioProlog that read the input program are built using similartehniques to those used in most ompilers. The job is split into two parts: lexialanalysis, whih divides the input into meaningful groups of haraters alledtokens, and syntati analysis or parsing, whih assembles the stream of tokensinto lauses, heking them against the grammar of the pioProlog language andbuilding the internal strutures that represent the lauses.



17.5 Lexial analysis 171The job of proedure San (line 694) is to break the pioProlog program intotokens. For example, if the program begins with the lauseappend(X:A, B, X:C) :- append(A, B, C).then the �rst few tokens will beappend ( X : A , B , X : C ) :- ...A token may onsist of an identi�er like append or X, or a puntuation symbol ofone or more haraters, like ( or :-. The spaes between tokens are disarded asthe input is split into tokens, as are any omments that appear in the pioPrologprogram.When San is alled, it reads the next token from the input and sets the globalvariable token to a value that indiates what kind of token it is. Continuing, theexample, if San were alled repeatedly, the values returned in token would beident , lpar, varble , olon , varble , omma, varble , omma,varble , olon , varble , rpar, arrow , : : :The value of token indiates only the kind of token that was found, so all identi-�ers are represented by the same value ident ; but there is another global vari-able tokval that San �lls with the symbol value assoiated with the identi�er.Variables (starting with an upper-ase letter), numbers, harater onstants andstrings are treated in similar ways. Eah lass is represented by a single value oftoken, but there are other global variables that return more preise informationin eah ase. The value of a number or the asii ode of a harater onstantare put in tokival , and there is a tempstring bu�er alled toksval that holds theatual haraters of eah string onstant. The implementation of San is lengthybut fairly simple. We an usually tell from the �rst harater of a token whatkind of token it is, so San ontains a big ase statement that examines oneharater from the input. Eah arm reads the remaining haraters of a token,setting token and the other global variables appropriately.It is onvenient to let the lexial analyser read the input �le as a simple streamof haraters, rather than as the sequene of separate lines that is provided by theinput failities of Pasal. To perform the translation (whih probably reverses atranslation done by the Pasal run-time library), there is a proedure GetChar(line 230). The end of a line is marked by a speial harater endline , de�nedto be the asii ode for newline, and the end of an input �le is indiated by thespeial harater endfile .GetChar also deals with swithing between input from a �le and input fromthe keyboard, and allows a single harater to be `pushed bak' onto the inputstream using the proedure PushBak (line 240). Sometimes the lexial analyserannot reognize the end of a token without seeing the next harater beyond it.



172 Implementation notesFor example, the end of a number annot be reognized exept by seeing that thefollowing harater is not a digit. In suh ases, the PushBak mehanism anbe used to save the extra harater to be read again as part of the next token.17.6 Syntax analysisThe job of parsing or syntati analysis is to take the stream of tokens produedby lexial analysis, hek it against the grammar of the language, and build theinternal data strutures that represent eah lause in the program. The methodused in pioProlog is alled reursive desent, beause it is based on a set ofmutually reursive proedures, eah responsible for reognizing a ertain lass ofphrases. This is the easiest way to onstrut a parser by hand, without the aid ofspeial software tools. Sine the pioProlog language has a fairly simple syntax,it is quite easy to build a parser from srath in this way.In the method of reursive desent, the parser ontains one proedure for eahkind of phrase in the grammar given in Setion 14.1: one proedure ParseClausefor lauses, another alled ParseTerm for terms, one alled ParseFator for fa-tors, and so on. The job of eah proedure is to `onsume' the tokens that makeup one instane of its kind of phrase. The proedure is alled in a situation wherethe token variable ontains the �rst token of a phrase. It fethes more tokens byalling San, and when it returns, token ontains the �rst token after the phrase.Just as a phrase belonging to one lass is made up from elements that arephrases of other kinds, so the analysis proedures all eah other in a mutu-ally reursive way to analyse sub-phrases. For example, a ompound term mayhave arguments that are themselves terms, so the proedure ParseCompoundalls ParseTerm to analyse eah argument. Eah of these arguments may be aompound term itself; if so, then ParseTerm alls ParseCompound reursivelyto analyse it. The pattern of reursive alls in the parser exatly mirrors thepattern of reursion on the grammar it is designed to reognize.Here is a simple implementation of the ParseCompound proedure:f ParseCompound { parse a ompound term gproedure ParseCompound ;beginEat(ident);if token = lpar then beginEat(lpar);ParseTerm;while token = omma dobegin Eat(omma); ParseTerm end;Eat(rpar)endend;



17.6 Syntax analysis 173This proedure orresponds to the grammar ruleompound ::= ident [ `(' term f `,' term g `)':Eah item in the rule that orresponds to a single token has been replaed bya all to the proedure Eat (line 851), whih heks that the urrent value oftoken is as expeted, and uses San to get the next token. The two ourrenesof term have been replaed by alls to the ParseTerm proedure. The squarebrakets (meaning an optional phrase) orrespond to an if statement, and theurly brakets (meaning a repeated phrase) orrespond to a while loop in theanalysis proedure. In both ases, the ondition is expressed in terms of the nexttoken from the input.There are two di�erenes between this way of building parsers and the trans-lation of grammar rules into logi programs that we disussed in Chapter 10.First, the sequene of tokens that makes up the input is not represented by anexpliit list, but by the sequene of values taken by the token variable as theSan proedure is alled repeatedly. Seond, Pasal has nothing orrespondingto the baktraking of Prolog, so eah deision about whih rule to use has tobe made irrevoably, knowing only the �rst token of a phrase. For example, inParseCompound , the deision whether the term has arguments is made by test-ing whether the next token is an opening parenthesis, and the deision whetherthere are further arguments is made eah time by testing whether the next tokenis a omma. Not all grammars allow all neessary deisions to be made just bylooking at the next token, but pioProlog (by design if not by aident) doesallow this, making reursive desent an appropriate hoie of analysis method.Full Prolog implementations typially use a di�erent parsing method alledoperator preedene parsing, beause the full syntax of Prolog inludes manykinds of in�x operators, and even allows the Prolog programmer to de�ne newoperators. It is diÆult to handle this using reursive desent alone.There are a ouple more things to explain about the parser in pioProlog:how it builds the internal strutures that represent the lauses it has read, andwhat happens if there is a syntax error in the input. The data strutures arebuilt by making eah analysis proedure into a parameterless funtion that re-turns a representation of its phrase. Eah funtion reeives representations of itssub-phrases as the results of the other analysis proedures it alls, and reeivesinformation about identi�ers and onstants from the lexial analyser in the globalvariables tokval , et. It uses these to onstrut the representation of the wholephrase, whih it returns as its own result. For omparison with the simple odeabove, the full version of ParseCompound appears at line 863 of Appendix C.The parser builds eah lause in the heap area, and replaes the variables in theinput lause with ref nodes, ready for the lause to be used with the renamingsheme explained in Chapter 16. The proedure VarRep (line 811) manages alittle table of variable names that gives the orret index for eah variable in thepresent lause. If the lause is a goal, this table is saved during the exeution of



174 Implementation notesthe goal, and used by the funtion ShowAnswer (line 821) to display the answersubstitution in the familiar `var = value' form.If an input lause ontains syntax errors, the parser adopts a simple strategyfor reovery, implemented by proedures ShowError (line 666) and Reover (line676). After printing an error message, they set a ag errag to prevent a asadeof further error messages, then disard haraters up to the next full stop (or,if input is from the keyboard, the end of the line). The token variable is set todot , the ode for a full stop.To make this strategy work, the analysis routines are written in suh a waythat they will not san past a full stop. The result is that all the ative analysisproedures will exit without onsuming any more tokens, and ontrol returns tothe proedure ReadClause (line 963), the outermost layer of the parser. Hereerrag is reset, and the proess of reading a lause is tried again. This reoverystrategy is not perfet, beause it disards the whole of any lause that ontainsan error, and it an be onfused by stray full stop, espeially full stops insidestrings, but it is easy to implement and fairly e�etive in pratie.17.7 TrailThe trail stak is kept as a linked list using storage alloated from the globalstak area. The global variable trhead points to the top item on the stak, andeah item t ontains a pointer x reset(t) to a variable that has beome bound,and a pointer x next(t) to the item below it.As disussed in Setion 16.5, a variable need be added to the trail only is itis ritial, that is, if it will still exist after baktraking. This observation isimportant for eÆient use of storage, beause a large fration of bindings a�etonly `loal' variables of a lause that will be thrown away if the lause fails. Thetest whether a variable is ritial is implemented in the maro ritial (line 988)by omparing its address with the values of the loal and global stak pointersat the last hoie point.There are three proedures that at on the trail. Save (line 990) tests if avariable is ritial, and if so adds it to the trail; it is alled whenever a variablebeomes bound. Restore (line 999) undoes the bindings that have been reordedon the trail sine the last hoie point, restoring all variables to their previousstate. Commit (line 1009) is alled as part of exeuting a ut, and removes fromthe trail any variables that are no longer ritial. This is neessary beause thespae oupied by non-ritial variables may be relaimed as part of suess-popping, and leaving them on the trail would result in dangling pointers.



17.8 Uni�ation 17517.8 Uni�ationThe uni�ation algorithm is implemented in the funtion Unify (line 1083). Itis exatly the algorithm explained in Setion 16.6, but there are a few details ofthe oding that should be explained here.To allow for suess-popping, it is important that no variable is ever bound toan objet with a shorter lifetime. Variables on the global stak must not pointto items on the loal stak, and no variable on either stak may point to otheritems nearer to the top of the same stak. Consequently, if two variables are to bebound together, it is neessary to ompare their lifetimes and bind the one thatwill be disarded �rst. This is done in proedure Share (line 1075), whih uses atriky maro lifetime to ompute a numeri measure of an objet's lifetime.17.9 InterpreterProedure Exeute (line 1306) and its subroutines implement the depth-�rstsearh proedure disussed in Chapter 15. It inorporates a ouple of re�nementsthat are desribed in more detail in Chapter 18, but we give a brief summaryhere.The �rst re�nement is that the lauses that are tried against a goal are not allthe lauses for the relevant relation, but only those that pass an initial `�ltering'test, hosen so that lauses that fail the test are ertain not to solve the goal.This is implemented by a funtion Searh that takes a goal and a list of lauses,and disards from the beginning of the list any lauses that fail the test. TheSearh funtion is used in proedure Resume (line 1279) to ompute the initialproedure for a goal, and also in proedure Step (line 1227) to ompute the listof lauses to be used on baktraking.The seond re�nement is that a di�erent method an sometimes be used tosolve the last subgoal in a lause body. This method, alled the tail reursionoptimization (TRO), allows some programs to be exeuted in less storage spaethan would otherwise be needed. The re�nement is implemented by adding atest to the Step proedure that detets when TRO an be used, and a proedureTroStep (line 1191) that arries out a resolution step using the improved method.The main loop of the exeution mehanism is in proedure Resume (line 1279).It is made into a separate proedure beause the exeution mehanism is alledreursively as part of the implementation of the built-in relation not.17.10 Built-in relationsEah built-in relation is implemented as a Boolean funtion with no parameters.When one of these funtions is alled, the arguments of the relation are availablein the global array av . The job of the Boolean funtion is to return true if the



176 Implementation notesrelation is true of these arguments, and false if not; the funtion may also set thevalues of variables in the arguments. If the funtion returns true, it should seturrent to point to the next subgoal to be solved, usually g rest(urrent). Therefollow brief notes on the implementation of eah built-in relation:� The ut symbol ! is implemented in DoCut (line 1352) by resetting thehoiepoint variable to the value it had when the alling frame was reated,thereby freezing all hoies made sine that time. The Commit operationis used to disard from the trail any bindings that are no longer ritial.� If p is a valid literal, then the subgoal all(p) behaves as if p itself appearedin plae if the subgoal. This behaviour is implemented in DoCall (line 1361)by a trik, using a dummy lause whose body onsists of a single variable.� Negation as failure, notp, is implemented in DoNot (line 1377) by allingthe exeution mehanism reursively to solve p. If the reursive all ends infailure, then DoNot returns true; otherwise, it ommits to the �rst solutionand returns false.� The arithmeti relations plus and times are implemented by DoPlus (line1409) and DoTimes (line 1431). Eah involves a ase analysis aording towhih arguments are known integers and whih are unknown, and in eahase, the unknown arguments are alulated from the known ones.� The relation x = y is implemented in DoEqual (line 1457) by unifying xand y . If this sueeds then the unifying substitution beomes part of theanswer substitution of the exeuting goal. This gives exatly the same e�etas if the relation were de�ned by the lausex = x :� :so making it a built-in relation is purely a matter of onveniene.� The tests integer(x ) and har(x ) are implemented by DoInteger (line 1464)and DoChar (line 1471). They are implemented by a straightforward testof the t kind �eld of the argument.17.11 Main programThe main program of pioProlog deals with the ommand-line arguments and theopening of input �les. Pasal provides no standard way of doing these things,so the main program uses a small olletion of proedures that are not standardPasal, but an be implemented easily with most ompilers. The parameterlessfuntionfuntion arg: integer ;should return the number of ommand-line arguments, inluding the program



17.11 Main program 177name. Thus if pioProlog were started with the ommand$ pprolog motel.ppthen the arg funtion would return 2. The arguments themselves are aessedusing the proedureproedure argv(i: integer ; var arg : tempstring);This should store the string that is argument number i in the arg parameter,terminating it with the harater hr(0). Arguments are numbered from zero,with argument number zero being the program name.To open a named �le for reading, the main program uses the funtionfuntion openin(var f : text ; var name: tempstring): boolean;This funtion is passed the name of the �le (terminated by hr(0)) as its nameargument. It should attempt to open the �le for reading and assoiate it withthe Pasal �le variable f , returning true if the �le is suessfully opened. If the�le annot be opened, the program should not rash, but openin should returnfalse.The main program uses these proedures in a straightforward way to read inthe lauses from eah of the �les named on the ommand line, and �nally readsa sequene of goals from the keyboard.



Chapter 18Interpreter optimizations

In this hapter, we desribe briey three improvements that are inorporated inthe pioProlog interpreter:� Garbage olletion for the global stak reovers storage spae that has be-ome inaessible, but is not reovered by the usual stak-like behaviour ofthe storage mehanism.� Indexing quikly disards from a proedure those lauses that `obviously' failto math a goal literal. This saves the time needed to arry out uni�ationfor those lauses, and enables the interpreter to detet that some goals aredeterminate without the help of uts.� Tail reursion is treated speially. When the last literal in a lause bodyis reahed, it is sometimes possible to relaim the stak spae used by thelause before exeuting the literal. This allows reursive relations of a simpleform to be exeuted in onstant spae.The three re�nements work well together: indexing makes more goals determi-nate, so their working spae an be reovered early by the garbage olletor, andit also makes more tail alls amenable to speial treatment. These re�nementsare important, beause they allow a Prolog system with a �nite amount of storageto exeute programs that have a simple pattern of reursion without any limiton the reursion depth. Broadly speaking, if a program ould be written with aloop in a onventional programming language, the same program an naturallybe written in Prolog in suh a way that a Prolog system with these re�nementsan exeute it in onstant spae.
178



18.1 Garbage olletion 17918.1 Garbage olletionAs pioProlog programs are exeuted, muh of the storage that is alloated isrelaimed by the usual proess of ontrating the staks on baktraking or deter-minate suess. But some storage may not be relaimed in this way, even thoughit has beome inaessible to the program. An example is a program like this:translation(x ; z) :� analyse(x ;y ); !; synthesize(y ; z):All the global stak spae alloated during exeution of analyse(x ;y ) that isnot part of the immediate result y will no longer be aessible after the ut,beause even baktraking annot then return to analyse(x ;y ). The purpose ofthe garbage olletor is to relaim this storage.The garbage olletor is the most subtle and ompliated part of the pioPrologsystem. Beause it has to analyse the whole network of pointers in the systemstate, it breaks all the abstration boundaries that keep other parts of the systemsimple. It must do so, beause it must disover what parts of the alloated storageare aessible from any part of the state.Another soure of omplexity, even ompared to other garbage olletors, isthe kind of garbage olletion that Prolog demands. We do not want to lose theadvantages of stak-like relamation of global stak spae on baktraking, so thegarbage olletor must work by ompating all the aessible storage in a waythat preserves the order of data in memory. This makes the task of the garbageolletor more diÆult than it would be if it simply linked the garbage into a freelist, as some storage alloation shemes do.For garbage olletion to work, it must be possible to �nd all the pointersthat lead into the global stak from outside. These pointers may be stored inthe interpreter's `register' variables suh as all or trhead , or in the �elds of aloal stak frame. During a resolution step, pointers into the global stak are alsoheld in the loal variables of interpreter proedures like Unify. This would ausegreat problems if we allowed garbage olletion to take plae in the middle ofa resolution step, espeially beause items in the global stak are moved duringgarbage olletion. Consequently, we arrange that the garbage olletor is alledonly at `quiet' times, when the only pointers into the global stak are held ininterpreter registers or loal stak frames.The main loop of the interpreter inludes a test whether the amount of freestorage left is less than a ertain threshold glow . If so, the garbage olletoris alled before the next resolution step begins. If storage runs out during aresolution step, exeution of the goal is abandoned without muh grae. Thissheme is reasonable, beause the amount of storage onsumed during a resolutionstep is bounded by the size of the largest program lause, for global stak spaeis onsumed by opying out parts of the lause. In theory, we ould alulatethis bound for eah Prolog program and use it in plae of the onstant valueglow , but pioProlog does not bother with this. When the garbage olletor



180 Interpreter optimizationsruns, it must �nd at least ghigh words of free spae, otherwise exeution stopsimmediately. This prevents the situation where a program alls the garbageolletor many times in quik suession before �nally running out of spae.The garbage olletor is implemented as the proedure Collet (line 1686),and is based on the `LISP 2 garbage olletor' desribed in the answer to anexerise on page 602 of the book Fundamental Algorithms by Donald E. Knuth(Addison{Wesley, 1973). Its work is divided into four phases:1. Mark all aessible storage in the global stak.2. Compute the new loation of that eah aessible blok will have afterstorage has been ompated.3. Adjust internal and external pointers to global stak items to point to thenew loations of the items.4. Compat the aessible storage towards the top of the mem array.During phase 1, the aessible storage is marked by modifying the t kind �eldof eah node. During phase 2, the distane that a node will move relative tothe bottom of the stak is stored in a speial �eld t shift that is added to eahnode for use by the garbage olletor. This information is used in phase 3 toadjust pointers to the node. Further details of the implementation are ontainedin omments in the ode.18.2 IndexingIn solving a goal literal P , the usual method is to take the list of lauses forsame relation as P (the proedure for P ), and try them in sequene until a lausemathes P . The other lauses may be tried later after baktraking. The indexingoptimization works by �ltering out from the proedure some of the lauses thatdo not math, so inreasing the likelihood that eah of the remaining lauses doesmath. There are two bene�ts in this: �rst, the test applied in �ltering the listof lauses is muh heaper than alloating a frame and performing uni�ation,so time is saved if some of the lauses for a relation an be �ltered out. Theseond bene�t is obtained after a mathing lause has been found. If there areno remaining alternatives in the proedure, there is no need to mark the stakframe as a hoie point, and no need to visit it again on baktraking. Filteringthe list of lauses makes it more likely that there will be no alternatives that havenot been disarded, and so inreases the hane of avoiding baktraking.An implementation of indexing requires a quik and e�etive test that om-pares a goal literal with the head of a lause. This test must say `yes' when thetwo literals an be uni�ed, but may say `no' otherwise. It does not matter muhif the test says `yes' when the two literals annot atually be uni�ed, but it mustnot say `no' if they an be uni�ed. Sine all the lauses in a proedure share thesame relation symbol as the goal, it is pointless to use the relation symbol for



18.3 Tail reursion 181�ltering. Instead, pioProlog (and many other Prolog implementations) �lter thelauses aording to an index omputed from the �rst argument of the relation.The funtion Key (line 1120) omputes an integer index key(t) from a om-pound term t. The funtion is hosen so that if two terms t1 and t2 are uni�ablethen key(t1) = key(t2) or key(t1) = 0 or key(t2) = 0. This is ahieved by mak-ing key(t) depend on the outermost funtion symbol in the �rst argument of t,and putting key(t) = 0 if the �rst argument of t is a variable. If a goal literaland a lause head are mapped to di�erent non-zero integers by the key fun-tion, then they are not uni�able, so there is no point in trying to use the lauseto solve the goal. Eah lause  has the key value of its head stored in a �eld key(), and the funtion Searh (line 1143) uses these values to �nd the �rstlause in a proedure that is not disarded by indexing. Searh is used both to�nd the �rst lause to try when a new goal is adopted, and also to determinethe list of lauses that are saved in a stak frame for use on baktraking. Thee�et of using Searh in this way is the same as �ltering the whole proedureall at one.It is unfortunate that the hoie of key funtion introdues an asymmetryamong the arguments of a relation by treating the �rst argument speially, butthis �ts in well with the natural programming style in whih the �rst few ar-guments of a relation are its usual inputs and the last few are its outputs. Arelation that is de�ned by reursion on lists will often have a lause that applieswhen the �rst argument is nil , and one that applies when the �rst argument isx :a. Indexing on the outermost funtion symbol allows pioProlog to hoose theright lause eah time, and avoid baktraking to try the other lause.18.3 Tail reursionWhen the interpreter exeutes the last literal in a lause body, the resolutionstep replaes the literal by the body of the mathing lause. Normally, this isrepresented by adding a new frame to the stak, with the urrent frame as itsparent. The new frame ontains the lause body as its goal, and the urrentframe ontains no further subgoals to be solved. If exeution of the lause bodysueeds, the next subgoal to be solved will ome from the parent frame of theoriginal frame.Under ertain onditions, it is possible to release the storage oupied bythe urrent frame before starting to solve the subgoals in the new frame, andto arrange that the new frame shares the same parent as the urrent frame.If exeution of the subgoals in the new frame sueeds, ontrol will then passdiretly to the parent of the urrent frame. This is known as the tail reursionoptimization.The advantage of this optimization is partiularly great in the ase of relationsthat are de�ned in a `tail reursive' way, that is, where the only reursive allsin the de�nition appear as the last literals in lause bodies, as in the following



182 Interpreter optimizationsde�nition of revapp, taken from Setion 13.3:revapp(nil ;b;b) :� :revapp(x :a;b;) :� revapp(a;x :b;):In this de�nition, the reursive all of revapp appears as the only literal in alause body, so it is ertainly the last one. Reversing a list with n elements leadsto n reursive alls of revapp, and normally this would lead to n frames beingreated on the loal stak. With the tail reursion optimization, however, the �rstof these frames is released at the same time that the seond one is reated, andthe seond one is released at the same time that the third one is reated, and soon. The program needs no more than a ertain �xed amount of loal stak spae,however long the list that is being reversed. The tail reursion optimization hasturned the reursive behaviour of the program into a loop-like behaviour.The tail reursion optimization annot always be used when the last literalof a lause is being solved, beause sometimes the frame that would be dis-arded might still be needed later for baktraking. So before deiding to usethe optimization, the interpreter must hek that both the alling relation andthe relation being alled are free from non-determinism. If there are still lausesfor the alling relation that have not been tried, then baktraking may returnto the urrent frame to try those lauses. Also, if there are alternatives to thelause that is being used to solve the tail all, then baktraking will return tothe urrent frame to �nd the goal to whih those alternatives should be applied.In pioProlog, a maro tro test (line 1180) heks that these onditions are satis-�ed before the tail reursion optimization is used. It also heks that the urrentframe is not the bottom one on the stak, beause the variables in that frame areneeded to print the answer.If the test sueeds, then the urrent frame will not be visited by baktraking.Before disarding it, we also need to make sure that there are no outside referenesto its loal variables. Beause the urrent frame is on top of the stak, and linksbetween variables are always direted downwards in the loal stak, we an besure that any referenes to the urrent frame must ome from the new frame. Wean avoid suh referenes by a dirty trik: before unifying the urrent subgoalwith the head of the lause, we slide the urrent frame upwards on the stak,and alloate spae for the new frame underneath it. That way, any referenesfrom one frame to the other will lead from the old frame to the new one, andthe old frame an then be disarded safely. This rather onvoluted manoeuvre isaomplished by the proedure TroStep (line 1191).In an interpreter, the tail reursion optimization osts some time, beause itis neessary to test whether it an be applied, and if so, to make the omplexmoves needed to disard the old frame early. In omparison, the time bene�t ofgoing straight from the new frame to the parent of the urrent frame on suessis negligible. The real bene�t of this optimization is the spae it saves, beauseit allows simple programs { those that ould be written as loops in onventional



18.4 A onluding example 183programming languages { to be exeuted in onstant stak spae. In a Prologimplementation based on a ompiler, the bene�t of the tail reursion optimizationis even learer, beause the test whether it an be applied an be arried out oneand for all by the ompiler, and need not be repeated every time a relation isused by the running program.Additional spae may be saved in an implementation that also inludes agarbage olletor, beause storage on the global stak an be relaimed as soonas the stak frames that referene it have been disarded. The tail reursionoptimization also ombines well with indexing, beause part of the test whetherthe optimization an be applied involves heking that there are no untried lausesfor either the alling or the alled relation, and indexing makes this more likelyby disarding alternatives earlier.18.4 A onluding exampleThe three re�nements we have desribed work well together. For example, let usonsider the problem of omputing the sum of a list of numbers. We an de�nea relation sum(a; s) that holds if s is the sum of list a:sum(nil ; 0) :� :sum(x :a; s) :� sum(a; s1); plus(x ; s1; s):Using the tehniques of Chapter 13, we an transform the program into thefollowing tail reursive form:sum(a; s) :� sum1 (a; 0; s):sum1 (nil ; s0; s0) :� :sum1 (x :a; s0; s) :� plus(s0;x ; s1); sum1 (a; s1; s):The relation sum1 is de�ned so that sum1 (a; s0; s) holds if s is equal to s0 plusthe sum of the elements of a. The transformed program is alled tail reursivebeause the reursive all of sum1 ours at the end of its lause.Indexing of the �rst argument of sum1 allows pioProlog to determine whih ofthe two lauses for sum1 applies to eah goal, and alls to sum1 exeute withoutbaktraking and without reating any hoie points, even without inludingany uts in the program. Beause there are no hoie points, the tail reursionoptimization applies, and the program exeutes in a onstant amount of stakspae: the stak spae needed to sum a list of 1000 elements is no bigger than thatneeded to sum a list of 3 elements. Eah reursive all of sum1 replaes one stakframe by another one that di�ers only in the values of its variables, as a subgoalof the form sum1 (x :a; s0; s) is replaed by one of the form sum1 (a; s1; s), wheres1 = s0+x . Finally, after a all to sum has sueeded, the assoiated frames are



184 Interpreter optimizationspopped from the loal stak, and the only global stak data that is aessible isthe result. Any spae alloated to hold intermediate results an be relaimed bythe garbage olletor.If we were to write a Pasal funtion to sum a list of numbers, it would probablylook rather like this:funtion Sum(a0: list): integer ;var a: list ; s: integer ;begina := a0; s := 0;while a 6= nil do begins := s+ head(a);a := tail(a)endend;In eah iteration of the loop, the values of variables s and a hange as follows: the�rst element of a is added to s, then the �rst element is removed from a. This isexatly the same hange as takes plae in the Prolog program as one stak frameis replaed by another.What we have just shown is that a simple Prolog program for the same taskis exeuted in essentially the same way. The di�erene in eÆieny between thePasal program and the pioProlog program is the di�erene between a programthat is ompiled and one that is interpreted. With a Prolog ompiler that usesthe re�nements disussed in this hapter, this di�erene an be eliminated too,and Prolog programs an run at the almost the same speed as a Pasal programfor the same problem.



Chapter 19In onlusion

In this book, we have looked at logi programming from three omplementarypoints of view: as a mathematial theory based on logi, as a medium for express-ing the solutions of problems and as a programming language that is implementedon omputers. Eah of these three points of view is important in the history oflogi programming.The mathematial theory of logi programming draws on onepts from math-ematial logi, and the theorems of soundness and ompleteness for Horn lauseresolution mirror results that an be proved using similar methods in the moregeneral setting of �rst order prediate alulus. It was Alan Robinson who �rstdisovered that the single rule of Resolution was omplete for the lausal formof prediate alulus, and invented the uni�ation algorithm that is an essentialpart of resolution. These results were reported in the lassi paper `A mahine-oriented logi based on the resolution priniple'. (Details of books and papersited here may be found in the Further Reading setion below.)Kowalski's book Logi for Problem Solving opened up the �eld by showing thatmany ommon problems from arti�ial intelligene had a natural representationas logi programs. As we have seen, problems like ombinatorial searhing andparsing have natural expressions as logi programs.New ideas in programming are of little use unless they lead to omputer pro-grams that really work. In the ase of logi programming, this means that thereis a need for implementations of Prolog that work at speeds omparable to otherlanguages. David H. D. Warren did important work here, by showing how to im-plement Prolog for the DEC{10 omputer in a demonstrably eÆient way. Thedata strutures used in all Prolog implementations to represent goals and lausesare based on his early work. His famous artile with Luis and Fernando Pereira,`Prolog: the language and its implementation ompared with Lisp', showed thatProlog programs ould ahieve the same order of speed as omparable programswritten in Lisp, but with a versatility and elegane that the Lisp programs ouldnot math. High-performane Prolog implementations use ompilers instead of185



186 In onlusionthe interpreter tehniques we studied in pioProlog. Nevertheless, the data stru-tures are the same, and re�nements like garbage olletion, indexing and opti-mized tail alls arry aross to implementations based on ompilers.In the author's view, the true importane of logi programming should notbe seen as depending solely on Prolog. Although Prolog is undeniably the mostsuessful realization of logi programming ideas, it is weak as a programminglanguage. It does not support notions like modularity and strong ompile-timetyping that help with the onstrution of large and reliable software, and pratialdetails like input/output are not well integrated with the logi programming partof Prolog: hene our avoidane of them in this book. One solution to theseproblems with Prolog is to design new and better logi programming languagesthat remedy the defets and de�ienies. Reent developments in this diretionhave been made by P. M. Hill and J. W. Lloyd at the University of Bristol andare desribed in their book, The G�odel Programming Language.Another view is that logi programming is just one of a network of ideas thatan be used in understanding and building omplex systems. Prolog an beused for prototyping, and for onstruting appropriate parts of a larger system,other parts of whih may be built using more traditional tehniques. From thispoint of view, the links between logi programming and other ideas in omputersiene are as important as its strength as a programming paradigm in its ownright. In this book, we have touhed on links with databases, the theory ofprogramming languages, theorem proving and hardware design. The tehniquesthat we have studied in the implementation of pioProlog provide other links:with other delarative programming paradigms suh as funtional programming,with the type systems of programming languages like ML and with the tehnologyof automati theorem proving.



Further reading

Rather than attempt a omprehensive bibliography, whih would run into manythousands of entries, I will restrit myself here to reommending some of thebooks and papers I have found helpful in studying logi and logi programming.These works themselves ontain referenes to more soures. Besides these, thereare several journals and periodi onferenes that are entirely devoted to thesubjet. First, two book on the the theory of logi programming; the �rst ofthese is the standard aount, and the seond is a more aessible textbook.� J. A. Lloyd, Foundations of Logi Programming, seond edition, Springer-Verlag, 1987.� C. J. Hogger, Essentials of Logi Programming, Oxford University Press,1990.The following book by Kowalski onentrates on the expression of typial arti�ialintelligene problems in Horn lause logi.� R. Kowalski, Logi for Problem Solving, North Holland, 1979.For programming in Prolog itself, two useful texts are� W. F. Cloksin and C. S. Mellish, Programming in Prolog, Springer-Verlag,1981.� L. Sterling and E. Y. Shapiro, The Art of Prolog: Advaned ProgrammingTehniques, MIT Press, 1986.A lot of information about Prolog implementation tehniques is ontained in� D. Maier and D. S. Warren, Computing with Logi: Logi Programming withProlog, Benjamin Cummings, 1988. 187



188 Further readingThe tehniques used in building Prolog ompilers (rather than interpreters) areovered in� H. A��t-Kai, Warren's Abstrat Mahine: A Tutorial Reonstrution, MITPress, 1991.Considered as a programming language, Prolog is relatively primitive. Somepossible diretions for future development are shown by the language G�odel,desribed in� P. M. Hill and J. W. Lloyd, The G�odel Programming Language, MIT Press,1994.For a book on logi, with almost no referene to omputer programming, theauthor reommends� H. B. Enderton, A Mathematial Introdution to Logi, Aademi Press,1972.This book follows the standard development of mathematial logi, from whihmany onepts are borrowed in the theory of logi programming. Rather harm-ingly, the book ontains a single Fortran statement on page 16.Finally, some of the primary literature on logi programming is quite easy toread, and worth looking up. A good plae to start are the papers� J. A. Robinson, `A mahine-oriented logi based on the resolution priniple',J. ACM., 12, 1 (January 1965), pp. 23{41.� M. H. van Emden and R. A. Kowalski, `The semantis of prediate logi asa programming language', J. ACM., 23, 4 (Otober 1976), pp. 733{42.� D. H. D. Warren, L. M. Pereira and F. Pereira, `Prolog: the language and itsimplementation ompared with Lisp', Pro. Symp. on AI and ProgrammingLanguages, SIGPLAN Noties, 12, 8 (August 1977), pp. 109{15.



Appendix AAnswers to the exerises

1.1 Modify the lounge relation to allow two bedroom doors, but leave the bedroom relationunhanged:suite(fd; lw ;bd1;bd2;bw1;bw2) :�lounge(fd; lw ;bd1;bd2); bedroom(bd1;bw1); bedroom(bd2;bw2):lounge(fd; lw ;bd1;bd2) :�opposite(fd; lw ); adjaent(lw ;bd1); adjaent(lw ;bd2):bedroom(bd;bw ) :�adjaent(bd;bw );bw = east :There are eight solutions to the goal# :� suite(fd; lw ;bd1;bd2;bw1;bw2):However, some of these desribe suites that annot be built with retangular rooms inside aretangular boundary.2.1 a. Join the manager and bill relations on the name �eld, selet the reords that satisfyamount > 10, and then projet on the name �eld:answer(name) :�manager(name); bill(name ;number;amount);amount > 10:b. Join the bill relation with itself on the name �eld, selet the reords that satisfy number1 6=number2, then projet on the name �eld:answer(name) :�bill(name ;number1;amount1);bill(name ;number2;amount2);number1 6= number2: 189



190 Answers to the exerises. Join the bill and paid relations on the number �eld, selet the reords in whih the amountpaid is less than amount of the bill, and �nally projet on the name �eld:answer(name) :�bill(name ;number;amount1);paid(number;amount2;date);amount2 < amount1:d. De�ne a relation prompt(number) that holds if number is the number of a bill that waspaid before February 1st. This relation an be de�ned by seleting from the paid relationand projeting on the number �eld:prompt(number) :� paid(number;amount ;date); before(date ; feb1 ):Now de�ne a relation issued(number) that is true if someone has been given a bill numberednumber. De�ne it by projeting the bill relation on the number �eld:issued(number) :� bill(name ;number;amount):The di�erene of these two relations gives a relation late(number) that holds if the billnumbered number has been issued, but has not been paid promptly:late(number) :� issued(number);not prompt(number):Finally, we an obtain the names of late payers by joining with the bill relation on thenumber �eld and projeting on the name �eld:answer(name) :� bill(name ;number;amount); late(number):3.1 The goal fails beause their is no solution to the subgoal member(x ;nil). This auratelyreets that fat that only non-empty lists have a maximum element.3.2 The solution x = 3 is displayed twie if we use the de�nition of maximum in terms ofmember and dominates . This is beause their are two ways of deriving the fat that 3 is amember of the list 3:1:3:2:nil . With the diret de�nition of maximum, the solution is displayedonly one.3.3 In terms of append and other relations:a. pre�x (a;b) :� append(a; ;b):b. suÆx (a;b) :� append( ;a;b):. segment(a;b) :� pre�x ( ;b); suÆx (a;):e. delete(a;x ;b) :� append( ;x :d;a); append( ;d;b):By reursion:a. pre�x (nil ;b) :� :pre�x (x :a;x :b) :� pre�x (a;b):b. suÆx (b;b) :� :suÆx (a;x :b) :� suÆx (a;b):



A Answers to the exerises 191. segment(a;b) :� pre�x (a;b):segment(a;x :b) :� segment(a;b):d. sublist(nil ;nil) :� :sublist(a;x :b) :� sublist(a;b):sublist(x :a;x :b) :� sublist(a;b):e. delete(x :a;x ;a) :� :delete(y :a;x ;y :b) :� delete(a;x ;b):f. perm(nil ;nil) :� :perm(x :a;b) :� delete(b;x ;); perm(a;):3.4 a. By reursion:last(x :nil ;x ) :� :last(x :a;y ) :� last(a;y ):b. In terms of append :last(a;x ) :� append(b;x :nil ;a):The goal # :� last(a; 3) has in�nitely many solutions of the form a = x1:x2: : : : :xn :3:nil .3.5 With the �rst de�nition of maximum (the one in terms of member and dominates), theanswer x = 3 is displayed twie, beause there are two ways of showing that 3 is a member of thelist 3:1:3:2:nil , and pioProlog is enumerating proofs rather than the answers themselves. Withthe other de�nition of maximum, the answer is only displayed one, beause there is only oneway of deriving the answer in this ase.3.6 Beause of Prolog's left-to-right rule, the lauseatten(fork(l;r);) :� atten(l;a);atten(r;b); append(a;b;):does not work well if only the list  is given, beause it auses the subgoal atten(l;a) to besolved �rst, and that subgoal does not ontain any of the given information. The result is thatProlog blindly tries all trees l and r, looking for pairs of trees whose attened forms join togive  . This searh will go on forever, �nding only some of the orret solutions.For this use of atten, it is better to rewrite the lause asatten(fork(l;r);) :� append(a;b;);atten(l;a);atten(r;b):This leads to a systemati searh of the ways of splitting  into two parts a and b, followed bysystemati searhes for ways of building trees for the two parts.There is a further problem: one of the ways of splitting a list into two parts is to have onepart be nil , and the other part be the whole list. Choosing this split results in an attempt tosolve the original problem as a sub-problem of itself, and hene to an in�nite searh. A solutionto this problem is to require both parts of the split to be non-empty, like this:atten(fork(l;r);) :� append(x :a;y :b;);atten(l;x :a);atten(r;y :b):4.1 The problem involves the �ve literals valuable, metal , yellow , heavy and gold , so the truthtable has 32 = 25 rows. We present it here in a ompat form, allowing `�' to stand for both T



192 Answers to the exerisesand F, and using `?' to stand for an unknown result:valuable metal yellow heavy gold (1) (2) (3)T � � � � T ? TF F � � � T T ?F T F � � T T ?F T T F � T ? ?F T T T T F T FF T T T F F F TFor example, the �rst line of this ompat table stands for 16 lines of the full table, and reordsthe fat that (1) is true whenever valuable is true, regardless of the values of the other literals.The table shows that (1) is false only if either (2) or (3) is false, so demonstrating that (1) followsfrom (2) and (3) together.4.2 If C is a ground lause then C[g℄ = C for any substitution g; so if j=M C then j=M C[g℄.Conversely, suppose that j=M C[g℄ for all ground substitutions g, and let g0 be any groundsubstitution. Then j=M C[g0℄, so j=M C. We need to assume that the alphabet ontains at leastone onstant, for otherwise there are no ground terms, and so no ground substitutions g0.4.3 If t is a variable y , then y is di�erent from x , sine x does not appear in t. Consequentlyt[x  u℄ = y [x  u℄ = y = t:If t is a ompound term f(t1; : : : ; tk) and x does not appear in t, then x does not appear inany of the ti. So we may assume as indution hypotheses that ti[x  u℄ = ti for eah i. Wededue thatt[x  u℄ = f(t1; : : : ; tk)[x  u℄ = f(t1[x  u℄; : : : ; tk[x  u℄)= f(t1; : : : ; tk) = t:This ompletes the proof.4.4 We use strutural indution on t. If t is a variable x , we alulatex [I ℄ = I(x ) = x :If t is a ompound term f(t1; : : : ; tk), and ti[I ℄ = ti for eah i, thenf(t1; : : : ; tk)[I ℄ = f(t1[I ℄; : : : ; tk[I ℄) = f(t1; : : : ; tk):This ompletes the proof.4.5 We prove that the two substitutionss1 = fx  u℄g . fy  wg;s2 = fy  wg . fx  u[y  w℄gare equal by showing that they have the same e�et on any variable v .



A Answers to the exerises 193If v is di�erent from both x and y , then learly s1(v ) = s2(v ) = v . If v is the same as x ,we �nds1(x ) = x [x  u℄[y  w℄ = u[y  w℄;s2(x ) = x [y  w℄[x  u[y  w℄℄ = x [x  u[y  w℄℄ = u[y  w℄:And if v is the same as y , we �nds1(y ) = y [x  u℄[y  w℄ = y [y  w℄ = w;s2(y ) = y [y  w℄[x  u[y  w℄℄ = w[x  u[y  w℄℄ = w:5.1 Let M be a struture, and suppose j=M C, where C = (P :� Q1; Q2). Let g be any groundsubstitution; then j=M C[g℄, so either P [g℄ is true in M , or one of Q1[g℄, Q2[g℄ is false in M .Putting this another way, either P [g℄ is true, or one of Q2[g℄, Q1[g℄ is false. In other words,j=M C 0[g℄, where C 0 = (P :� Q2; Q1). Sine this is so for any ground substitution g, it followsthat j=M C 0.5.2 From the given lause P :� Q1; Q2, we may derive the lause P [s℄ :� Q1[s℄; Q2[s℄ by therule of substitution. But Q1[s℄ = Q2[s℄, so this is the same as P [s℄ :� Q1[s℄; Q1[s℄. The desiredresult P [s℄ :� Q[s℄ may be derived from this by the following rule of diret fatoring : fromA :� B;B derive A :� B.For soundness of this rule, let M be a struture, and suppose that j=M C, where C = (A :�B;B). Let g be any ground substitution. We may assume that j=M C[g℄, and must show thatj=M C 0[g℄, where C 0 = (A :� B). But C[g℄ = (A[g℄ :� B[g℄; B[g℄), so either A[g℄ is true in M orone of the literals B[g℄ is false in M (and so both are false). Hene j=M C 0[g℄ as required.5.3 Let M be a model of the two premisses C1 and C2, let C 0 be the proposed onlusion, andlet g be a ground substitution. By the rule of substitution, M is a model of C1[g℄ and C2[g℄.Hene by the rule of ground resolution, M is a model of C 0[g℄, the ground resolvent of C1[g℄ andC2[g℄ on Q[g℄ = Qj [g℄. Thus M is a model of C 0[g℄ for every g, and so M is a model of C 0.6.1 a. fx  g(h(z));y  h(z)g.b. There are no uni�ers.. fx  g(a);y  a; z  g(g(a))g.6.2 If t and v are di�erent onstants foo and baz , and u is a variable x , then t and u have auni�er fx  foog, and u and v have a uni�er fx  bazg, but t and v have no uni�er.6.3 We �rst show that t1[r . s℄ = t2[r . s℄. Expanding the left-hand side,t1[r . s℄ = f(u1; w1)[r℄[s℄ = f(u1[r℄[s℄; w1[r℄[s℄):Now u1[r℄ = u2[r℄ beause r uni�es u1 and u2, and w1[r℄[s℄ = w2[r℄[s℄ beause s uni�es w1[r℄ andw2[r℄. Also t2[r . s℄ = f(u2[r℄[s℄; w2[r℄[s℄) as above.Now suppose p is any uni�er of t1 and t2; we show that p fators through r . s. Sine p uni�est1 and t2, it also uni�es u1 and u2, so p fators through r, say p = r .q. But p also uni�es w1 andw2, so w1[r℄[q℄ = w1[p℄ = w2[p℄ = w2[r℄[q℄, and q uni�es w1[r℄ and w2[r℄. Sine s is the m.g.u. ofw1[r℄ and w2[r℄, it follows that q fators through s, say q = s . k. Putting the piees together,we �nd thatp = r . q = r . (s . k) = (r . s) . k;



194 Answers to the exerisesand p fators through r . s. Sine this happens for any uni�er p of t1 and t2, it follows that r . sis a most general uni�er of t1 and t2.6.4 First, r . s is a uni�er of ft1; t2; t3g beause t1[r . s℄ = t1[r℄[s℄ = t2[r℄[s℄ = t2[r . s℄ (sine ris a uni�er of t1 and t2), and t1[r . s℄ = t1[r℄[s℄ = t3[r℄[s℄ = t3[r . s℄ (sine s is a uni�er of t1[r℄and t2[r℄).Moreover, r . s is a most general uni�er; for if p is another uni�er of ft1; t2; t3g then p uni�est1 and t2 in partiular, so p fators through r, say p = r . q. We now �nd that t1[r℄[q℄ = t1[p℄ =t3[p℄ = t3[r℄[q℄, so q uni�es t1[r℄ and t3[r℄, and hene q fators through the m.g.u. s, say q = s . k.Summarizing, p = r . q = r . s . k, and p fators through r . s.Finally, if ft1; t2; t3g has a uni�er p, then p uni�es t1 and t2 in partiular, and so they have am.g.u. r, and p fators through r, say p = r . q. As above, q uni�es t1[r℄ and t2[r℄, so these havean m.g.u. s, and an m.g.u. of ft1; t2; t3g is r . s.6.5 a. The relation � is reexive beause t[I ℄ = t and so t � t for any term t. Also, � istransitive. If t � u and u � w, say t[s℄ = u and u[r℄ = w, then t[s . r℄ = t[s℄[r℄ = u[r℄ = w,so t � w. However, preeq is not anti-symmetri; for example, if x and y are distintvariables, then x � y (beause x [x  y ℄ = y ), and similarly y � x , but x 6= y .b. We �rst show that for any terms t and u, t u u is a lower bound of t and u. Let s0 be thesubstitution de�ned bys0(v ) = � t; if v = �(t; u)v ; otherwise.Then �(t; u)[s0℄ = t for all terms t and u. We now use strutural indution to extend thisresult, showing that (t u u)[s0℄ = t for all t and u. It follows that t u u � t, and the proofthat t u u � u is similar. The atual proposition P (w) proved by indution on w is thefollowing:For all t and u, if w = t u u then w[s0℄ = t.The base ase ours when w is a variable. If so, and w = t u u, then w = �(t; u); weexamined this ase above. For the indution step, we assume that P (w1), : : : , P (wk) hold,and show P (w) where w = f(w1; : : : ; wk). If so, and w = t u u, then t = f(t1; : : : ; tk)for some terms t1, : : : , tk, and similarly u = f(u1; : : : ; uk), with wi = ti u ui for eah i.Applying the indution hypothesis, we �nd that wi[s0℄ = ti for eah i, and so w[s0℄ = t.This ompletes the proof that t u u � t.To show that t u u is a greatest lower bound, suppose w[s1℄ = t and w[s2℄ = u for someterm w. De�ne a substitution s bys(v ) = s1(v ) u s2(v ):We laim that w[s℄ = t u u, so w � t u u.Again we argue by strutural indution, the atual proposition Q(w) proved by indutionbeing the following:For all t and u, if w[s1℄ = t and w[s2℄ = u, then w[s℄ = t u u.For the base ase, if w is a variable v , thenw[s℄ = s(v ) = s1(v ) u s2(v ) = w[s1℄ u w[s2℄ = t u u:



A Answers to the exerises 195For the step ase, we assume that Q(w1), : : : , Q(wk) hold, and show Q(w) where w =f(w1; : : : ; wk). If w[s1℄ = t, then t = f(t1; : : : ; tk) with ti = wi[s1℄ for eah i. Also ifw[s2℄ = u, then u = f(u1; : : : ; uk) with ui = wi[s2℄ for eah i. Applying the indutionhypothesis, we onlude that wi = ti u ui for eah i, and sow[s℄ = f(w1[s℄; : : : ; wk[s℄) = f(t1 u u1; : : : ; tk u uk) = t u u:This ompletes the proof.. If u0 = u[s℄ is a variant of u having no variables in ommon with t, and t and u0 have amost general uni�er r, then t[r℄ is a least upper bound of t and u.7.1 1. reverse(x1:a1;1) :� reverse(a1;b1); append(b1;x1:nil ;1): (rev.2)2. reverse(x2:a2;2) :� reverse(a2;b2); append(b2;x2:nil ;2): (rev.2)3. reverse(x1:x2:a2;1) :� 1, 2, Rreverse(a2;b2); append(b2;x2:nil ;b1); append(b1;x1:nil ;1):4. reverse(nil ;nil) :� : (rev.1)5. reverse(x1:x2:nil ;1) :� append(nil ;x2:nil ;b1); append(b1;x1:nil ;1): 3, 4, R6. append(nil ;b6;b6) :� : (app.1)7. reverse(x1:x2:nil ;1) :� append(x2:nil ;x1:nil ;1): 5, 6, R8. append(x8:a8;b8;x8:8) :� append(a8;b8;8): (app.2)9. reverse(x1:x2:nil ;x2:8) :� append(nil ;x1:nil ;8): 7, 8, R10. append(nil ;b10;b10) :� : (app.1)11. reverse(x1:x2:nil ;x2:x1:nil) :� 9, 10, R7.2 One possibility is to de�ne palin in terms of reverse:palin(a) :� reverse(a;a):We an use the following de�nition of reverse (see Chapter 13):reverse(a;b) :� revapp(a;nil ;b):revapp(nil ;b;b) :� :revapp(x :a;b;) :� revapp(a;x :b;):The following sequene of goals is derived in solving # :� palin(1:x :y :z :nil):# :� palin(1:x :y :z :nil):# :� reverse(1:x :y :z :nil ; 1:x :y :z :nil):# :� revapp(1:x :y :z :nil ;nil ; 1:x :y :z :nil):# :� revapp(x :y :z :nil ; 1:nil ; 1:x :y :z :nil):# :� revapp(y :z :nil ;x :1:nil ; 1:x :y :z :nil):# :� revapp(z :nil ;y :x :1:nil ; 1:x :y :z :nil):# :� revapp(nil ; z :y :x :1:nil ; 1:x :y :z :nil):# :� :



196 Answers to the exerisesThe �nal step involves unifying the lists z :y :x :1:nil and 1:x :y :z :nil , yielding the answer substi-tution fz  1;y  xg.8.1 a. In terms of the relation opposite from Chapter 1:optstep(x :y :a;a) :� opposite(x ;y ):optstep(x :a;x :b) :� optstep(a;b):or (more leverly),optstep(a;b) :� append(p;x :y :q;a); opposite(x ;y ); append(p;q;b):b. This is an example of transitive losure (see Chapter 9):optimize(a;a) :� not improvable(a):optimize(a;) :� optstep(a;b); optimize(b;):improvable(a) :� optstep(a;b):The improvable relation is needed so that the test improvable(a) is ground whenever a is.. The trik is to introdue a relation adjoin, de�ned so that adjoin(x ;a;b) is true if b is apath equivalent to x :a, but optimal if a is itself optimal:optimize(nil ;nil) :� :optimize(x :a;) :� optimize(a;b); adjoin(x ;b;):adjoin(x ;nil ;x :nil) :� :adjoin(x ;y :a;a) :� opposite(x ;y ):adjoin(x ;y :a;x :y :a) :� not opposite(x ;y ):This solution is plainly linear in the length of a, but the previous solution is quadrati,beause eah optimization step is linear, and there may be n=2 of them.9.1 The relation onn(a;b; p; s) is de�ned to mean that p is a path from a to b that avoidsnodes in s :onneted(a;b; p) :� onn(a;b; p;a:nil):onn(a;a;nil ; s) :� :onn(a; ;n :p; s) :� ar(a;b;n );notmember(b; s); onn(b; ; p;b:s):ar(empty7; state(x ;y ); state(0;y )) :� :ar(empty5; state(x ;y ); state(x ; 0)) :� :ar(pour7to5; state(x ;y ); state(0;v )) :� plus(x ;y ;v ); leq(v ; 5):ar(pour5to7; state(x ;y ); state(u ; 0)) :� plus(x ;y ;u ); leq(u ; 7):ar(�ll5from7; state(x ;y ); state(u ; 5)) :� plus(x ;y ; z); plus(u ; 5; z):ar(�ll7from5; state(x ;y ); state(7;v )) :� plus(x ;y ; z); plus(7;v ; z):ar(�ll7; state(x ;y ); state(7;y )) :� :ar(�ll5; state(x ;y ); state(x ; 5)) :� :leq(x ;y ) :� plus(x ;w ;y ):



A Answers to the exerises 197Exeuting the goal# :� onneted(state(0; 0); state(4; 0); p):gives the answerp = �ll7:�ll5from7:empty5:pour7to5:�ll7:�ll5from7:empty5:nilin addition to several longer ones.9.2 Use (for example) the term state(left ; left ; right ; left) to name the state in whih the farmer,the wolf and the abbage are on the left bank, and the goat is alone on the right bank. Therelation opposite(a;b) is true if a and b are di�erent banks of the stream:opposite(left ; right) :� :opposite(right ; left) :� :A state is unsafe if the wolf and goat or the goat and abbage are on the same bank, but thefarmer is on the opposite bank:unsafe(state(a;b;b;)) :� opposite(a;b):unsafe(state(a;b; ;)) :� opposite(a;):Using negation as failure, we an now de�ne a relation safe(s) that heks whether state s is safe:safe(s) :� not unsafe(s):Use the term take(x ;a;b) to name the move of taking objet x from bank a to bank b. Thenwe an de�ne a relation ar(n ;x ;y ) that is true if move n takes state x to state y :ar(take(wolf ;a;b); state(a;a; ;d); state(b;b; ;d)) :� opposite(a;b):ar(take(goat ;a;b); state(a; ;a;d); state(b; ;b;d)) :� opposite(a;b):ar(take(abbage;a;b); state(a; ;d;a); state(b; ;d;b)) :� opposite(a;b):ar(take(boat ;a;b); state(a; ;d; e); state(b; ;d; e)) :� opposite(a;b):For example, taking the wolf from a to b requires that the farmer and the wolf are on bank abeforehand, and results in both being on the opposite bank b, while the goat and abbage donot move. With this set-up, we an use the path-�nding program from the preeding exerise tosolve the goal# :� onneted(state(left ; left ; left ; left); state(right ; right ; right ; right); p):9.3 Eah expression must ontain exatly three operators, so we de�ne trial in terms of arelation trial1 (e ;b0;b) that is true if e is an expression ontaining not more than b0 operators,and b is the number left over:trial(e) :� trial1 (e ; 3; 0):trial1 (e ;b0;b) :�plus(b1; 1;b0); trial1 (e1;b1;b2); trial1 (e2;b2;b); ombine(e1; e2; e):trial1 (4;b0;b0) :� :



198 Answers to the exerisesombine(e1; e2; add(e1; e2)) :� :ombine(e1; e2; subtrat(e1; e2)) :� :ombine(e1; e2;multiply(e1; e2)) :� :ombine(e1; e2; divide(e1 ; e2)) :� :There are �ve possible strutures for an expression with three operators op; symbolially, they areop(4; op(4; op(4; 4))), op(4; op(op(4; 4); 4) and their mirror images, and the symmetrial strutureop(op(4; 4); op(4; 4)). The operators op an be hosen from the four possibilities in 43 = 64 ways,giving a total of 5� 64 = 320 expressions.9.4 We an represent the state as a term towers(a;b;), where a, b and  are the lists ofdiss on eah spike, in dereasing order of size. We an de�ne a relation legal(x ;a) to hold if disx an legally be added to a spike holding diss a:legal(x ;nil) :� :plae(x ;y :nil) :� less(x ;y ):Any dis an be added to an empty spike; a dis an be added to a non-empty spike exatly if itis smaller than the top dis already on the spike. Now we an write lauses for a relation movelike this:move(towers(x :a;b;); towers(a;x :b;);move12) :� legal(x ;b):move(towers(x :a;b;); towers(a;b;x :);move13) :� legal(x ;):: : :There are six suh lauses altogether. To alulate the number of states, observe that we anplae the largest dis on any spike, then the next smaller dis either on an empty spike or ontop of the largest dis. Following this proedure, we have a free hoie for eah dis, so thereare 35 = 243 states in all. As is well known, there is a solution in 25 � 1 = 31 moves. Withoutprogramming the solution expliitly, it an be found fairly quikly using loop-avoidane.10.1 atten(t ;a) :� at1 (t ;a;nil):at1 (tip(x );x :a;a) :� :at1 (fork(t1;t2);a0;a) :�at1 (t1;a0;a1);at1 (t2;a1;a):This version of atten avoids the need to append the attened forms of the trees t1 and t2 inorder to onstrut the attened form of fork(t1;t2).10.2 De�ne spae like this:spae(a;) :� eat(` ';a;b); spae(b;):spae(a;a):This relation an be used in a new de�nition of expr by systematially inserting alls to spae



A Answers to the exerises 199wherever eat is used. For example, the lauseexpr(add(t1;t2);a;d) :�term(t1;a;b); eat(`+';b;); expr(t2; ;d):beomesexpr(add(t1;t2);a; e) :�term(t1;a;b); spae(b;); eat(`+'; ;d); expr(t2;d; e):Alternatively, we ould modify the de�nition of eat to ignore spaes itself.10.3 It is helpful to use a relation digit( ;k) that holds if the harater  is a deimal digitand k is the orresponding numeri value:digit(`0'; 0) :� :digit(`1'; 1) :� :: : :We an de�ne a �rst version of number as follows:number(a0;a) :�eat( ;a0;a1); digit( ;k);number1(a1;a):number1(a0;a) :�eat( ;a0;a1); digit( ;k);number1(a1;a):number1(a0;a0) :� :This version does not ompute the value of the number. To do that, we add two extra argumentsto the relation number1, so that number1(n0;n ;a0;a) holds if the di�erene between a0 and ais a (possibly empty) sequene of digits, and the value of the number omposed by adding thesedigits after the number n0 is n :number(n ;a0;a) :�eat( ;a0;a1); digit( ;k);number1(k ;n ;a1;a):number1(n0;n ;a0;a) :�eat( ;a0;a1); digit( ;k);times(n0; 10;n1); plus(n1;k ;n2);number1(n2;n ;a1;a):number1(n0;n0;a0;a0) :� :Extending the parser for expressions is a simple matter of adding the lause:fator(n ;a0;a) :� number(n ;a0;a):10.4 We just need to build a parser for the grammargood ::= `0' j `1' good good



200 Answers to the exerisesThe program is as follows:good(a) :� good1(a;nil):good1(0:a0;a0) :� :good1(1:a0;a) :� good(a0;a1); good(a1;a):To improve the ontrol behaviour of the goal # :� good(a) (and yield the solutions in inreasingorder of length), we an add a all to the list prediate (see page 30):good(a) :� list(a); good1(a;nil):Solving the goal # :� good(a) with this de�nition of good auses Prolog to generate lists a ofinreasing length whose elements are all unknown variables, then solve the subgoal good1(a;nil).Sine the length of the �rst argument of good1 goes down in eah reursive all, the program iswell-behaved.11.1 value(x ;x ) :� integer(x ):value(add(p;q); z) :� value(p;x ); value(q;y ); plus(x ;y ; z):value(subtrat(p;q); z) :� value(p;x ); value(q;y ); plus(y ; z ;x ):value(times(p;q); z) :� value(p;x ); value(q;y ); times(x ;y ; z):value(divide(p;q); z) :�value(p;x ); value(q;y );not y = 0; times(y ; z ;x ):11.2 De�ne update byupdate(nil ;x ;v ; val(x ;v ):nil) :� :update(val(x ;w ):a;x ;v ; val(x ;v ):a) :� :update(val(y ;w ):a;x ;v ; val(y ;w ):b) :�notx = y ; update(a;x ;v ;b):Extend eval by adding the lauseeval(let(x ; e1; e2);a;v ) :�eval(e1;a;v1); update(a;x ;v1;b); eval(e2;b;v ):12.1 ipop(a;b;x ;y ) :� nand(a;y ;x );nand(b;x ;y ):There are �ve stable states:a = 0 b = 0 x = 1 y = 1;a = 0 b = 1 x = 1 y = 0;a = 1 b = 0 x = 0 y = 1;a = 1 b = 1 x = 0 y = 1;a = 1 b = 1 x = 1 y = 0:The use of this iruit as a memory element is explained by the existene of two stable states inwhih the inputs are both 1.



A Answers to the exerises 20112.2 xor(a;b; z) :�pwr(p); gnd(q);ptran(p;a;);ntran( ;a;q);ptran(a;b; z);ntran(z ;b;);ptran(b;a; z);ntran(z ; ;b):The goal # :� xor(a;b; z) reveals that there are four stable states, one for eah ombination ofthe inputs a and b, and the output z always has the orret value.13.1 ord(x :y :a) :� x < y ; ord(y : a )ord(u :v :b) :� u < v ; ord(v :b):This gives the resolventord(x :y :v :b) :� x < y ;y < v ; ord(v :b):Now resolve with (ord.2):ord(x :y :v :a) :� x < y ;y < v ; ord(v : b )ord(w :nil) :�This gives the desired speial ase:ord(x :y :v :nil) :� x < y ;y < v :13.2 In terms of append :onse(x ;y ;a) :� append(b;x :y : ;a): (1)Resolving this with (app.1) gives b = nil , a = x :y : andonse(x ;y ;x :y :) :� :Resolving (1) with (app.2) gives b = u :b 0, a = u :a0 andonse(x ;y ;u :a0) :� append(b 0;x :y : ;a0):whih we an fold with (1) to giveonse(x ;y ;u :a0) :� onse(x ;y ;a0):13.3 De�ne the relation path bypath(a;b; p) :� ispath(p);�rst(p;a); last(p;b):



202 Answers to the exerisesUnfolding the de�nitions of ispath, �rst and last , followed by a folding step, then gives a diretde�nition of path by reursion. The lauseonneted(a;b) :� path(a;b; p):is obtained by folding the original de�nition of onneted with the lause de�ning path.13.4 a. The de�nition is by simultaneous reursion on the tree and the path:selet(t ;nil ;t) :� :selet(fork(l;r); l :p;u ) :� selet(l; p;u ):selet(fork(l;r); r :p;u ) :� selet(r; p;u ):b. Again we use simultaneous reursion on the path and the subjet tree:replae(t ;nil ;u ;u ) :� :replae(fork(l;r); l :p;u ; fork(l0 ;r)) :� replae(l; p;u ; l0):replae(fork(l;r); r :p;u ; fork(l;r0)) :� replae(r; p;u ;r0):. The answers to parts (a) and (b) share a ommon pattern:selet(t ; p;u ) :� replae(t ; p;u ;t):d. The transformation results in the following diret de�nition of hange:hange(t ;t ;u 0;u 0) :� :hange(fork(l;r);u ;u 0; fork(l0;r)) :� hange(l;u ;u 0; l0):hange(fork(l;r);u ;u 0; fork(l;r0)) :� hange(r;u ;u 0;r0):



Appendix BUsing an ordinary Prolog system

Most of the programs in this book an also be run using an ordinary Prologsystem, with only small hanges of notation. For example, standard Prolog omitsthe `:�' from unit lauses, so the lause we have been writing asopposite(north; south) :� :would be writtenopposite(north; south):in Prolog. Goals are written with `?�' like this: ?� opposite(x ;y ).The most signi�ant di�erene between pioProlog and standard Prolog sys-tems is that pioProlog does not provide the list notation of standard Prolog.There are two hoies here: one hoie is to translate the programs from thebook to use the standard notation, so that the famous append program beomesappend([ ℄;b;b):append([x j a℄;b; [x j  ℄) :� append(a;b;):You an then write goals like ?� append([1; 2℄; [3; 4℄;x ).The other hoie is to ignore Prolog's list notation, and use in�x olon instead.To do this, you must delare `:' as an in�x symbol by exeuting the goal?� op(50; xfy ; :):Taking this approah means that programs and goals must be written as shownin this book: you annot mix this notation with Prolog lists, beause the Prologlist [1; 2; 3℄ is not equal to the term 1:2:3:nil . 203



204 Using an ordinary Prolog systemAnother di�erene between pioProlog and standard Prolog is that pioPrologprovides arithmeti failities through the built-in relations plus and times, andthe failities provided by Prolog are di�erent. This problem is solved by addingto eah program the following de�nitions of these relations:plus(a;b;) :� integer(a); integer(b); !; is a+ b:plus(a;b;) :� integer(b); integer(); !; > b;a is  � b:plus(a;b;) :� integer(); integer(a); !; > a;b is  � a:plus(a;b;) :� write(`Bad arguments to plus'); nl ; abort :times(a;b;) :� integer(a); integer(b); !; is a � b:times(a;b;) :�integer(b); integer(); !; mod b =:= 0;a is =b:times(a;b;) :�integer(); integer(a); !; mod a =:= 0;b is =a:times(a;b;) :� write(`Bad arguments to times'); nl ; abort :Most other built-in relations of pioProlog are exatly the same as the standardones of Prolog: !, =, not, all , integer . Standard Prolog has no harater objets,and represents haraters by the integers that are their asii odes; thus there isno har relation. Finally, there is a standard built-in relation fail that behavesexatly like pioProlog's false, but any relation with no lauses behaves the sameway, so you an ontinue to use false.



Appendix CPioProlog soure ode

pprolog.p { pioProlog interpreterf Copyright (C) J. M. Spivey 1996, 2002 gf This is the `pioProlog' interpreter desribed in the book `An Introdution to LogiProgramming through Prolog' by Mihael Spivey (Prentie Hall, 1996). Copyright isretained by the author, but permission is granted to opy and modify the program forany purpose other than diret ommerial gain.5 The text of this program must be proessed by the `ppp' maro proessor before it anbe ompiled. gprogram pioProlog (input ; output);f tunable parameters g10 onstmaxsymbols = 511; f max no. of symbols ghashfator = 90; f perent loading fator for hash table gmaxhars = 2048; f max hars in symbols gmaxstring = 128; f max string length g15 maxarity = 63; f max arity of funtion, vars in lause gmemsize = 100000; f size of mem array gglow = 1000; f all GC when this muh spae left gghigh = 5000; f GC must �nd this muh spae gf speial harater values g20 de�ne(endstr; hr (0)) f end of string gde�ne(tab ; hr(9)) f tab harater gde�ne(endline ; hr(10)) f newline harater gde�ne(endfile ; hr(127)) f end of �le g
205



206 PioProlog soure odeC.1 Coding onventionsf We ignore Pasal's stupid rule that all global variables must be delared together at thestart of the program; likewise all global types and all global onstants. Many Pasalompilers relax the rule to make large programs easier to read and write; but if yourPasal ompiler enfores it, you know what to do, and a text editor is the tool forthe job. g25 f Most Pasal ompilers implement a `default' part in ase statements. The marodefault should be de�ned as the text that omes between the ordinary ases and thedefault part. If the default part is like an ordinary ase, but labelled with a keyword (say`others'), then the de�nition of default should inlude the semiolon that separates itfrom the preeding ase, like this: `; others:'. If your Pasal doesn't have default partsfor ase statements, most of them an be deleted, sine they are only alls to bad tagput there for robustness. The only other one (in San) will need a little more work. g3035 de�ne(default; else)f Some Pasal implementations bu�er terminal output, but provide a speial proedureto ush the bu�er; the ush out maro should be de�ned to all whatever proedure isneessary. A all to ush out follows eah prompt for input from the terminal, and theprogress messages from the garbage olletor. g40 de�ne(ush out ;ush)f Pasal's numeri labels make ode that uses goto statements unneessarily obsure, sowe de�ne a few maros that have meaningful names but expand to plain integers thatan be used as labels. g45 de�ne(end of pp; 999)de�ne(found ; 1)de�ne(exit ; 2)de�ne(done ; 3)de�ne(found2 ; 4)f When something goes drastially wrong, pioProlog sometimes needs to stop immedi-ately. In standard Pasal, this is ahieved by a non-loal jump to the label end of pp,loated at the end of the main program. But some Pasal ompilers don't allow non-loal jumps; they often provide a halt proedure instead. The maro abort should bede�ned to do whatever is needed. g5055 label end of pp;de�ne(abort ; halt)f Here are a few onvenient abbreviations: gde�ne(inr ; $1 := $1 + 1) f inrement a variable gde�ne(der ; $1 := $1� 1) f derement a variable g60 de�ne(return; goto exit) f return from proedure gde�ne(skip) f empty statement gC.2 Error handlingf These maros print an error message, then either arrange for exeution of a goal toabandoned (by learing the run ag), or abandon the whole run of pioProlog. Theyuse the $0 feature to allow for a list of arguments.



C.3 String bu�er 207Errors during exeution of a goal are reported by exe error ; it sets the run ag tofalse, so the main exeution mehanism will stop exeution before starting on anotherresolution step. g65 var run: boolean ; f whether exeution should ontinue gdag : boolean ; f swith for debugging ode g70 de�ne(exe error ;begin writeln ; write('Error: '; $0); run := false end)de�ne(pani; begin writeln; writeln('Pani: '; $0); abort end)de�ne(bad tag ; pani('bad tag '; $2: 1; ' in '; $1))C.3 String bu�erf The strings that are the names of funtion symbols, variables, et. are saved in thearray harbuf : eah string is represented elsewhere by an index k into this array, andthe haraters of the string are harbuf [k℄, harbuf [k + 1℄, : : : , terminated by theharater endstr. harptr is the last oupied loation in harbuf .75 In addition to these `permanent' strings, there are `temporary' strings put together forsome short-term purpose. These are kept in arrays of size maxstring, and are alsoterminated by endstr. g80 typepermstring = 1 : :maxhars ;tempstring = array [1 : :maxstring℄ of har ;var85 harptr : 0 : :maxhars ;harbuf : array [1 : :maxhars ℄ of har ;f StringLength { length of a tempstring gfuntion StringLength(var s: tempstring): integer ;var i: 0 : :maxstring;90 begini := 0;while s[i+ 1℄ 6= endstr do inr (i);StringLength := iend;f SaveString { make a tempstring permanent g95 funtion SaveString(var s: tempstring): permstring ;var i: 0 : :maxstring;beginif harptr + StringLength(s) + 1 > maxhars then100 pani('out of string spae');SaveString := harptr + 1; i := 0;repeatinr (i); inr (harptr ); harbuf [harptr ℄ := s[i℄until s[i℄ = endstr105 end;



208 PioProlog soure odef StringEqual { ompare a tempstring to a permstring gfuntion StringEqual(var s1 : tempstring ; s2 : permstring): boolean ;var i: integer ;begin110 i := 1;while (s1 [i℄ 6= endstr) ^ (s1 [i℄ = harbuf [s2 + i� 1℄) do inr (i);StringEqual := (s1 [i℄ = harbuf [s2 + i� 1℄)end;f WriteString { print a permstring g115 proedure WriteString(s: permstring);var i: 1 : :maxhars ;begini := s;while harbuf [i℄ 6= endstr do120 begin write(harbuf [i℄); inr (i) endend;C.4 Representation of termsf It is now time to give the details of how terms are represented. Eah `term' is an indexinto the mem array that points to a small blok of ontiguous words. The �rst wordindiates the number and layout of the words that follow. It paks together the size ofthe node, and an integer ode that determines the kind of term: fun for a ompoundterm, int for an integer, and so on. Maros t kind(t) and t size(t) extrat these fromthe �rst word of a term t. There is also a bit in the �rst word that is used by thegarbage olletor for marking. The seond word of the node, t shift(t) = mem[t+ 1℄ isalso reserved for the garbage olletor.125
The layout of the remaining elements of mem that make up the term depends on thet kind �eld. For a fun term, there is the funtion symbol t fun(t), and a variablenumber of arguments, whih may be referred to as t arg(t; 1), t arg(t; 2), : : : , t arg(t; n)where n is the arity of t fun(t).130 For an int term, there is just the integer value t ival (t), and for a hrtr term thereis the harater value t val (t), whih is atually the ode ord(). ell nodes representvariables and have a t val �eld that points to the value. ref nodes are the numerimarkers in program lauses that refer to a slot in the frame for a lause; the t index�eld is the index of the slot. undo nodes do not represent terms at all, but items onthe trail stak; they share some of the layout of terms, so that they an be treated thesame by the garbage olletor. g135140 typepointer = integer ; f index into mem array gde�ne(null; 0) f null pointer gtype term = pointer ;145 de�ne(t tag ;mem [$1℄)de�ne(t kind ; t tag($1) div 256) f one of fun , int , : : : gde�ne(t size; t tag($1) mod 128) f size in words gde�ne(marked ; (t tag($1) mod 256 � 128)) f GC mark gde�ne(add mark ; t tag($1) := t tag($1) + 128)



C.5 Memory alloation 209150 de�ne(rem mark ; t tag($1) := t tag($1)� 128)de�ne(make tag ; 256 � $1 + $2)de�ne(t shift ;mem[$1 + 1℄) f for use by g gde�ne(fun ; 1) f ompound term gde�ne(t fun;mem[$1 + 2℄) f funtion symbol g155 de�ne(t arg ;mem[$1 + $2 + 2℄) f arguments (start from 1) gde�ne(int ; 2) f integer gde�ne(t ival ;mem [$1 + 2℄) f integer value gde�ne(hrtr; 3) f harater gde�ne(t val ;mem[$1 + 2℄) f harater value g160 de�ne(ell; 4) f variable ell gde�ne(t val ;mem[$1 + 2℄) f value or null if unbound gde�ne(ref ; 5) f variable referene gde�ne(t index ;mem[$1 + 2℄) f index in frame gde�ne(undo; 6) f trail item g165 f see later gde�ne(term size ; 3) f : : : plus no. of args gC.5 Memory alloationf Storage for most things is alloated from the big array mem . This array is in threeparts: the heap and loal stak, whih grow upwards from the bottom of mem, and theglobal stak, whih grows downwards from the top of mem.The heap stores the lauses that make up the program and running goal; it grows onlywhile lauses are being input and not during exeution, so there is no need for freespae between the heap and loal stak. Program lauses beome a permanent part ofthe heap, but goal lauses (and lauses that ontain errors) an be disarded; so thereis an extra variable hmark that indiates the beginning of the present lause.170
The loal stak holds ativation reords for lauses during exeution of goals, and theglobal stak other longer-lived data strutures. Both staks expand and ontrat duringexeution of goals. Also, there is a garbage olletor that an relaim inaessibleportions of the global stak. g175 var180 lsp; gsp; hp; hmark : pointer ;mem: array [1 : : memsize ℄ of integer ;f LoAllo { alloate spae on loal stak gfuntion LoAllo(size : integer): pointer ;begin185 if lsp + size � gsp then pani('out of stak spae');LoAllo := lsp + 1; lsp := lsp + sizeend;f GloAllo { alloate spae on global stak gfuntion GloAllo(kind ; size: integer): pointer ;190 var p: pointer ;beginif gsp � size � lsp thenpani('out of stak spae');



210 PioProlog soure odegsp := gsp � size; p := gsp;195 t tag(p) := make tag(kind ; size);GloAllo := pend;f HeapAllo { alloate spae on heap gfuntion HeapAllo(size : integer): pointer ;200 beginif hp + size > memsize then pani('out of heap spae');HeapAllo := hp + 1; hp := hp + sizeend;de�ne(is heap; ($1 � hp)) f test if a pointer is in the heap g205 de�ne(is glob; ($1 � gsp)) f test if it is in the global stak gC.6 Charater inputf Pasal's I/O failities view text �les as sequenes of lines, but it is more onvenientfor pioProlog to deal with a uniform sequene of haraters, with the end of a lineindiated by an endline harater, and the end of a �le by an endfile harater.The routines here perform the translation (probably reversing a translation done bythe Pasal run-time library). They also allow a single harater to be `pushed bak' onthe input, so that the sanner an avoid reading too far. g210 varinterating : boolean ; f whether input is from terminal gpbhar : har ; f pushed-bak har, else endfile g215 in�le: text ; f the urrent input �le glineno: integer ; f line number in urrent �le g�lename: permstring ; f name of urrent �le gf FGetChar { get a harater from a �le gfuntion FGetChar (var f : text): har ;220 var h : har ;beginif eof (f) thenFGetChar := endfileelse if eoln(f) then225 begin readln(f); inr(lineno); FGetChar := endline endelsebegin read(f; h); FGetChar := h endend;f GetChar { get a harater g230 funtion GetChar : har ;beginif pbhar 6= endfile thenbegin GetChar := pbhar ; pbhar := endfile endelse if interating then235 GetChar := FGetChar (input)elseGetChar := FGetChar (in�le)



C.7 Representation of lauses 211end;f PushBak { push bak a harater on the input g240 proedure PushBak (h : har );beginpbhar := hend;C.7 Representation of lausesf Clauses in the pioProlog program (and goals to be exeuted) have head and bodyliterals in whih the variables are replaed by ref nodes. The lause itself is a segmentof mem that has some �elds at �xed o�sets, followed by a variable-length sequene ofpointers to the literals in the body of the lause, terminated by null. Goal lauses havethe same representation, but with head = null. Maros  rhs and  body are de�nedso that  rhs() is a pointer to the beginning of the sequene of pointers that makes upthe lause body, and  body(; i) is the i'th literal in the body itself.245250 Partially exeuted lause bodies are represented in the exeution mehanism by theaddress of the pointer p to the �rst unsolved literal. For leanliness, we provide marosg �rst(p) and g rest(p) that respetively return the �rst literal itself, and a pointerthat represents the remaining literals after the �rst one. The test for the empty list isg �rst(p) = null.255 The number of lauses tried against a goal literal is redued by using assoiating eahliteral with a `key', alulated so that uni�able literals have mathing keys. gtype lause = pointer ;de�ne( nvars ;mem[$1℄) f no. of variables g260 de�ne( key ;mem[$1 + 1℄) f uni�ation key gde�ne( next ;mem [$1 + 2℄) f next lause for same relation gde�ne( head ;mem [$1 + 3℄) f lause head gde�ne( rhs ; ($1 + 4)) f lause body (ends with NULL) gde�ne( body ;mem[ rhs($1) + $2� 1℄)265 de�ne(lause size ; 4) f ... plus size of body + 1 gde�ne(g �rst ;mem[$1℄) f �rst of a list of literals gde�ne(g rest ; ($1) + 1) f rest of the list gC.8 Stak frames and interpreter registersf The loal stak is organized as a sequene of frames, eah orresponding to an ativeopy of a program lause. Most �elds in a frame are opies of the values of the inter-preter's `registers' when it was reated, so here also is the delaration of those globalregisters. The tp register that points to the top of the trail stak is delared later.270 The last part of a frame is a variable-length array of ells, ontaining the atual variablesfor the lause being used in the frame. The variables are numbered from 1, and eahell is of length term size , so the f loal maro ontains the right formula so thatf loal(f; i) is a pointer to the i'th ell. g275



212 PioProlog soure odetype frame = pointer ;de�ne(f goal ;mem [$1℄) f the goal gde�ne(f parent ;mem [$1 + 1℄) f parent frame gde�ne(f retry ;mem[$1 + 2℄) f untried lauses g280 de�ne(f hoie ;mem[$1 + 3℄) f previous hoie-point gde�ne(f glotop;mem [$1 + 4℄) f global stak at reation gde�ne(f trail ;mem[$1 + 5℄) f trail state at reation gde�ne(f nvars ;mem[$1 + 6℄) f no. of loal variables gde�ne(f loal ; ($1 + 7 + ($2� 1) � term size))285 de�ne(frame size ; 7) f : : : plus spae for loal variables gf frame size { ompute size of a frame with n variables gde�ne(frame size ; (frame size + ($1) � term size))varurrent : pointer ; f urrent goal g290 all : term; f Deref 'ed �rst literal of goal ggoalframe : frame ; f urrent stak frame ghoie : frame ; f last hoie point gbase: frame ; f frame for original goal gpro: lause ; f lauses left to try on urrent goal gf Deref is a funtion that resolves the indiretion in the representation of terms. It looksup referenes in the frame, and follows the hain of pointers from variable ells to theirvalues. The result is an expliit representation of the argument term; if the frame isnon-null, the result is never a ref node, and if it is a ell node, the t val �eld isempty. g295
f Deref { follow var and ell pointers g300 funtion Deref (t: term; e: frame): term;beginif t = null then pani('Deref');if (t kind (t) = ref) ^ (e 6= null) then305 t := f loal (e; t index (t));while (t kind(t) = ell) ^ (t val(t) 6= null) dot := t val (t);Deref := tend;f This is a good plae to put the forward delarations of a few proedures and funtions. g310 proedure PrintTerm(t: term; e: frame ; prio : integer); forward;funtion ParseTerm : term; forward;funtion DoBuiltin(ation : integer): boolean ; forward;proedure Collet ; forward;315 funtion Key(t: term; e: frame): integer ; forward;f In the atual de�nition of a proedure or funtion that has been delared forward, werepeat the parameter list in a all to the maro fwd . Standard Pasal requires this tobe replaed by the empty string, but some implementations allow the parameter list tobe repeated and hek that the two lists agree. g320 de�ne(fwd )



C.9 Symbol table 213C.9 Symbol tablef The names of relations, funtions, onstants and variables are held in a hash table. Itis organized as a `losed' hash table with sequential searh: this is simple but leavesmuh room for improvement. The symbol table is not allowed to beome more full thanhashfator per ent, sine nearly full hash tables of this kind perform rather badly.Eah symbol has an s ation ode that has a di�erent non-zero value for eah built-inrelation, and is zero for everything else. User-de�ned relations have a hain of lausesthat starts at the s pro �eld and is linked together by the  next �elds of the lauses. g325 type symbol = 1 : :maxsymbols ; f index in symtab gvar330 nsymbols : 0 : :maxsymbols ; f number of symbols gsymtab: array [1 : :maxsymbols℄ of reordname: integer ; f print name: index in harbuf garity : integer ; f number of arguments or -1 gation : integer ; f ode if built-in, 0 otherwise g335 pro: lause f lause hain gend;ons ; eqsym; utsym;nilsym ;notsym: symbol ;f We de�ne seletor maros for symbols, just as for terms gde�ne(s name ; symtab[$1℄:name)340 de�ne(s arity ; symtab[$1℄:arity)de�ne(s ation ; symtab[$1℄:ation)de�ne(s pro; symtab[$1℄:pro)f Lookup { onvert string to internal symbol gfuntion Lookup(var name: tempstring): symbol ;345 label found ;var h; i: integer ; p: symbol ;beginf Compute the hash funtion in h gh := 0; i := 1;350 while name [i℄ 6= endstr dobegin h := (5 � h+ ord(name [i℄)) mod maxsymbols ; inr (i) end;f Searh the hash table gp := h+ 1;while s name(p) 6= �1 do begin355 if StringEqual(name; s name(p)) then goto found ;der (p);if p = 0 then p := maxsymbolsend;f Not found: enter a new symbol g360 f Be areful to avoid overow on 16 bit mahines: gif nsymbols � (maxsymbols div 10) � (hashfator div 10) thenpani('out of symbol spae');s name(p) := SaveString(name);s arity(p) := �1;365 s ation(p) := 0; s pro(p) := null;



214 PioProlog soure odefound :Lookup := pend;type keyword = array [1 : : 8℄ of har ;f Enter { de�ne a built-in symbol g370 funtion Enter(name: keyword ; arity : integer ; ation : integer): symbol ;var s: symbol ; i: integer ; temp: tempstring ;begini := 1;375 while name [i℄ 6= ' ' dobegin temp[i℄ := name[i℄; inr (i) end;temp[i℄ := endstr; s := Lookup(temp);s arity(s) := arity ; s ation(s) := ation ;Enter := s380 end;f Codes for built-in relations gde�ne(ut ; 1) f !=0 gde�ne(all; 2) f all=1 gde�ne(plus ; 3) f plus=3 g385 de�ne(times ; 4) f times=3 gde�ne(isint ; 5) f integer=1 gde�ne(ishar; 6) f har=1 gde�ne(naff ; 7) f : =1 gde�ne(equality ; 8) f = =2 g390 de�ne(fail; 9) f false=0 gde�ne(print ; 10) f print=1 gde�ne(nl; 11) f nl=0 gf InitSymbols { initialize and de�ne standard symbols gproedure InitSymbols ;395 var i: integer ; dummy : symbol ;beginnsymbols := 0;for i := 1 to maxsymbols do s name(i) := �1;ons := Enter(': '; 2; 0);400 utsym := Enter('! '; 0;ut);eqsym := Enter('= '; 2; equality );nilsym := Enter('nil '; 0; 0);notsym := Enter('not '; 1;naff);dummy := Enter('all '; 1;all);405 dummy := Enter('plus '; 3; plus);dummy := Enter('times '; 3;times);dummy := Enter('integer '; 1; isint);dummy := Enter('har '; 1; ishar);dummy := Enter('false '; 0; fail);410 dummy := Enter('print '; 1; print);dummy := Enter('nl '; 0;nl)end;



C.10 Building terms on the heap 215f AddClause { insert a lause at the end of its hain gproedure AddClause(: lause);415 var s: symbol ; p: lause ;begins := t fun( head ());if s ation(s) 6= 0 then beginexe error('an''t add lauses to built-in relation ');420 WriteString(s name(s))endelse if s pro(s) = null thens pro(s) := else begin425 p := s pro(s);while  next(p) 6= null do p :=  next(p); next(p) := endend;C.10 Building terms on the heapf Next, some onvenient routines that onstrut various kinds of term in the heap area:they are used by the parsing routines to onstrut the internal representation of theinput terms they read. The routine MakeRef that is supposed to onstrut a ref nodein fat returns a pointer to one from a �xed olletion. This saves spae, sine all lausesan share the same small number of ref nodes. g430
435 type argbuf = array [1 : : maxarity ℄ of term;f MakeCompound { onstrut a ompound term on the heap gfuntion MakeCompound (fun: symbol ; var arg : argbuf ): term;var p: term; i; n: integer ;begin440 n := s arity(fun);p := HeapAllo(term size + n);t tag(p) := make tag(fun ;term size + n);t fun(p) := fun;for i := 1 to n do t arg(p; i) := arg [i℄;445 MakeCompound := pend;f MakeNode { onstrut a ompound term with up to 2 arguments gfuntion MakeNode(fun: symbol ; a1 ; a2 : term): term;var arg : argbuf ;450 beginarg [1℄ := a1 ; arg [2℄ := a2 ;MakeNode :=MakeCompound (fun ; arg)end;var refnode : array [1 : : maxarity ℄ of term;f MakeRef { return a referene ell prepared earlier g455 funtion MakeRef (o�set : integer): term;



216 PioProlog soure odebeginMakeRef := refnode [o�set ℄end;f MakeInt { onstrut an integer node on the heap g460 funtion MakeInt(i: integer): term;var p: term;beginp := HeapAllo(term size);465 t tag(p) := make tag(int ;term size);t ival (p) := i; MakeInt := pend;f MakeChar { onstrut a harater node on the heap gfuntion MakeChar (: har ): term;470 var p: term;beginp := HeapAllo(term size);t tag(p) := make tag(hrtr;term size);t val(p) := ord(); MakeChar := p475 end;f MakeString { onstrut a string as a Prolog list of hars gfuntion MakeString(var s: tempstring): term;var p: term; i: integer ;begin480 i := StringLength(s);p :=MakeNode(nilsym ;null;null);while i > 0 dobegin p :=MakeNode(ons ;MakeChar (s[i℄); p); der(i) end;MakeString := p485 end;f MakeClause { onstrut a lause on the heap gfuntion MakeClause(nvars : integer ; head : term;var body : argbuf ; nbody : integer): lause ;var p: lause ; i: integer ;490 beginp := HeapAllo(lause size + nbody + 1); nvars(p) := nvars ;  next(p) := null;  head(p) := head ;for i := 1 to nbody do  body(p; i) := body [i℄; body(p;nbody + 1) := null;495 if head = null then  key(p) := 0else  key(p) := Key(head ;null);MakeClause := pend;



C.11 Printing terms 217C.11 Printing termsf These routines print terms on the user's terminal. The main routine is PrintTerm ,whih prints a term by reursively traversing it. Unbound ells are printed in the form'L123' (for loal ells) or 'G234' (for global ells): the number is omputed from theaddress of the ell. If the frame is null, referene nodes are printed in the form '�3'. g500 f operator priorities gde�ne(maxprio; 2) f isolated term g505 de�ne(argprio ; 2) f funtion arguments gde�ne(eqprio ; 2) f equals sign gde�ne(onsprio; 1) f olon gf IsString { hek if a list represents a string gfuntion IsString(t: term; e: frame): boolean ;510 label done ;onst limit = 128;var i: integer ;begini := 0; t := Deref (t; e);515 while i < limit do beginif (t kind(t) 6= fun) _ (t fun(t) 6= ons) thengoto doneelse if t kind (Deref (t arg(t; 1); e)) 6= hrtr thengoto done520 elsebegin inr (i); t := Deref (t arg(t; 2); e) endend;done :IsString := (t kind(t) = fun ) ^ (t fun(t) = nilsym)525 end;f ShowString { print a list as a string gproedure ShowString(t: term; e: frame);begint := Deref (t; e);530 write('"');while t fun(t) 6= nilsym do beginwrite(hr (t val (Deref (t arg(t; 1); e))));t := Deref (t arg(t; 2); e)end;535 write('"')end;f PrintCompound { print a ompound term gproedure PrintCompound(t: term; e: frame ; prio : integer);var f : symbol ; i: integer ;540 beginf := t fun(t);if f = ons then beginf t is a list: try printing as a string, or use in�x : gif IsString(t; e) then545 ShowString(t; e)



218 PioProlog soure odeelse beginif prio < onsprio then write('(');PrintTerm(t arg(t; 1); e;onsprio � 1);write(':');550 PrintTerm(t arg(t; 2); e;onsprio);if prio < onsprio then write(')')endendelse if f = eqsym then begin555 f t is an equation: use in�x = gif prio < eqprio then write('(');PrintTerm(t arg(t; 1); e; eqprio � 1);write(' = ');PrintTerm(t arg(t; 2); e; eqprio � 1);560 if prio < eqprio then write(')')endelse if f = notsym then beginf t is a literal 'not P' gwrite('not ');565 PrintTerm(t arg(t; 1); e;maxprio)endelse beginf use ordinary notation gWriteString(s name(f));570 if s arity(f) > 0 then beginwrite('(');PrintTerm(t arg(t; 1); e;argprio);for i := 2 to s arity(f) do beginwrite(', ');575 PrintTerm(t arg(t; i); e;argprio)end;write(')')endend580 end;f PrintTerm { print a term gproedure PrintTerm fwd ((t: term; e: frame ; prio: integer));begint := Deref (t; e);585 if t = null thenwrite('*null-term*')else beginase t kind (t) offun :590 PrintCompound (t; e; prio);int :write(t ival (t): 1);hrtr:write(''''; hr (t val (t)); '''');595 ell:



C.12 Sanner 219if is glob(t) thenwrite('G'; (memsize � t) div term size : 1)elsewrite('L'; (t� hp) div term size : 1);600 ref :write('�'; t index (t))defaultwrite('*unknown-term(tag='; t kind(t): 1; ')*')end605 endend;f PrintClause { print a lause gproedure PrintClause(: lause);var i: integer ;610 beginif  = null thenwriteln('*null-lause*')else beginif  head () 6= null then begin615 PrintTerm( head();null;maxprio);write(' ')end;write(':- ');if  body(; 1) 6= null then begin620 PrintTerm( body(; 1);null;maxprio);i := 2;while  body(; i) 6= null do beginwrite(', ');PrintTerm( body(; i);null;maxprio);625 inr(i)endend;writeln('.')end630 end;C.12 Sannerf The San proedure that reads the next token of a lause or goal from the input, togetherwith some proedures that implement a rude form of reovery from syntax errors.San puts an integer ode into the global variable token ; if the token is an identi�er, anumber, or a string, there is another global variable that ontains its atual value.The reovery mehanism skips input text until it �nds a full stop or (if the input wasfrom the terminal) the end of a line. It then sets token to dot , the ode for a full stop.The parser routines are designed so that they will never read past a full stop, and �nalreovery from the error is ahieved when ontrol reahes ReadClause again. g635



220 PioProlog soure odevar640 token: integer ; f last token from input gtokval : symbol ; f if token = ident , the identi�er gtokival : integer ; f if token = number, the number gtoksval : tempstring ; f if token = stron , the string gerrag : boolean ; f whether reovering from an error g645 errount : integer ; f number of errors found so far gf Possible values for token: gde�ne(ident ; 1) f identi�er: see tokval gde�ne(variable ; 2) f variable: see tokval gde�ne(number; 3) f number: see tokival g650 de�ne(hon ; 4) f har onstant: see tokival gde�ne(stron ; 5) f string onstant: see toksval gde�ne(arrow ; 6) f ':-' gde�ne(lpar; 7) f '(' gde�ne(rpar; 8) f ')' g655 de�ne(omma; 9) f ',' gde�ne(dot ; 10) f '.' gde�ne(olon ; 11) f ':' gde�ne(equal; 12) f '=' gde�ne(negate ; 13) f 'not' g660 de�ne(eoftok ; 14) f end of �le gf syntax error { report a syntax error gde�ne(syntax error ;begin if : errag thenbegin ShowError ; writeln($0); Reover end end)f ShowError { report error loation g665 proedure ShowError ;beginerrag := true; inr(errount);if : interating then begin670 write('"'); WriteString(�lename);write('", line '; lineno: 1; ' ')end;write('Syntax error - ')end;f Reover { disard rest of input lause g675 proedure Reover ;var h : har ;beginif : interating ^ (errount � 20) then680 begin writeln('Too many errors: I''m giving up'); abort end;if token 6= dot then beginrepeath := GetCharuntil (h = '.') _ (h = endfile)685 _ (interating ^ (h = endline));token := dotend



C.12 Sanner 221end;de�ne(is upper ; ((($1 � 'A') ^ ($1 � 'Z')) _ ($1 = ' ')))690 de�ne(is letter ; (is upper($1)_ (($1 � 'a') ^ ($1 � 'z'))))de�ne(is digit ; (($1 � '0') ^ ($1 � '9')))f San { read one symbol from in�le into token . gproedure San;695 var h ; h2 : har ; i: integer ;beginh := GetChar ; token := 0;while token = 0 do beginf Loop after white-spae or omment g700 if h = endfile thentoken := eoftokelse if (h = ' ') _ (h = tab) _ (h = endline) thenh := GetCharelse if is letter(h) then begin705 if is upper (h) then token := variableelse token := ident ;i := 1;while is letter(h) _ is digit(h) do beginif i > maxstring then710 pani('identifier too long');toksval [i℄ := h ; h := GetChar ; inr(i)end;PushBak (h);toksval [i℄ := endstr; tokval := Lookup(toksval );715 if tokval = notsym then token := negateendelse if is digit(h) then begintoken := number; tokival := 0;while is digit(h) do begin720 tokival := 10 � tokival + (ord (h)� ord('0'));h := GetCharend;PushBak (h)end725 else beginase h of'(': token := lpar;')': token := rpar;',': token := omma;730 '.': token := dot ;'=': token := equal;'!': begin token := ident ; tokval := utsym end;'/':begin735 h := GetChar ;if h 6= '*' thensyntax error('bad token "/"')



222 PioProlog soure odeelse beginh2 := ' '; h := GetChar ;740 while (h 6= endfile) ^ : ((h2 = '*') ^ (h = '/')) dobegin h2 := h ; h := GetChar end;if h = endfile thensyntax error ('end of file in omment')else745 h := GetCharendend;':':begin750 h := GetChar ;if h = '-' thentoken := arrowelsebegin PushBak (h); token := olon end755 end;'''':begintoken := hon ; tokival := ord(GetChar ); h := GetChar ;if h 6= '''' then760 syntax error('missing quote')end;'"':begintoken := stron ; i := 1; h := GetChar ;765 while (h 6= '"') ^ (h 6= endline) dobegin toksval [i℄ := h ; h := GetChar ; inr(i) end;toksval [i℄ := endstr;if h = endline then beginsyntax error('unterminated string');770 PushBak (h)endenddefaultsyntax error('illegal harater "'; h; '"')775 endendendend;f PrintToken { print a token as a string g780 proedure PrintToken(t: integer);beginase t ofident :begin write('identifier '); WriteString(s name(tokval )); end;785 variable:begin write('variable '); WriteString(s name(tokval )); end;number: write('number');



C.13 Variable names 223hon : write('har onstant');arrow : write('":-"');790 lpar: write('"("');rpar: write('")"');omma: write('","');dot : write('"."');olon : write('":"');795 equal: write('"="');stron : write('string onstant')defaultwrite('unknown token')end800 end;C.13 Variable namesf As the parser reads an input lause, the routines here maintain a table of variable namesand the orresponding run-time o�sets in a frame for the lause: for eah i, the nameof the variable at o�set i is vartable [i℄. Eah lause ontains only a few variables, solinear searh is good enough.If the input lause turns out to be a goal, the table is saved and used again to displaythe answer when exeution sueeds. g805 varnvars : 0 : :maxarity ; f no. of variables so far gvartable : array [1 : :maxarity ℄ of symbol ; f names of the variables gf VarRep { look up a variable name g810 funtion VarRep(name : symbol): term;var i: integer ;beginif nvars = maxarity then pani('too many variables');815 i := 1; vartable [nvars + 1℄ := name; f sentinel gwhile name 6= vartable [i℄ do inr(i);if i = nvars + 1 then inr(nvars);VarRep :=MakeRef (i)end;f ShowAnswer { display answer and get response g820 funtion ShowAnswer(bindings : frame): boolean ;var i: integer ; h : har ;beginif nvars = 0 then ShowAnswer := true825 else beginfor i := 1 to nvars do beginwriteln ;WriteString(s name(vartable [i℄)); write(' = ');PrintTerm(f loal(bindings ; i);null; eqprio � 1)830 end;if : interating thenbegin writeln ; ShowAnswer := false end



224 PioProlog soure odeelse beginwrite(' ? '); ush out ;835 if eoln thenbegin readln ; ShowAnswer := false endelsebegin readln(h); ShowAnswer := (h = '.') endend840 endend;C.14 Parserf Here are the routines that parse input lauses. They use the method of reursive desent,with eah lass of phrase reognized by a single funtion that onsumes the tokens ofthe phrase and returns its value. Eah of these funtions follows the onvention thatthe �rst token of its phrase is in the global token variable when the funtion is alled,and the �rst token after the phrase is in token on return. The value of the funtion isthe internal data struture for the term; this is built diretly in the heap, with variablesreplaed by ref nodes. Syntax errors are handled by skipping to the next full stop,then trying again to �nd a lause. g845
f Eat { hek for an expeted token and disard it g850 proedure Eat(expeted : integer);beginif token = expeted thenbegin if token 6= dot then San end855 else if : errag then beginShowError ;write('expeted '); PrintToken(expeted);write(', found '); PrintToken(token); writeln;Reover860 endend;f ParseCompound { parse a ompound term gfuntion ParseCompound : term ;var fun: symbol ; arg : argbuf ; n: integer ;865 beginfun := tokval ; n := 0; Eat(ident);if token = lpar then beginEat(lpar); n := 1; arg [1℄ := ParseTerm ;while token = omma do870 begin Eat(omma); inr(n); arg [n℄ := ParseTerm end;Eat(rpar)end;if s arity(fun) = �1 thens arity(fun) := n875 else if s arity(fun) 6= n thensyntax error ('wrong number of args');ParseCompound := MakeCompound (fun; arg)end;



C.14 Parser 225f ParsePrimary { parse a primary g880 funtion ParsePrimary : term;var t: term;beginif token = ident then t := ParseCompoundelse if token = variable then885 begin t := VarRep(tokval ); Eat(variable) endelse if token = number thenbegin t :=MakeInt(tokival ); Eat(number) endelse if token = hon thenbegin t :=MakeChar (hr (tokival )); Eat(hon) end890 else if token = stron thenbegin t :=MakeString(toksval ); Eat(stron ) endelse if token = lpar thenbegin Eat(lpar); t := ParseTerm ; Eat(rpar) endelse begin895 syntax error ('expeted a term'); t := nullend;ParsePrimary := tend;f ParseFator { parse a fator g900 funtion ParseFator : term;var t: term;begint := ParsePrimary ;if token 6= olon then905 ParseFator := telse beginEat(olon);ParseFator :=MakeNode(ons ; t;ParseFator )end910 end;f ParseTerm { parse a term gfuntion ParseTerm fwd (: term);var t: term;begin915 t := ParseFator ;if token 6= equal thenParseTerm := telse beginEat(equal);920 ParseTerm :=MakeNode(eqsym ; t;ParseFator )endend;f ChekAtom { hek that a literal is a ompound term gproedure ChekAtom(a: term);925 beginif t kind (a) 6= fun thensyntax error ('literal must be a ompound term')



226 PioProlog soure odeend;f ParseClause { parse a lause g930 funtion ParseClause(isgoal : boolean): lause ;label done ;var head ; t: term;body : argbuf ;n: integer ;935 minus : boolean ;beginif isgoal thenhead := nullelse begin940 head := ParseTerm ;ChekAtom(head );Eat(arrow )end;n := 0;945 if token 6= dot then beginwhile true do beginn := n+ 1; minus := false ;if token = negate thenbegin Eat(negate); minus := true end;950 t := ParseTerm ; ChekAtom(t);if minus then body [n℄ := MakeNode(notsym; t;null)else body [n℄ := t;if token 6= omma then goto done;Eat(omma)955 endend;done :Eat(dot);if errag then ParseClause := null960 else ParseClause := MakeClause(nvars ; head ; body ; n)end;f ReadClause { read a lause from in�le gfuntion ReadClause : lause ;var : lause ;965 beginrepeathp := hmark ; nvars := 0; errag := false ;if interating thenbegin writeln ; write('# :- '); ush out end;970 San;if token = eoftok then  := nullelse  := ParseClause(interating)until (: errag) _ (token = eoftok);ReadClause := 975 end;



C.15 Trail 227C.15 Trailf The trail stak reords assignments made to variables, so that they an be undone onbaktraking. It is a linked list of nodes with a t kind of undo alloated from the globalstak. The variables for whih bindings are atually kept in the trail are the `ritial'ones that will not be destroyed on baktraking. g980 type trail = pointer ;f Nodes on the trail share the t tag and t shift �elds of other nodes on the global stak,plus: gde�ne(x reset ;mem [$1 + 2℄) f variable to reset gde�ne(x next ;mem[$1 + 3℄) f next trail entry g985 de�ne(trail size ; 4)var trhead : trail ; f start of the trail gf ritial { test if a variable will survive baktraking gde�ne(ritial ; (($1 < hoie) _ ($1 � f glotop(hoie))))f Save { add a variable to the trail if it is ritial g990 proedure Save(v: term);var p: trail ;beginif ritial (v) then beginp := GloAllo(undo;trail size);995 x reset(p) := v; x next(p) := trhead ; trhead := pendend;f Restore { undo bindings bak to previous state gproedure Restore;1000 var v: term;beginwhile (trhead 6= f trail(hoie)) do beginv := x reset(trhead );if v 6= null then t val (v) := null;1005 trhead := x next(trhead )endend;f Commit { blank out trail entries not needed after ut gproedure Commit ;1010 var p: trail ;beginp := trhead ;while (p 6= null) ^ (p < f glotop(hoie)) do beginif (x reset(p) 6= null) ^ : ritial (x reset(p)) then1015 x reset(p) := null;p := x next(p)endend;



228 PioProlog soure odeC.16 Uni�ationf The uni�ation algorithm is the naive one that is traditional in Prolog implementations.Tradition is also followed in omitting the `our hek'.1020 Nodes of type ell may only point to terms that are independent of any frame: i.e.,they may not point to terms in the heap that may ontain ref nodes. So there is afuntion GloCopy that opies out enough of a term onto the global stak so that anyell an point to it. No opy is needed if the term is already on the global stak, or ifit is a simple term that annot ontain any ref 's. g1025 f GloCopy { opy a term onto the global stak gfuntion GloCopy (t: term; e: frame): term;var tt : term; i; n: integer ;begin1030 t := Deref (t; e);if is glob(t) thenGloCopy := telse beginase t kind (t) of1035 fun :beginn := s arity(t fun(t));if is heap(t) ^ (n = 0) then GloCopy := telse begin1040 tt := GloAllo(fun ;term size + n);t fun(tt) := t fun(t);for i := 1 to n dot arg(tt ; i) := GloCopy(t arg(t; i); e);GloCopy := tt1045 endend;ell:begintt := GloAllo(ell;term size);1050 t val(tt) := null;Save(t); t val(t) := tt ;GloCopy := ttend;int ;hrtr:1055 GloCopy := tdefaultbad tag('GloCopy'; t kind (t))endend1060 end;



C.16 Uni�ation 229f When two variables are made to `share', there is a hoie of whih variable is made topoint to the other. The ode takes are to obey some rules about what may point towhat: (1) Nothing on the global stak may point to anything on the loal stak; (2)Nothing on the loal stak may point to anything nearer the top of the loal stak.Both these rules are neessary, sine the top part of the loal stak may be relaimedwithout warning. There is another rule that makes for better performane: (3) Avoidpointers from items nearer the bottom of the global stak to items nearer the top.1065 The triky lifetime maro implements these rules by omputing a numerial measure ofthe lifetime of an objet, de�ned so that anything on the loal stak is shorter-lived thananything on the global stak, and within eah stak items near the top are shorter-livedthan items near the bottom. g1070 f lifetime { measure of potential lifetime gde�ne(lifetime ; ($1 � (2 � ord(is glob($1))� 1)))f Share { bind two variables together g1075 proedure Share(v1 ; v2 : term);beginif lifetime(v1 ) � lifetime(v2 ) thenbegin Save(v1 ); t val(v1 ) := v2 endelse1080 begin Save(v2 ); t val(v2 ) := v1 endend;f Unify { �nd and apply uni�er for two terms gfuntion Unify(t1 : term; e1 : frame ; t2 : term; e2 : frame): boolean ;var i: integer ; math : boolean ;1085 begint1 := Deref (t1 ; e1 ); t2 := Deref (t2 ; e2 );if t1 = t2 then f Inludes unifying a var with itself gUnify := trueelse if (t kind(t1 ) = ell) ^ (t kind(t2 ) = ell) then1090 begin Share(t1 ; t2 ); Unify := true endelse if t kind(t1 ) = ell thenbegin Save(t1 ); t val (t1 ) := GloCopy (t2 ; e2 ); Unify := true endelse if t kind(t2 ) = ell thenbegin Save(t2 ); t val (t2 ) := GloCopy (t1 ; e1 ); Unify := true end1095 else if t kind(t1 ) 6= t kind(t2 ) thenUnify := falseelse beginase t kind (t1 ) offun :1100 if (t fun(t1 ) 6= t fun(t2 )) thenUnify := falseelse begini := 1; math := true;while math ^ (i � s arity(t fun(t1 ))) do begin1105 math := Unify(t arg(t1 ; i); e1 ; t arg(t2 ; i); e2 );inr(i)end;Unify := mathend;



230 PioProlog soure ode1110 int :Unify := (t ival (t1 ) = t ival (t2 ));hrtr:Unify := (t val (t1 ) = t val (t2 ))default1115 bad tag('Unify'; t kind (t1 ))endendend;f Key { uni�ation key of a term g1120 funtion Key fwd ((t: term; e: frame): integer);var t0 : term;beginf The argument t must be a diret pointer to a ompound term.The value returned is key(t): if t1 and t2 are uni�able,1125 then key(t1 ) = 0 or key(t2 ) = 0 or key(t1 ) = key(t2 ). gif t = null then pani('Key');if t kind (t) 6= fun then bad tag('Key1'; t kind(t));if s arity(t fun(t)) = 0 thenKey := 01130 else begint0 := Deref (t arg(t; 1); e);ase t kind (t0 ) offun : Key := t fun(t0 );int : Key := t ival (t0 ) + 1;1135 hrtr: Key := t val (t0 ) + 1;ref ;ell: Key := 0defaultbad tag('Key2'; t kind(t0 ))end1140 endend;f Searh { �nd the �rst lause that might math gfuntion Searh(t: term; e: frame ; p: lause): lause ;var k: integer ;1145 begink := Key(t; e);if k 6= 0 thenwhile (p 6= null) ^ ( key(p) 6= 0) ^ ( key(p) 6= k) dop :=  next(p);1150 Searh := pend;C.17 Interpreterf The main ontrol of the interpreter uses a depth-�rst searh proedure with an expliitstak of ativation reords. It inludes the tail-reursion optimization and an indexingsheme that uses the hash odes omputed by Key . g



C.17 Interpreter 2311155 var ok : boolean ; f whether exeution sueeded gde�ne(debug point ; if dag then begin write($1; ': ');PrintTerm($2; $3;maxprio); writeln end)f PushFrame { reate a new loal stak frame gproedure PushFrame(nvars : integer ; retry : lause);1160 var f : frame ; i: integer ;beginf := LoAllo(frame size(nvars));f goal(f) := urrent ; f parent(f) := goalframe ;f retry(f) := retry ; f hoie(f) := hoie ;1165 f glotop(f) := gsp; f trail(f) := trhead ;f nvars(f) := nvars ;for i := 1 to nvars do begint tag(f loal (f; i)) := make tag(ell;term size);t val (f loal (f; i)) := null1170 end;goalframe := f ;if retry 6= null then hoie := goalframeend;f Tail reursion an be used only under rather stringent onditions: the goal literal mustbe the last one in the body of the alling lause, both the alling lause and the alledlause must be determinate, and the alling lause must not be the original goal (lestthe answer variables be lost). The maro tro test(p) heks that these onditions aresatis�ed, where p is the untried part of the proedure for the urrent goal literal. g1175 f tro test { test if a resolution step an use TRO g1180 de�ne(tro test ; (g �rst(g rest(urrent)) = null) ^ (hoie < goalframe)^ ($1 = null) ^ (goalframe 6= base))f If the tro test maro returns true, then it is safe to disard the alling frame in a resolu-tion step before solving the subgoals in the newly-reated frame. TroStep implementsthis manoeuvre: read it after you understand the normal ase overed by Step.Beause the alling frame is to be disarded, it is important that no pointers from thenew frame to the alling frame are reated during uni�ation. TroStep uses the trik ofswapping the two frames so that Unify will make pointers go the right way. The ideais simple, but the details are made ompliated by the need to adjust internal pointersin the reloated frame. g1185
f TroStep { perform a resolution step with tail-reursion g1190 proedure TroStep;var temp: frame ; oldsize ;newsize ; i: integer ;beginif dag then writeln('(TRO)');1195 oldsize := frame size(f nvars(goalframe)); f size of old frame gnewsize := frame size( nvars(pro)); f size of new frame gtemp := LoAllo(newsize);temp := goalframe + newsize ; f opy old frame here gf Copy the old frame: in reverse order in ase of overlap g1200 for i := oldsize � 1 downto 0 do mem[temp + i℄ := mem[goalframe + i℄;



232 PioProlog soure odef Adjust internal pointers in the opy gfor i := 1 to f nvars(goalframe) do beginif (t kind(f loal(temp; i)) = ell)^ (t val (f loal (temp; i)) 6= null)1205 ^ (goalframe � t val (f loal(temp; i)))^ (t val (f loal (temp; i)) < goalframe + oldsize) thent val(f loal(temp; i)) := t val(f loal(temp; i)) + newsizeend;f Overwrite the old frame with the new one g1210 f nvars(goalframe) :=  nvars(pro);for i := 1 to f nvars(goalframe) do begint tag(f loal (goalframe ; i)) := make tag(ell;term size);t val (f loal (goalframe ; i)) := nullend;1215 f Perform the resolution step gok := Unify(all ; temp;  head (pro); goalframe);urrent :=  rhs(pro);lsp := temp � 1end;f The Step proedure arries out a single resolution step. Built-in relations are treatedas a speial ase; so are resolution steps that an use the tail-reursion optimization.Otherwise, we alloate a frame for the �rst lause for the urrent goal literal, unify thelause head with the literal, and adopt the lause body as the new goal. The step anfail (and Step returns false) if there are no lauses to try, or if the �rst lause fails tomath. g12201225 f Step { perform a resolution step gproedure Step;var retry : lause;begin1230 if s ation(t fun(all )) 6= 0 thenok := DoBuiltin(s ation(t fun(all )))else if pro = null thenok := falseelse begin1235 retry := Searh(all ; goalframe ;  next(pro));if tro test(retry) thenTroStepelse beginPushFrame( nvars(pro); retry);1240 ok := Unify(all ; f parent(goalframe);  head (pro); goalframe);urrent :=  rhs(pro);endendend;f The Unwind proedure returns from ompleted lauses until it �nds one where there isstill work to do, or it �nds that the original goal is ompleted. At this point, ompletedframes are disarded if they annot take part in future baktraking. g1245



C.17 Interpreter 233f Unwind { return from ompleted lauses gproedure Unwind ;1250 beginwhile (g �rst(urrent) = null) ^ (goalframe 6= base) do begindebug point('Exit'; g �rst(f goal (goalframe)); f parent(goalframe));urrent := g rest(f goal (goalframe));if goalframe > hoie then lsp := goalframe � 1;1255 goalframe := f parent(goalframe)endend;f The Baktrak proedure undoes all the work that has been done sine the last non-deterministi hoie (indiated by the hoie register). The trail shows what assign-ments must be undone, and the staks are returned to the state they were in when thehoie was made. The pro register is set from the f retry �eld of the hoie frame: thisis the list of lauses for that goal that remain to be tried g1260 f Baktrak { roll bak to the last hoie-point gproedure Baktrak ;1265 beginRestore;urrent := f goal (hoie); goalframe := f parent(hoie);all := Deref (g �rst(urrent); goalframe);pro := f retry(hoie); gsp := f glotop(hoie);1270 lsp := hoie � 1; hoie := f hoie(hoie);debug point('Redo'; all ; goalframe);end;f Resume is alled with ok = true when the interpreter starts to exeute a goal; it eitherreturns with ok = true when the goal sueeds, or returns with ok = false when ithas ompletely failed. After Resume has returned true, it an be alled again withok = false to �nd another solution; in this ase, the �rst ation is to baktrak to themost reent hoie-point. g1275 f Resume { ontinue exeution gproedure Resume;1280 label exit ;beginwhile run do beginif ok then beginif g �rst(urrent) = null then return;1285 all := Deref (g �rst(urrent); goalframe);debug point('Call'; all ; goalframe);if (s pro(t fun(all )) = null)^ (s ation(t fun(all)) = 0) then beginexe error('all to undefined relation ');1290 WriteString(s name(t fun(all )));returnend;pro := Searh(all ; goalframe ; s pro(t fun(all )))end1295 else beginif hoie � base then return;



234 PioProlog soure odeBaktrakend;Step;1300 if ok then Unwind ;if gsp � lsp � glow then Colletend;exit :end;f Exeute { solve a goal by SLD-resolution g1305 proedure Exeute(g: lause);label exit ;beginlsp := hp; gsp := memsize + 1;1310 urrent := null; goalframe := null; hoie := null; trhead := null;PushFrame( nvars(g);null);hoie := goalframe ; base := goalframe ; urrent :=  rhs(g);f hoie(base) := base;run := true; ok := true;1315 repeatResume;if : run then return;if : ok thenbegin writeln ; write('no'); return end;1320 ok := ShowAnswer(base)until ok ;writeln; write('yes');exit :end;C.18 Built-in relationsf Eah built-in relation is a parameterless boolean-valued funtion: it �nds its argumentsfrom the all in all , arries out whatever side-e�et is desired, and returns true exatlyif the all sueeds.1325 Two routines help in de�ning built-in relations: GetArgs dereferenes the argument ofthe literal all and puts them in the global array av ; and NewInt makes a new integernode on the global stak. g1330 varav : argbuf ; f GetArgs puts arguments here gallbody : pointer ; f dummy lause body used by all=1 gf GetArgs { set up av array g1335 proedure GetArgs;var i: integer ;beginfor i := 1 to s arity(t fun(all )) doav [i℄ := Deref (t arg(all ; i); goalframe)1340 end;



C.18 Built-in relations 235f A ouple of maros that abbreviate aesses to the av array: gde�ne(a kind ; (t kind (av [$1℄) = $2))de�ne(a ival ; t ival (av [$1℄))funtion NewInt(n: integer): term;1345 var t: term;begint := GloAllo(int ;term size);t ival (t) := n;NewInt := t1350 end;f DoCut { built-in relation !/0 gfuntion DoCut : boolean ;beginhoie := f hoie(goalframe);1355 lsp := goalframe + frame size(f nvars(goalframe)) � 1;Commit ;urrent := g rest(urrent);DoCut := trueend;f DoCall { built-in relation all=1 g1360 funtion DoCall : boolean ;beginGetArgs;if : a kind(1; fun) then begin1365 exe error('bad argument to all/1');DoCall := falseendelse beginPushFrame(1;null);1370 t val (f loal (goalframe ; 1)) :=GloCopy (av [1℄; f parent(goalframe));urrent := allbody ;DoCall := trueend1375 end;f DoNot { built-in relation : =1 gfuntion DoNot : boolean ;var savebase : frame ;begin1380 GetArgs;if : a kind(1; fun) then beginexe error('bad argument to all/1');DoNot := falseend1385 else beginPushFrame(1;null);savebase := base; base := goalframe ; hoie := goalframe ;t val (f loal (goalframe ; 1)) :=GloCopy (av [1℄; f parent(goalframe));



236 PioProlog soure ode1390 urrent := allbody ; ok := true;Resume;hoie := f hoie(base); goalframe := f parent(base);if : ok then beginurrent := g rest(f goal (base));1395 DoNot := trueendelse beginCommit ;DoNot := false1400 end;lsp := base � 1; base := savebaseendend;f Proedures DoPlus and DoTimes implement the plus=3 and times=3 relations: theyboth involve a ase analysis of whih arguments are known, followed by a all to Unifyto unify the remaining argument with the result. The times=3 relation fails on divide-by-zero, even in the ase times(X; 0; 0), whih atually has in�nitely many solutions. g1405 f DoPlus { built-in relation plus=3 gfuntion DoPlus : boolean ;1410 var result : boolean ;beginGetArgs;result := false ;if a kind(1; int) ^ a kind(2; int) then1415 result := Unify(av [3℄; goalframe ;NewInt(a ival (1) + a ival (2));null)else if a kind (1; int) ^ a kind (3; int) then beginif a ival (1) � a ival (3) thenresult := Unify(av [2℄; goalframe ;NewInt(a ival (3)� a ival (1));null)1420 endelse if a kind (2; int) ^ a kind (3; int) then beginif a ival (2) � a ival (3) thenresult := Unify(av [1℄; goalframe ;NewInt(a ival(3)� a ival (2));null)end1425 elseexe error('plus/3 needs at least two integers');urrent := g rest(urrent);DoPlus := resultend;f DoTimes { built-in relation times=3 g1430 funtion DoTimes : boolean ;var result : boolean ;beginGetArgs;1435 result := false ;if a kind(1; int) ^ a kind(2; int) thenresult := Unify(av [3℄; goalframe ;NewInt(t ival (av [1℄) � t ival (av [2℄));null)



C.18 Built-in relations 237else if a kind (1; int) ^ a kind (3; int) then begin1440 if a ival (1) 6= 0 thenif a ival (3) mod a ival (1) = 0 thenresult := Unify(av [2℄; goalframe ;NewInt(a ival (3) div a ival (1));null)end1445 else if a kind (2; int) ^ a kind (3; int) then beginif a ival (2) 6= 0 thenif a ival (3) mod a ival (2) = 0 thenresult := Unify(av [1℄; goalframe ;NewInt(a ival (3) div a ival (2));null)1450 endelseexe error('times/3 needs at least two integers');urrent := g rest(urrent);DoTimes := result1455 end;f DoEqual { built-in relation = =2 gfuntion DoEqual : boolean ;beginGetArgs;1460 urrent := g rest(urrent);DoEqual := Unify(av [1℄; goalframe ; av [2℄; goalframe)end;f DoInteger { built-in relation integer=1 gfuntion DoInteger : boolean ;1465 beginGetArgs;urrent := g rest(urrent);DoInteger := a kind(1; int)end;f DoChar { built-in relation har=1 g1470 funtion DoChar : boolean ;beginGetArgs;urrent := g rest(urrent);1475 DoChar := a kind(1;hrtr)end;f DoPrint { built-in relation print=1 gfuntion DoPrint : boolean ;begin1480 GetArgs;PrintTerm(av [1℄; goalframe ;maxprio);urrent := g rest(urrent);DoPrint := trueend;f DoNl { built-in relation nl=0 g1485 funtion DoNl : boolean ;



238 PioProlog soure odebeginwriteln;urrent := g rest(urrent);1490 DoNl := trueend;f DoBuiltin { swith for built-in relations gfuntion DoBuiltin fwd ((ation : integer): boolean);begin1495 ase ation ofut : DoBuiltin := DoCut ;all: DoBuiltin := DoCall ;plus : DoBuiltin := DoPlus ;times : DoBuiltin := DoTimes ;1500 isint : DoBuiltin := DoInteger ;ishar: DoBuiltin := DoChar ;naff : DoBuiltin := DoNot ;equality : DoBuiltin := DoEqual ;fail: DoBuiltin := false ;1505 print : DoBuiltin := DoPrint ;nl: DoBuiltin := DoNldefaultbad tag('DoBuiltin'; ation)end1510 end;C.19 Garbage olletionf Finally, here is the garbage olletor, whih relaims spae in the global stak that isno longer aessible. It must work well with the stak-like expansion and ontrationof the stak, so it is a ompating olletor that does not alter the order in memory ofthe aessible nodes.The garbage olletor operates in four phases: (1) Find and mark all aessible storage.(2) Compute the new positions of the marked items after the global stak is ompated.(3) Adjust all pointers to marked items. (4) Compat the global stak and move it tothe top of mem. That may seem ompliated, and it is; the garbage olletor mustknow about all the run-time data strutures, and is that one piee of the system thatuts aross every abstration boundary.15151520 Beause of the reloation, Collet should only be alled at `quiet' times, when the onlypointers into the global stak are from interpreter registers and the loal stak. Anexample of a `non-quiet' time is in the middle of uni�ation, when many reursiveopies of the uni�ation proedure are keeping pointers to bits of term struture. Toavoid the need to ollet garbage at suh times, the main ontrol of the interpreteralls Collet before eah resolution step if the spae left is less than glow . If spaeruns out in the subsequent resolution step, exeution is abandoned without muh grae.This plan works beause the amount of spae onsumed in a resolution step is boundedby the maximum size of a program lause; this size is not heked, though. g1525
1530 var shift : integer ; f amount global stak will shift g



C.19 Garbage olletion 239f Visit { reursively mark a term and all its sub-terms gproedure Visit(t: term);label exit ;var i; n: integer ;1535 beginf We redue the depth of reursion when marking long lists bytreating the last argument of a funtion iteratively, makingreursive alls only for the other arguments. gwhile t 6= null do begin1540 if : is glob(t) _ marked(t) then return;add mark (t);ase t kind (t) offun :begin1545 n := s arity(t fun(t));if n = 0 then return;for i := 1 to n� 1 do Visit(t arg(t; i));t := t arg(t; n)end;1550 ell:t := t val(t);int ;hrtr:returndefault1555 bad tag('Visit'; t kind (t))endend;exit :end;f MarkStak { mark from eah frame on the loal stak g1560 proedure MarkStak ;var f : frame ; i: integer ;beginf := hp + 1;1565 while f � lsp do beginfor i := 1 to f nvars(f) doif t kind (f loal (f; i)) = ell thenVisit(t val(f loal(f; i)));f := f + frame size(f nvars(f))1570 endend;f CullTrail { delete an initial segment of unwanted trail gproedure CullTrail (var p: trail);label exit ;1575 beginwhile p 6= null do beginif x reset(p) 6= null thenif : is glob(x reset(p)) _ marked (x reset(p)) thenreturn;1580 p := x next(p)



240 PioProlog soure odeend;exit :end;f MarkTrail { remove dead trail nodes, mark the rest. g1585 proedure MarkTrail ;var p: trail ;beginCullTrail (trhead ); p := trhead ;while p 6= null do1590 begin add mark(p); CullTrail (x next(p)); p := x next(p) endend;f Reloate { ompute shifts gproedure Reloate;var p: pointer ; step: integer ;1595 beginshift := 0; p := gsp;while p � memsize do beginstep := t size(p); t shift(p) := shift ;if :marked (p) then1600 shift := shift + step;p := p+ stependend;f AdjustPointer { update a pointer g1605 proedure AdjustPointer(var p: term);beginif (p 6= null) ^ is glob(p) then beginif :marked (p) thenpani('adjusting pointer to unmarked blok');1610 p := p+ shift � t shift(p)endend;f AdjustStak { adjust pointers in loal stak gproedure AdjustStak ;1615 var f : frame ; i: integer ; q: pointer ;label found ; found2 ;beginf := hp + 1;while f � lsp do begin1620 q := f glotop(f);while q � memsize do beginif marked (q) then goto found ;q := q + t size(q)end;1625 found :if q � memsize then AdjustPointer(q);f glotop(f) := q;



C.19 Garbage olletion 241q := f trail(f);while q 6= null do begin1630 if marked (q) then goto found2 ;q := x next(q)end;found2 :AdjustPointer(q);1635 f trail(f) := q;for i := 1 to f nvars(f) doif t kind (f loal (f; i)) = ell thenAdjustPointer(t val(f loal(f; i)));f := f + frame size(f nvars(f));1640 endend;f AdjustInternal { update internal pointers gproedure AdjustInternal ;var p; i: integer ;1645 beginp := gsp;while p � memsize do beginif marked(p) then beginase t kind(p) of1650 fun :for i := 1 to s arity(t fun(p)) doAdjustPointer(t arg(p; i));ell:AdjustPointer(t val(p));1655 undo:beginAdjustPointer(x reset(p));AdjustPointer(x next(p))end;1660 int ;hrtr:skipdefaultbad tag('Adjust'; t kind (p))end1665 end;p := p+ t size(p)endend;f Compat { ompat marked bloks and un-mark g1670 proedure Compat ;var p; q; step; i: integer ;beginp := gsp; q := gsp;while p � memsize do begin1675 step := t size(p);if marked(p) then begin rem mark(p);



242 PioProlog soure odefor i := 0 to step � 1 do mem [q + i℄ := mem[p+ i℄;q := q + stepend;1680 p := p+ stepend;gsp := gsp + shift ;for i := memsize downto gsp do mem [i℄ := mem[i� shift ℄;end;f Collet { ollet garbage g1685 proedure Collet ;beginwrite('[g'); ush out ;f Phase 1: marking g1690 Visit(all ); MarkStak ; MarkTrail ;f Phase 2: ompute new loations gReloate;f Phase 3: adjust pointers gAdjustPointer(all ); AdjustPointer(trhead);1695 AdjustStak ; AdjustInternal ;f Phase 4: ompat gCompat ;write('℄'); ush out ;if gsp � lsp � ghigh then exe error('out of memory spae')1700 end;C.20 Main programf Initialize { initialize everything gproedure Initialize ;var i: integer ; p: term;begin1705 dag := false ; errount := 0;pbhar := endfile ; harptr := 0;hp := 0; InitSymbols ;f Set up the refnode array gfor i := 1 to maxarity do begin1710 p := HeapAllo(term size);t tag(p) := make tag(ref ;term size);t index (p) := i; refnode [i℄ := pend;f The dummy lause all(p) :� p is used by all=1. g1715 allbody := HeapAllo(2);g �rst(allbody) := MakeRef (1);g �rst(g rest(allbody)) := nullend;



C.20 Main program 243f ReadFile { read and proess lauses from an open �le g1720 proedure ReadFile ;var : lause ;beginlineno := 1;repeat1725 hmark := hp; := ReadClause ;if  6= null then beginif dag then PrintClause();if  head () 6= null then1730 AddClause()else beginif interating thenbegin pbhar := endfile ; readln end;Exeute();1735 writeln;hp := hmarkendenduntil  = null1740 end;f ReadProgram { read �les listed on ommand line gproedure ReadProgram ;var i0 ; i: integer ;arg : tempstring ;1745 begini0 := 1;if arg > 1 then beginargv (1; arg);if (arg [1℄ = '-') ^ (arg [2℄ = 'd')1750 ^ (arg [3℄ = endstr) then begindag := true;inr(i0 )endend;1755 for i := i0 to arg � 1 do beginargv (i; arg);�lename := SaveString(arg);if : openin(in�le ; arg) then beginwrite('Can''t read '); WriteString(�lename); writeln ;1760 abortend;write('Reading '); WriteString(�lename); writeln ;ReadFile ;losein(in�le);1765 if errount > 0 then abortendend;



244 PioProlog soure odebegin f main program gwriteln('Welome to pioProlog');1770 Initialize ;interating := false ; ReadProgram ;interating := true; lineno := 1; ReadFile ;writeln;end of pp:1775 end:



Appendix DCross-referene listing

a ival , 1343, 1415{19, 1422{3,1440{43, 1446{9a kind , 1342, 1364, 1381, 1414{16, 1421,1436, 1439, 1445, 1468, 1475a1 , 448, 451a2 , 448, 451abort , 56, 72, 680, 1760, 1765ation , 313, 334, 341, 371, 378, 1493,1495, 1508add mark , 149, 1541, 1590AddClause , 414, 1730AdjustInternal , 1643, 1695AdjustPointer , 1605, 1626, 1634, 1638,1652{4, 1657{8, 1694AdjustStak , 1614, 1695arg , 437, 444, 449, 451{2, 864, 868{70, 877,1744, 1748{50, 1756{8argbuf , 435, 437, 449, 488, 864, 933, 1332arg, 1747, 1755argprio, 505, 572, 575argv , 1748, 1756arity , 333, 340, 371, 378arrow , 652, 752, 789, 942av , 1332, 1339, 1342{3, 1371, 1389, 1415,1418, 1423, 1437{8, 1442, 1448, 1461, 1481Baktrak , 1264, 1297bad tag , 73, 1057, 1115, 1127, 1138, 1508,1555, 1663base , 293, 1181, 1251, 1296, 1312{13, 1320,1387, 1392{4, 1401bindings , 821, 829

body , 488, 493, 933, 951{2, 960 body , 264, 493{4, 619{24 head , 262, 417, 492, 614{15, 1216,1240, 1729 key , 260, 495{6, 1148 next , 261, 426{7, 492, 1149, 1235 nvars , 259, 492, 1196, 1210, 1239, 1311 rhs , 263, 264, 1217, 1241, 1312all, 383, 404, 1497all , 290, 1216, 1230{31, 1235, 1240, 1268,1271, 1285{90, 1293, 1338{9, 1690, 1694allbody , 1333, 1372, 1390, 1715{17ell, 160, 306, 595, 1047{9, 1089{93, 1136,1168, 1203, 1212, 1550, 1567, 1637, 1653h , 220, 227, 240, 242, 677, 683{5, 695, 697,700{705, 708, 711{13, 717{23, 726, 735{6,739{42, 745, 750{51, 754, 758{9, 764{70,774, 822, 838h2 , 695, 739{41harbuf , 86, 103, 111{12, 119{20harptr , 85, 99{103, 1706hon , 650, 758, 788, 888{9ChekAtom , 924, 941, 950hoie , 292, 988, 1002, 1013, 1164, 1172,1180, 1254, 1267{70, 1296, 1310{12, 1354,1387, 1392hr , 20{23, 532, 594, 889hrtr, 158, 473, 518, 593, 1054, 1112,1135, 1475, 1552, 1660lause size , 265, 491 245



246 Cross-referene listinglause , 258, 294, 335, 414{15, 488{9, 608,930, 963{4, 1143, 1159, 1228, 1306, 1721losein , 1764Collet , 314, 1301, 1686olon , 657, 754, 794, 904, 907omma, 655, 729, 792, 869{70, 953{4Commit , 1009, 1356, 1398Compat , 1670, 1697ons , 337, 399, 483, 516, 542, 908onsprio, 507, 547{51ritial , 988, 993, 1014CullTrail , 1573, 1588{90urrent , 289, 1163, 1180, 1217, 1241, 1251{3,1267{8, 1284{5, 1310{12, 1357, 1372,1390, 1394, 1427, 1453, 1460, 1467, 1474,1482, 1489ut , 382, 400, 1496utsym, 337, 400, 732debug point , 1156, 1252, 1271, 1286der , 59, 356, 483Deref , 301, 308, 514, 518, 521, 529, 532{3,584, 1030, 1086, 1131, 1268, 1285, 1339dag , 69, 1156, 1194, 1705, 1728, 1751DoBuiltin , 313, 1231, 1493, 1496{506DoCall , 1361, 1366, 1373, 1497DoChar , 1471, 1475, 1501DoCut , 1352, 1358, 1496DoEqual , 1457, 1461, 1503DoInteger , 1464, 1468, 1500done , 48, 510, 517{19, 523, 931, 953, 957DoNl , 1486, 1490, 1506DoNot , 1377, 1383, 1395, 1399, 1502DoPlus , 1409, 1428, 1498DoPrint , 1478, 1483, 1505dot , 656, 681, 686, 730, 793, 854, 945, 958DoTimes , 1431, 1454, 1499dummy , 395, 404{11e1 , 1083, 1086, 1094, 1105e2 , 1083, 1086, 1092, 1105Eat , 851, 866{71, 885{93, 907, 919, 942, 949,954, 958end of pp, 45, 55, 1774endfile , 23, 223, 232{3, 684, 700, 740{42,1706, 1733endline , 22, 225, 685, 702, 765, 768endstr, 20, 92, 104, 111, 119, 350, 377, 714,767, 1750Enter , 371, 379, 399{411eoftok , 660, 701, 971{3

eqprio, 506, 556{60, 829eqsym, 337, 401, 554, 920equal, 658, 731, 795, 916, 919equality , 389, 401, 1503errount , 645, 668, 679, 1705, 1765errag , 644, 663, 668, 855, 959, 967, 973exe error , 70, 419, 1289, 1365, 1382, 1426,1452, 1699Exeute, 1306, 1734exit , 47, 60, 1280, 1303, 1307, 1323, 1533,1558, 1574, 1582expeted , 851, 853, 857f hoie , 280, 1164, 1270, 1313, 1354, 1392f glotop, 281, 988, 1013, 1165, 1269,1620, 1627f goal , 277, 1163, 1252{3, 1267, 1394f loal , 284, 305, 829, 1168{9, 1203{7,1212{13, 1370, 1388, 1567{8, 1637{8f nvars , 283, 1166, 1195, 1202, 1210{11,1355, 1566, 1569, 1636, 1639f parent , 278, 1163, 1240, 1252, 1255, 1267,1371, 1389, 1392f retry , 279, 1164, 1269f trail , 282, 1002, 1165, 1628, 1635fail, 390, 409, 1504FGetChar , 219, 223{7, 235{7�lename, 217, 670, 1757{9, 1762ush out , 41, 834, 969, 1688, 1698ush, 41found , 46, 345, 355, 366, 1616, 1622, 1625found2 , 49, 1616, 1630, 1633frame size , 285, 287frame size , 287, 1162, 1195{6, 1355,1569, 1639frame , 276, 291{3, 301, 311, 315, 509, 527,538, 582, 821, 1027, 1083, 1120, 1143,1160, 1192, 1378, 1562, 1615fun, 437, 440, 443, 448, 452, 864, 866, 873{7fun , 153, 442, 516, 524, 589, 926, 1035,1040, 1099, 1127, 1133, 1364, 1381,1543, 1650fwd , 320, 582, 912, 1120, 1493g �rst , 266, 1180, 1251{2, 1268,1284{5, 1716{17g rest , 267, 1180, 1253, 1357, 1394, 1427,1453, 1460, 1467, 1474, 1482, 1489, 1717ghigh , 18, 1699glow , 17, 1301



D Cross-referene listing 247GetArgs, 1335, 1363, 1380, 1412, 1434, 1459,1466, 1473, 1480GetChar , 230, 233{7, 683, 697, 703, 711,721, 735, 739{41, 745, 750, 758, 764{6GloAllo, 189, 196, 994, 1040, 1049, 1347GloCopy , 1027, 1032, 1038, 1043{4, 1052,1055, 1092{4, 1371, 1389goalframe , 291, 1163, 1171{2, 1180{81, 1195,1198{202, 1205{6, 1210{13, 1216, 1235,1240, 1251{5, 1267{8, 1271, 1285{6, 1293,1310{12, 1339, 1354{5, 1370{71, 1387{9,1392, 1415, 1418, 1423, 1437, 1442, 1448,1461, 1481gsp, 180, 185, 192{4, 205, 1165, 1269, 1301,1309, 1596, 1646, 1673, 1682{3, 1699halt , 56hashfator, 12, 361head , 487, 492, 495{6, 932, 938{41, 960HeapAllo, 199, 202, 441, 464, 472, 491,1710, 1715hmark , 180, 967, 1725, 1736hp, 180, 201{4, 599, 967, 1309, 1564, 1618,1707, 1725, 1736i0 , 1743, 1746, 1752, 1755ident , 647, 706, 732, 783, 866, 883inr , 58, 92, 103, 111, 120, 225, 351, 376,521, 625, 668, 711, 766, 816{17, 870,1106, 1752in�le, 215, 237, 1758, 1764Initialize , 1702, 1770InitSymbols , 394, 1707input , 8, 235int , 156, 465, 591, 1054, 1110, 1134, 1347,1414{16, 1421, 1436, 1439, 1445, 1468,1552, 1660interating , 213, 234, 669, 679, 685, 831,968, 972, 1732, 1771{2is digit , 692, 708, 717{19is glob, 205, 596, 1031, 1073, 1540,1578, 1607is heap, 204, 1038is letter , 690, 704, 708is upper , 689, 690, 705ishar, 387, 408, 1501isgoal , 930, 937isint , 386, 407, 1500IsString , 509, 524, 544Key , 315, 496, 1120, 1129, 1133{6, 1146

keyword , 369, 371kind , 189, 195lifetime , 1073, 1077limit , 511, 515lineno, 216, 225, 671, 1723, 1772LoAllo, 183, 186, 1162, 1197Lookup, 344, 367, 377, 714lpar, 653, 727, 790, 867{8, 892{3lsp, 180, 185{6, 192, 1218, 1254, 1270, 1301,1309, 1355, 1401, 1565, 1619, 1699make tag , 151, 195, 442, 465, 473, 1168,1212, 1711MakeChar , 469, 474, 483, 889MakeClause , 487, 497, 960MakeCompound , 437, 445, 452, 877MakeInt , 461, 466, 887MakeNode , 448, 452, 481{3, 908, 920, 951MakeRef , 456, 458, 818, 1716MakeString , 477, 484, 891marked , 148, 1540, 1578, 1599, 1608, 1622,1630, 1648, 1676MarkStak , 1561, 1690MarkTrail , 1585, 1690math , 1084, 1103{5, 1108maxarity , 15, 435, 454, 808{9, 814, 1709maxhars , 13, 82, 85{6, 99, 116maxprio, 504, 565, 615, 620, 624, 1157, 1481maxstring, 14, 83, 89, 97, 709maxsymbols, 11, 328{31, 351, 357, 361, 398mem, 145, 152{63, 181, 259{66, 277{83,983{4, 1200, 1677, 1683memsize , 16, 181, 201, 597, 1309, 1597,1621, 1626, 1647, 1674, 1683minus, 935, 947{51naff , 388, 403, 1502name, 332, 339, 344, 350{51, 355, 363, 371,375{6, 811, 815{16nbody , 488, 491{4negate , 659, 715, 948{9NewInt , 1344, 1349, 1415, 1419, 1423, 1438,1443, 1449newsize , 1192, 1196{8, 1207nilsym , 337, 402, 481, 524, 531nl, 392, 411, 1506notsym, 337, 403, 562, 715, 951nsymbols , 330, 361, 397null, 143, 303{6, 365, 422, 426, 481, 492{6,585, 611, 614{15, 619{24, 829, 895, 938,



248 Cross-referene listing951, 959, 971, 1004, 1013{15, 1050, 1126,1148, 1169, 1172, 1180{81, 1204, 1213,1232, 1251, 1284, 1287, 1310{11, 1369,1386, 1415, 1419, 1423, 1438, 1443, 1449,1539, 1576{7, 1589, 1607, 1629, 1717,1727{9, 1739number, 649, 718, 787, 886{7nvars , 487, 492, 808, 814{17, 824{6, 960,967, 1159, 1162, 1166{7o�set , 456, 458ok , 1155, 1216, 1231{3, 1240, 1283, 1300,1314, 1318{21, 1390, 1393oldsize , 1192, 1195, 1200, 1206openin , 1758ord , 351, 474, 720, 758, 1073output , 8pani, 72, 73, 100, 185, 193, 201, 303, 362,710, 814, 1126, 1609ParseClause , 930, 959{60, 972ParseCompound , 863, 877, 883ParseFator , 900, 905, 908, 915, 920ParsePrimary , 880, 897, 903ParseTerm , 312, 868{70, 893, 912, 917, 920,940, 950pbhar , 214, 232{3, 242, 1706, 1733permstring , 82, 96, 107, 115, 217pioProlog , 8plus , 384, 405, 1498pointer , 142, 144, 180, 183, 189{90, 199, 258,276, 289, 980, 1333, 1594, 1615print , 391, 410, 1505PrintClause , 608, 1728PrintCompound , 538, 590PrintTerm , 311, 548{50, 557{9, 565, 572,575, 582, 615, 620, 624, 829, 1157, 1481PrintToken , 780, 857{8prio , 311, 538, 547, 551, 556, 560, 582, 590pro, 294, 335, 342, 1196, 1210, 1216{17,1232, 1235, 1239{41, 1269, 1293PushBak , 240, 713, 723, 754, 770PushFrame , 1159, 1239, 1311, 1369, 1386ReadClause , 963, 974, 1726ReadFile , 1720, 1763, 1772readln , 225, 836{8, 1733ReadProgram , 1742, 1771Reover , 664, 676, 859ref , 162, 304, 600, 1136, 1711refnode , 454, 458, 1712

Reloate, 1593, 1692rem mark , 150, 1676Restore, 999, 1266result , 1410, 1413{15, 1418, 1423, 1428,1432, 1435{7, 1442, 1448, 1454Resume, 1279, 1316, 1391retry , 1159, 1164, 1172, 1228, 1235{6, 1239rpar, 654, 728, 791, 871, 893run, 68, 71, 1282, 1314, 1317s ation , 341, 365, 378, 418, 1230{31, 1288s arity , 340, 364, 378, 440, 570, 573, 873{5,1037, 1104, 1128, 1338, 1545, 1651s name , 339, 354{5, 363, 398, 420, 569,784{6, 828, 1290s pro, 342, 365, 422{5, 1287, 1293s1 , 107, 111{12s2 , 107, 111{12Save, 990, 1051, 1078{80, 1092{4savebase , 1378, 1387, 1401SaveString , 96, 101, 363, 1757San, 694, 854, 970Searh , 1143, 1150, 1235, 1293Share, 1075, 1090shift , 1530, 1596{600, 1610, 1682{3ShowAnswer , 821, 824, 832, 836{8, 1320ShowError , 664, 666, 856ShowString , 527, 545size, 183, 185{6, 189, 192{5, 199, 201{2skip, 61, 1661Step, 1227, 1299step, 1594, 1598{601, 1671, 1675{80stron , 651, 764, 796, 890{91StringEqual , 107, 112, 355StringLength, 88, 93, 99, 480symbol , 328, 337, 344{6, 371{2, 395, 415,437, 448, 539, 641, 809{11, 864symtab, 331, 339{42syntax error , 662, 737, 743, 760, 769, 774,876, 895, 927t arg , 155, 444, 518, 521, 532{3, 548{50,557{9, 565, 572, 575, 1043, 1105, 1131,1339, 1547{8, 1652t val , 159, 474, 532, 594, 1113, 1135t fun, 154, 417, 443, 516, 524, 531, 541,1037, 1041, 1100, 1104, 1128, 1133,1230{31, 1287{90, 1293, 1338, 1545, 1651t index , 163, 305, 601, 1712t ival , 157, 466, 592, 1111, 1134, 1343,1348, 1438



D Cross-referene listing 249t kind , 146, 304{6, 516{18, 524, 588, 603,926, 1034, 1057, 1089{95, 1098, 1115,1127, 1132, 1138, 1203, 1342, 1542, 1555,1567, 1637, 1649, 1663t shift , 152, 1598, 1610t size , 147, 1598, 1623, 1666, 1675t tag , 145, 146{50, 195, 442, 465, 473, 1168,1212, 1711t val , 161, 306{7, 1004, 1050{51, 1078{80,1092{4, 1169, 1204{7, 1213, 1370, 1388,1551, 1568, 1638, 1654t0 , 1121, 1131{5, 1138t1 , 1083, 1086{95, 1098{100, 1104{5, 1111{15t2 , 1083, 1086{95, 1100, 1105, 1111{13tab , 21, 702temp, 372, 376{7, 1192, 1197{200,1203{7, 1216{18tempstring , 83, 88, 96, 107, 344, 372, 477,643, 1744term size , 166, 284, 287, 441{2, 464{5,472{3, 597{9, 1040, 1049, 1168, 1212,1347, 1710{11term, 144, 290, 301, 311{12, 315, 435{8, 448,454{6, 461{2, 469{70, 477{8, 487, 509,527, 538, 582, 811, 863, 880{81, 900{901,912{13, 924, 932, 990, 1000, 1027{8,1075, 1083, 1120{21, 1143, 1344{5, 1532,1605, 1703text , 215, 219times , 385, 406, 1499token, 640, 681, 686, 697{8, 701, 705{6,715, 718, 727{32, 752{4, 758, 764, 853{4,

858, 867{9, 883{92, 904, 916, 945, 948,953, 971{3tokival , 642, 718{20, 758, 887{9toksval , 643, 711, 714, 766{7, 891tokval , 641, 714{15, 732, 784{6, 866, 885trail size , 985, 994trail , 980, 986, 991, 1010, 1573, 1586trhead , 986, 995, 1002{5, 1012, 1165, 1310,1588, 1694tro test , 1180, 1236TroStep, 1191, 1237tt , 1028, 1040{44, 1049{52undo, 164, 994, 1655Unify , 1083, 1088{96, 1101, 1105, 1108,1111{13, 1216, 1240, 1415, 1418, 1423,1437, 1442, 1448, 1461Unwind , 1249, 1300v1 , 1075, 1077{80v2 , 1075, 1077{80variable, 648, 705, 785, 884{5VarRep, 811, 818, 885vartable , 809, 815{16, 828Visit , 1532, 1547, 1568, 1690WriteString , 115, 420, 569, 670, 784{6, 828,1290, 1759, 1762x next , 984, 995, 1005, 1016, 1580, 1590,1631, 1658x reset , 983, 995, 1003, 1014{15,1577{8, 1657



Index

algebrai simpli�ation, 109{11alphabet of a program, 38answer ompleteness, 53, 83answer orretness, 82answer substitutions, 70, 80{83atomi formulas, 9atoms, 38augmented program, 51baktraking, 8bakwards reasoning, 7bi-diretional programs, 29binary trees, 32body of a lause, 37bounded searh, 96{7breadth-�rst searh, 80, 94, 97built-in relations, 95, 97, 107, 130, 132{3,175{6lauses, 37losed world assumption, 24, 53, 86Collet proedure, 180Commit proedure, 174ompleteness, 35, 52{3omposition of substitutions, 43, 81, 155ompound terms, 38omputed substitution of a derivationtree, 81onjuntion, 17onneted relation, 92onstants, 37ritial maro, 174

ut symbol (!), 114, 133{6yles in a graph, 94databases, 13{20delarative programming, 1{2, 8, 35depth-�rst searh, 5, 79, 80, 139{41, 145{9derivation trees, 65diameter of a graph, 96di�erene lists, 101{2di�erene of relations, 17, 18direted graphs, 91disjuntion, 17DoCall funtion, 176DoChar funtion, 176DoCut funtion, 176DoEqual funtion, 176DoInteger funtion, 176dominates relation, 31DoNot funtion, 176DoPlus funtion, 176DoTimesfuntion, 176Eat proedure, 173empty list, 21evaluating expressions, 107{9Exeute proedure, 175extrated substitution of a derivation tree, 81fats, 9fair searh strategy, 80, 94atten relation, 32forwards reasoning, 7250



Index 251funtion symbols, 36GetChar proedure, 171grammar rules in Prolog, 105ground instanes of a lause, 42ground resolvents, 48ground substitutions, 43ground terms and literals, 38ground-literal ompleteness, 53hardware simulation, 115{20head of a lause, 37Horn lauses, 9indexes, 19InitSymbols proedure, 170instanes of a term, 43interpretations, 41intersetion of relations, 17iterative deepening, 96join, relational, 16journey relation, 77Key funtion, 181least model of a program, 30, 52{3, 86left reursion, 104lexial analysis, 170{72lifting lemma, 65{6, 70, 73, 74, 75, 83linear derivation trees, 70linear resolution, 70{73list relation, 30listof relation, 97lists, 21{2literals, 9, 38Lookup funtion, 170lookup relation, 108loop avoidane, 94maximum prediate, 31member relation, 30, 85, 108models of a program, 42most general uni�er, 57 see also uni�ationmultiple answers, 8negated literals, 38negation, 17negation as failure, 18, 85{9, 111, 132, 197non-determinism, 8notational onventions, 38

outome of a derivation tree, 65parallelism, 8parsing, 99{106Pasal subset used by pioProlog, 164path in a direted graph, 91path relation, 92pioProlog, 10{12, 20, 36, 37, 57, 131{6,passimppp (Pasal Pre-Proessor), 165{8prediate logi, 9programming languages, 1programs, 37projetion, 15Prolog, 5propositional variables, 37PushBak proedure, 171quanti�ers, 9ReadClause proedure, 174real-time programs, 8Reover proedure, 174reursion, 21{33reexive{transitive losure, 91, 111refutation, 50{52refutation ompleteness, 53, 66relation symbols, 36relational databases, 13{20relational join, 16relations, 4, 13renaming, 45resolution, 62{4resolvents, 62Restore proedure, 174restrition of a substitution, 81Resume proedure, 175reverse relation, 49, 63rule of ground resolution, 48rule of substitution, 47rules of inferene, 2Save proedure, 174SaveString funtion, 168San proedure, 171Searh funtion, 181searh strategy, 79searh trees, 76{80, 91seletion, 14Share proedure, 175ShowAnswer funtion, 174



252 IndexShowError proedure, 174simplify relation, 111singleton lists, 22SLD{resolution, 5, 36, 70, 73{6soundness, 35Step proedure, 175strati�ed programs, 89strit derivation trees, 65subset relation, 87substitutions, 42syntax analysis, 99{106, 172{4tail reursion, 114terms, 38Towers of Hanoi, 98trail stak, 137, 157, 160{61, 174, 176

transitive losure, 91TroStep proedure, 175, 182tro test maro, 182truth tables, 39{41uni�ation, 28, 57{62, 161{3Unify funtion, 175union of relations, 17, 18unit lauses, 9variables, 5, 36VarRep proedure, 173views, 14water jugs problem, 91, 95well-formed programs, 38


