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Abstract

The lambda calculus can appear arcane on first encounter. Viewed purely as a
“naming device”, however, it is a straighforward extension of ordinary mathematical
notation. This is the point of view taken in these notes.

1. A brief history of mathematical notation. Our notation fornumbers was introduced
in the Western World in the Renaissance (around 1200) by people like Fibonacci. It is
characterised by a small fixed set of digits, whose value varies with their position in a
number. This place-value system was adopted from the Arabs who themselves credit the
Indians. We don’t know when and where in India it was invented.

A notation for expressionsand equations was not available until the 17th century,
when Francois Vìete started to make systematic use of placeholders for parameters and
abbreviations for the arithmetic operations. Until then, asimple expression such as3x2

had to be described by spelling out the actual computations which are necessary to obtain
3x2 from a value forx.

It took another 250 years before Alonzo Church developed a notation for arbitrary
functions. His notation is calledλ-calculus (“lambda calculus”). Church introduced his
formalism to give a functional foundation for Mathematics but in the end mathematicians
preferred (axiomatic) set theory. Theλ-calculus was re-discovered as a versatile tool in
Computer Science by people like McCarthy, Strachey, Landin, and Scott in the 1960s.

Alonzo Church, 14.6.1903–11.8.1995

Incidentally, the history of programming languages mirrors that of mathematical notation,
albeit in a time-condensed fashion: In the early days (1936-1950), computer engineers
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struggled with number representation and tried many different schemes, before the modern
standard of 2-complement for integers and floating point forreals was generally adopted.
Vi ète’s notation for expressions was the main innovation inFORTRAN, the world’s first
high-level programming language (Backus 1953), thus liberating the programmer from
writing out tedious sequences of assembly instructions. Not too long after this, 1960, Mc-
Carthy came out with his list processing languageLisp. McCarthy knew of theλ-calculus,
and his language closely resembles it.

Today, not many languages offer the powerful descriptive facilities of theλ-calculus,
in particular, the mainstream languagesJava andC++ make a strict distinction between
primitive datatypes and objects, on the one hand, and functions (= methods), on the other
hand. Likewise, the line of development started withLisp, although it led to some truly
remarkable languages such asML andHaskell, has found it difficult to incorporate object
oriented features. TheOCaml dialect ofML is one of the few attempts to combine the two
paradigms.

2. Expressions in theλ-calculus. Theλ-calculus is a notation for functions. It is extremely
economical but at first sight perhaps somewhat cryptic, which stems from its origins in
mathematical logic. Expressions in theλ-calculus are written in strictprefix form, that is,
there are no infix or postfix operators (such as+,−, ( )2, etc.). Furthermore, function and
argument are simply written next to each other, without brackets around the argument. So
where the mathematician and the computer programmer would write “sin(x)”, in the λ-
calculus we simply write “sin x”. If a function takes more than one argument, then these
are simply lined up after the function. Thus “x + 3” becomes “+ x 3”, and “x2” becomes
“∗ x x”. Brackets are employed only to enforce a special grouping.For example, where
we would normally write “sin(x) + 4”, the λ-calculus formulation is “+ (sin x) 4”.

3. Functions in theλ-calculus. If an expression contains a variable — say,x — then one can
form the function which obtains by considering the relationship between concrete values
for x and the resulting value of the expression. In mathematics, function formation is
sometimes written as an equation,f(x) = 3x, sometimes as a mappingx 7→ 3x. In the
λ-calculus a special notation is available which dispenses with the need to give a name to
the function (as inf(x) = 3x) and which easily scales up to more complicated function
definitions. In the given example we would re-write the expression “3x” into “ ∗ 3 x” and
then turn it into a function by preceding it with “λx.”. We get: “λx. ∗ 3 x”. The Greek
letterλ (“lambda”) has a role similar to the keyword “function” in some programming
languages. It alerts the reader that the variable which follows is not part of an expression
but theformal parameterof the function declaration. The dot after the formal parameter
introduces the function body. Let’s look more closely at thesimilarity with programming
languages, sayPascal:

function f( x : int) : int begin f := 3 ∗ x end;
| | | |
λ x . ∗ 3 x

You may be interested to see the same inLisp:

(lambda (x) (∗ 3 x))

4. And on and on... A function which has been written inλ-notation can itself be used in
an expression. For example, the application of the functionfrom above to the value 4
is written as(λx.∗ 3 x) 4. Remember, application is simply juxtaposition; but why the
brackets around the function? They are there to make clear where the definition of the
function ends. If we wroteλx.∗ 3 x 4 then 4 would become part of the function body
and we would get the function which assigns tox the value3 ∗ x ∗ 4 (assuming that∗ is
interpreted as a 3-ary function; otherwise theλ-term is nonsensical, see below.). So again,
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brackets are used for delineating parts of aλ-term, they do not have an intrinsic meaning
of their own.

Although it is not strictly necessary, it will be convenientto introduce abbreviations for
λ-terms. We write them in the same way as we always to in mathematics, employing the
equality symbol. So if we abbreviate our function term toF :

F
def
== λx.∗ 3 x

then we can writeF 4 instead of(λx.∗ 3 x) 4.
With this our description of theλ-calculus as a notational device is almost complete;

there is just one more case to consider. Suppose the body of a function consists of another
function, as here

N
def
== λy.(λx.∗ y x)

If we apply this function to the value 3 then we get back our oldfriend λx.∗ 3 x, in other
words,N is a function, which when applied to a number, returns another function (i.e.,
N 3 behaves likeF ). However, we could also consider it as a function oftwo arguments,
where we get a number back if we supplyN with twonumerical arguments (N 3 4 should
evaluate to 12). Both views are legitimate and perfectly consistent with each other. If we
want to stress the first interpretation we may write the term with brackets as above, if we
want to see it as a function of two arguments then we can leave out the brackets:

λy.λx.∗ y x

or, as we will lazily do sometimes, even elide the second lambda:

λy x.∗ y x

but note that this is really just an abbreviation of the official term.
Likewise, in the application ofN to arguments 3 and 4 we can use brackets to stress

that 3 is to be used first:(N 3) 4 or we can suggest simultaneous application:N 3 4.
Whatever our intuition aboutN , the result will be the same (namely, 12).

5. The official definition. Function formation and function application are all that there is.
They can be mixed freely and used as often as desired or needed, which is another way of
saying thatλ-terms are constructed according to the grammar

M ::= c | x | M M | λx.M

Here the placeholderc represents anyconstantwe might wish to use in aλ-term, such as
numbers 1, 2, 3,... or arithmetic operators+, ∗, etc. A term without constants is called
pure. Similarly, the letterx represents any of infinitely many possible variables.

The grammar is ambiguous; the termλx.x y could be parsed as

λx

app

x y

or as

app

λx

x

y
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(where we use “app” to indicate use of the clause “M M ” in the derivation). With aux-
iliary brackets, the two possible interpretations can be indicated by writingλx.(x y) and
(λx.x) y, respectively. According to our convention from above, only the first interpreta-
tion should be possible. Using additional non-terminals and productions the conventional
interpretation can be enforced:

<term> ::= <atom> | <app> | <fun>

<atom> ::= <head−atom> | ( <app> )
<head−atom> ::= x | c | ( <fun> )

<app> ::= <head−atom> <atom> | <app> <atom>

<fun> ::= λx.<term>

but only a compiler would be interested in so much detail.

6. Reduction.λ-terms on their own would be a bit boring if we didn’t know how to compute
with them as well. There is only one rule of computation, calledreduction (or β-reduction,
as it is known by the aficionados), and it concerns the replacement of a formal parameter
by an actual one. It can only occur if a functional term has been applied to some other term.
Two examples:

(λx.∗ 3 x) 4 −→β ∗ 3 4

(λy.y 5)(λx.∗ 3 x) −→β (λx.∗ 3 x) 5 −→β ∗ 3 5

We see that reduction is nothing other than the textual replacement of a formal parameter
in the body of a function by the actual parameter supplied.

One would expect a term after a number of reductions to reach aform where no further
reductions are possible. Surprisingly, this is not always the case. The following is the
smallest counterexample:

Ω
def
== (λx.x x)(λx.x x)

The termΩ always reduces to itself. If a sequence of reductions has come to an end where
no further reductions are possible, we say that the term has been reduced tonormal form .
As Ω illustrates, not every term has a normal form.

7. Confluence.It may be that aλ-term offers many opportunities for reduction at the same
time. In order for the whole calculus to make sense, it is necessary that the result of a
computation is independent from the order of reduction. We would like to express this
property for all terms, not just for those which have a normalform. This is indeed possible:

Theorem 1 (Church-Rosser) If a termM can be reduced (in several steps) to termsN

andP , then there exists a termQ to which bothN andP can be reduced (in several steps).
As a picture:

M

N P

Q
∗ ∗

∗∗

(The little∗ next to the ar-
rows indicates several in-
stead of just a single reduc-
tion. “Several” can also
mean “none at all”.)
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For obvious graphical reasons, the property expressed in the Theorem of Church and
Rosser is also calledconfluence. We say thatβ-reduction isconfluent. The following is
now an easy consequence:

Corollary 2 Everyλ-term has at most one normal form.

Proof. For the sake of contradiction, assume that there are normal formsN andP to which
a certain termM reduces:

M

N P

∗∗

By the theorem of Church and Rosser there is a termQ to which bothN andP can be
reduced. However,N andP are assumed to be in normal form, so they don’t allow for any
further reductions. The only possible interpretation is thatN = P = Q.

8. Exercises

1. Translate the followingJava expressions intoλ-calculus notation:

(a) sin(x+3)

(b) length(y)+z

(c) public static int quot(double x, double n)
{ return (int)(x/n); }

2. Draw the syntax trees for the followingλ-terms:

(a) λxy.x

(b) λxyz.xyz

(c) (λx.xx)(λx.xx)

3. Reduce to normal form:

(a) (λx. + x 3)4

(b) (λfx.f(fx)) (λy. ∗ y 2) 5

4. Let T be theλ-term λx.xxx. Perform someβ-reductions onTT . What do you
observe?

5. LetS be the termλxyz.(xz)(yz) andK the termλxy.x. ReduceSKK to normal
form. (Hint: This can be messy if you are not careful. Keep theabbreviationsS
andK around as long as you can and replace them with their correspondingλ-terms
only if you need to. It becomes very easy then.)

6. LetS be the termλxyz.(xz)(yz) andK the termλxy.x. ReduceSKK to normal
form. (Hint: This can be messy if you are not careful. Keep theabbreviationsS
andK around as long as you can and replace them with their correspondingλ-terms
only if you need to. It becomes very easy then.)

7. LetZ be theλ-termλzx.x(zzx) and letY beZZ. By performing a fewβ-reductions,
show thatY M will be a fixpoint of M for any termM , i.e., we haveY M =β

M(Y M).

8. Suppose a symbol of theλ-calculus alphabet is always 5mm wide. Write down a
pureλ-term (i.e., without constants) with length less than 20cm having a normal
form with length at least1010

10

light-years. (A light-year is about1013 kilometers.)
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9. Higher-order functions. Theλ-calculus is a purely syntactic device; it does not make any
distinctions between simple entities, such as numbers and more complicated ones, such as
functions of functions. Whatever can be described as aλ-term is available for manipulation
by otherλ-terms.

Let us look at an example. A term for squaring integers is given by

Q
def
== λx.∗ x x

If we want to computex8 then this can be achieved by squaringx three times:x8 =
((x2)2)2. In λ-calculus notation, we would write for the “power-8”-function:

P8

def
== λx.Q (Q (Q x))

We see that taking a number to power 8 amounts to applying the squaring functionQ three
times. It is now a simple step to write out aλ-term which appliesany functionthree times:

T
def
== λf.(λx.f (f (f x)))

(Observe the — unnecessary — brackets around the inner function; I wanted to stress that
T takes as argument a functionf and returns another function with argumentx.) The term
P8 can now be written asT Q, and58 comes out asT Q 5.

There is nothing to stop us from applying the tripling operator T to itself,T T . What
we get is an operator which will triple any function we pass toit three times, so it is in fact
a 27-fold operator, that is,T T f x will compute the result of applyingf 27 times tox.

Operators such asT are calledhigher order because they operate on functions rather
than numbers.

10. Iteration and recursion in the λ-calculus. As we have seen with the termsT andT T ,
a short combination ofλ-terms can express repeated application of a function. How can
we generalise this to get the behaviour of afor-loop, where the number of repetitions is
controlled by a counter? This requires a wholly new idea which we will now develop step
by step.

First of all, we have to use a constant which allows us to distinguish between 0 and pos-
itive numbers. Let us call this constant “zero?”. Its behaviour is like anif-then-else
clause depending on the value of a number:

zero?0 x y −→ x

zero?n x y −→ y (n 6= 0)

In Java, we would write this as

(n==0) ? x : y

We also assume constants “pred” and “succ” for predecessor and successor function on
natural numbers.

Let us now construct a termI (for “Iteration”) which takes as arguments a numbern, a
functionf , and a valuex, and computes then-fold application off to x:

I n f x = f (f (f . . . (f x) . . . ))

If n = 0 thenI 0 f x should simply returnx, without applyingf at all. Here is a first
attempt at definingI:

I = λn f x.zero?n x (I (predn) f (f x))

Here is the rationale: Ifn = 0 then zero?n x M will evaluate tox, no matter whatM is.
If n > 0 then we iteratef (n − 1)-times on the argument(f x); if successful, this will
returnf applied tox n-times.
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There is only one snag; our definition ofI usesI itself in the body (which is why I left
out the “def” from the equality symbol). It follows the usualidea of recursion: “I can do it
n-times if you do it(n− 1)-times for me first...”. In other words, the term as written above
does nothing else but add one further iteration to an assumed(n − 1)-fold iteration.

How can we overcome the circularity? Have a look at the definition again:

I = λn f x.zero?n x (I (predn) f (f x))

Another way of reading this is to say thatI (if it ever can be found) would be a fixpoint of
the term on the right. Let’s make this view more explicit. We change the term on the right
into a function which turns “n − 1-iterators” into “n-iterators”:

S
def
== λM.(λn f x.zero?n x (M (predn) f (f x)))

This definition is no longer circular, soS is a proper term. What we now seek is a termI

which satisfies
I = S I

that is, a term which is afixpoint for S.
Amazingly, such a fixpoint can always be found, in fact, thereare termsY which con-

struct a fixpoint foranytermM , that is, they satisfy

Y M = M (Y M)

Once we have such aY , we have solved our iterator problem because we can setI
def
==

Y S.
We call such aY afixpoint combinator . Here is Turing’s fixpoint combinator:

Y
def
== (λx y.y (x x y))(λx y.y (x x y))

To check thatY M reduces toM (Y M) takes just two reduction steps. It was an exercise
on the last exercise sheet.

Fixpoints are also used to createwhile-loop like behaviour. Consider, for example,
the problem of finding the smallest number for which a given function returns zero. We
implement this as a fixpoint equation as follows:

Z = λf n.zero?(f n) n (Z f (succn))

(“If f(n) yields 0 returnn, else continue the search atn + 1.”) Transform this into a
function in the unknownM :

L
def
== λM.(λf n.zero?(f n) n (M f (succn)))

and the desired root-finder comes out as

Z
def
== Y L

The smallest root of a functionf (if there is one at all) is calculated byY L f 0.

11. The λ-calculus as a model of computation.There are a number of variants of theλ-
calculus which one can consider for a comparison with Turingmachines. For this purpose,
we call a calculusTuring-complete if it allows one to define allcomputablefunctions from
N toN. In order to avoid pathological calculi, we have to require also that calculations in the
calculus can be performed effectively (for example, by a machine). This latter requirement
is no problem for theλ-calculus; the operation ofβ-reduction is well-defined and can be
performed by a computer program. For the other direction, wehave several choices for the
precise version of theλ-calculus we want to consider. As I have developed the calculus in
this handout, the first one should be the following:
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Theorem 3 Theλ-calculus enriched withzero?, pred, succand constants for all numbers
is Turing-complete.

Surprisingly, we can say the same about thepureλ-calculus, without any constants at all.
In order for this to make sense, one has to agree on a representation of natural numbers as
certainλ-terms. There are several possibilities for this, for example the following will do:

0
def
== λf x.x

n
def
== λf x.f (f . . . (f x) . . . ) (n-fold application off to x)

With this representation in mind, the following is true:

Theorem 4 The pureλ-calculus is Turing-complete.

12. Banning bad terms with types.As the previous section showed, there is good use in the
λ-calculus for slightly strange terms without normal form such as

Y
def
== (λx y.y (x x y))(λx y.y (x x y))

However, there is nothing in the grammar which stops us from forming truly awful terms,
such as “sin log”, where the sine function is applied not to a number but to thelogarithm
function. Such terms do not make any sense at all, and any sensible programming language
compiler would reject them as ill-formed. What is missing in the calculus is a notion of
type. The type of a term should tell us what kind of arguments the term would accept and
what kind of result it will produce. For example, the type of the sine function should be
“accepts real numbers and produces real numbers”.

A language for expressing these properties (i.e., types) iseasily defined. We start with
some base types such as “int” for integers and “real” for realnumbers, and then form
function types on top of them. The grammar for this idea is extremely simple (which is
why it is called thesystem of simple types):

τ ::= c | τ → τ

The placeholderc represents all the base types we might wish to include. Apartfrom this,
all one can do is form a function type from given types.

With such a system, the type of the sine function can be denoted by “real → real” and
it is obvious that it cannot accept the logarithm function asan argument because the latter
also has type “real → real” and not “real” as required.

On the basis of a type system such as the simple one exhibited here, we can formulate
restrictions on what kind of terms are valid (orwell-typed). We do so by employing an
inductive definition:

Definition 5 (Well-typed λ-terms)

Base case.For every typeσ and every variablex, the termx:σ is well-typed and has type
σ.

Function formation. For every termM of typeτ , every variablex, and every typeσ, the
termλx:σ.M is well-typed and has typeσ → τ .

Application. If M is well-typed of typeσ → τ andN is well-typed of typeσ thenM N is
well-typed and has typeτ .

(Convention: Within a single term we will not use the same variable name with two different
type annotations.)

Some examples:λx:σ.x:σ is well-typed of typeσ → σ no matter whatσ stands for. The
term λx:σ.λy:τ.x:σ is well-typed of typeσ → (τ → σ). On the other hand, the term
sin log is not well-typed. Furthermore, any term of the shapeM M cannot be annotated
with simple types (Exercise 4).
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13. Calculating simple types. It is quite easy to find out whether a term can be typed or
not by following the steps in which the term was constructed.What we do is to annotate
subterms with type expressions which still containtype variablesA,B,C, . . . and which
we refine as we go along. Consider, for example, the termλf x.f x: We give x the
typeA (a type variable) and givef the typeB. Because the subtermf x needs to be well
typed according to the application rule in Definition 3, we refine B to the shapeA → C,
with C another type variable. The applicationf x is then possible and gets typeC. The
abstractionλx.f x is always possible, and because of our assumption aboutx, will have
typeA → C. Likewise, for the abstractionλf.λx.f x we remember thatf should have
type A → C. According to the function formation rule, then, the complete term should
have type(A → C) → (A → C). At this stage the type variables can be instantiated
with something more concrete (such as “int” or “real”) but weonly wanted to establish
typability and so we can stop here.

Further refinement is required if we extend the term to(λf x.f x) (λy.y) 3. Taken on
its own, the subtermλy.y will have typeD → D, with D a fresh type variable. On the
other hand, we have type(A → C) → (A → C) for λf x.f x. In order for the application
(λf x.f x) (λy.y) to make sense, we must refineA to D and alsoC to D. The resulting
type isD → D. Finally, 3 should have type “int” and in order for the last application to
become well typed we refineD to “int”. The complete term then gets type “int” as well. If
we spell out the types in the term we get:

(λf :int → int λx:int.f x) (λy:int.y) 3

14. Regaining Turing completeness.Well-typedλ-terms are always well-behaved with re-
spect to reduction:

Theorem 6 Every well-typedλ-term has a normal form.

Perhaps we have gone a bit too far now because it follows that the fixpoint combinatorY
is not typable and hence does not belong to thesimply typed λ-calculus. Because of its
absence you can probably believe that the simply typedλ-calculus isnot Turing-complete.
In order to restore completeness, one has to explicitly enrich the calculus with fixpoint
combinatorconstants. One such system is known under the namePCF (“programming
computable functions”), introduced by Scott and Plotkin. It consists ofλ-terms for a simple
type system with base type “int”, and the following constants:

Numerals. A constantn of type int for every natural numbern.

Conditional. Constants zero?σ of typeint → (σ → (σ → σ)) for every typeσ.

Successor function.Constants succ and pred of typeint → int.

Fixpoint combinators. ConstantsYσ of type(σ → σ) → σ for every typeσ.

We have:

Theorem 7 PCF is Turing-complete.

With PCF, then, we have a language which is expressive and well-typed at the same time.
In fact, conceptually (and, would you believe it, historically), there is only a small step
from PCF to the functional programming languageML.

15. Exercises

1. Leavingf as an unspecified variable, try to evaluate the termT T f x from Section 1
to normal form.

2. Find type annotations which show thatT is well-typed.
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3. Show thatI 3 (Section 10) evaluates toT (as one would hope).

4. Argue that no term of shapeM M (application of a term to itself) can be typed with
simple types.

16. Learn more...

1. G. Michaelson.An Introduction to Functional Programming through Lambda Cal-
culus. Addison-Wesley, 1989.

This is a nice gentle introduction to theλ-calculus, leading towards func-
tional programming. The early chapters are very accessible.

2. N. D. Jones.Computability and Complexity: From a Programming Perspective. MIT
Press, 1997.

This is one of the very few books which subscribe to the view that unde-
cidability can be explained without Turing machines. However, the un-
derlying formalism is that of functional programming with which you’d
better be familiar.

3. J. R. Hindley and J. P. Seldin.Introduction to Combinators andλ-Calculus. Cam-
bridge University Press, 1986.

A formal introduction to the Lambda Calculus. Fairly mathematical.

4. H. P. Barendregt.The Lambda Calculus: Its Syntax and Semantics. North-Holland,
revised edition, 1984.

The standard reference on the subject.

5. D. S. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoretical
Computer Science, 121:411–440, 1993. Reprint of a manuscript written in 1969.

The typed lambda calculus with the constants of LCF/PCF is proposed as
a standard description language for computable functions.
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