Digital Logic Design

Week 4
Combinational Design

Week3

Outline

Combinational Circuits
Analysis Procedure

Design Procedure

Adders and multipliers
Comparators

Decoders and Encoders
Multiplexers

HDL For Combinational Circuits

Week3

Combinational Circuits

 What is a combinational circuit?

« What is the difference between
combinational and sequential circuits

» Implementation MSI and standard cells in
ASIC

Week3 3

Analysis Procedure

1. Label all gate outputs that are a function of
input variables with arbitrary symbols. Find the
Boolean function of these gates

2. Label all the gates that are functions of input
variables and previously labeled gates with
arbitrary symbols. Find the Boolean function of
these gates.

3. Repeat step 3 until the outputs of all the gates
are labeled

4. By repeated substitution of previously defined
functions, obtain the output Boolean functions
in terms of input variables (or truth table)

Week3 4

Analysis Procedure

s 1
LD

. o

L

Week3 5

Design Procedure

. From the specification of the circuit. Determine
the required number of input and output and
assign a symbol to each.

. Derive the truth that defines the required
relationship between inputs and outputs.

. Obtain the simplified Boolean expressions for
each output as a function of the input variables.

. Draw the logic diagram and verify the
correctness of the design.

Example: BCD to Excess-3 Code Converter.

Week3 6

Binary Adder-Subtractor

« Half adder: S=x'y+xy’, C=xy

D) >—

i

Week3

Full Adder

- - - N o o o o
- - o o - - o o <
- - - o - o o o (2]

- o - o - o - o N

N o o N o N - o o

Week3

y y
0 o |11 10 Z 0o o1 |1 10
X
1 1 1
1 1 X 1 |1 |1
4 z
c S=XZ+XY
Week3 9
Full Adder
A

Week3 10

Binary Adder

A, B, A, B, A, B, A, B,
- | |
C
T “T
C, c, c, c, C,

Week3 11

Carry Propagation

* The value of s; depends on the current A,and Bi
and C,. C, depends on A,_,, and B, 4, and so on.

« That means the carry propagates across all the
digits in the two numbers to be added.

« Carry propagation time is a limiting factor on the
speed of addition (basic operation in virtually
everything).

* S/s will not be ready at the same time
+ We need to speed-up addition

Week3 12

Carry Propagation

Pi=A, @ B, G=AB; G is called the carry Generator
Gi=1if A, and B;=1
S=P, @ C, C..,=G+P,C, Carry if either G, or
onof A Band C
P;
4 —[ip P> S
C|+1
Gi
Ci
Week3 13

Carry Lookahead

* G, is called the carry Generator, and P; is
the carry propagate.

« We can calculate the carry at every stage
by recursively substituting C,
C,=input carry
C1=Go*+PCq
C,=G,+P,C, = G, + P,G, + P,P,C,
C,=G,+P,C, = G, + P,G, + P,P,G, + P,P,P,C,
Circuit in Figure 4-11

Week3 14

=)
|) C;
G2
=[i
(&)
Py |
(e
Foy &
Gy
Co
Fig. 4-11 Logic Diagram of Carry Lookahead Generator
Week3 15
C, o
By ——y p
A3 ’D ! Py)
Oy i 5
D
Fis _l’j j p
42 ! Py .
G $a
Look ahead
By —— p, Eenerator
Ay T ! Py .
e
By —— "
Ay D |70 Py .
] — 8y
L
(-Ir 7I_ (.l\
Fig, 4-12 4-Bit Adder with Carry Lookahead
Week3 16

Adder/Subtractor

B
|)

1]

! ! ! |

s, S, S, S,

F

Week3 17

Overflow

* When adding two n-bits number, the
answer has a maximum of n+1 bits.

* |f the numbers are represented in the
computer by n bits, the n+1st bit is an
overflow.

» Usually the overflow is detected and
reported to the user.

Week3 18

+60 0 0111100
+90 0 1011010

1 0010110

J

-60 1 1000100
+90 0 1011010

0 0011110

RV

Overflow

-60 1 1000100
-90 1 0100110

0 1101010

J

1

An overflow is detected if the carry
into the sign bit and the carry out of
the sign bit is not the same

Week3 19
Decimal Adder

Binary Sum BCD Sum Decimal

K z8 z4 72 Z1 K z8 74 72 Z1

0O 0 0 0 O 0O 0 0 0 O 0

o 0 0 0 1 0o 0 0 0 1 1

0O 0 0 1 O 0O 0 0 1 O 2

o o0 o0 1 1 o o0 o0 1 1 3

00 1 0 O 0 0 1 0 O 4

00 1 0 1 0 0 1 0 1 5

00 1 1 0 00 1 1 0 6

00 1 1 1 o0 1 1 1 7

01 0 0 O 01 0 0 O 8

01 0 0 1 01 0 0 1 9

01 0 1 0 1.0 0 0 O 10

o 1 0 1 1 1 0 0 0 1 11

01 1 0 O 1.0 0 1 0 12

01 1 0 1 1.0 0 1 1 13

01 1 1 0 1.0 1 0 0 14

01 1 1 1 1.0 1 0 1 15

1.0 0 0 0 1.0 1 1 0 16

1.0 0 0 1 1.0 1 1 1 17

1.0 0 1 0 110 0 0 18

1.0 0 1 1 11 0 0 1 19
Week3 20

10

Decimal Adder

The output of the BCD could be anuthing between 0
and 19 (9+9+carry).
From the truth table, it is clear that there is a carry
(BCD carry) if any one of the following occurs

1. K=11 (if the number is greater than 16).

2. Zg=1and Z,=1

3. 1fZg=1and Z,=1

If there is a carry, we must add 6 to the binary number
to get the BCD code.

That leads to the following circuit

Week3 21

Decimal Adder
i L

4-bit binary adder

z, 2z, Z, Z,
Cout 4@‘—@:97 % \—

L
o i

0 4-bit binary adder

LD

Week3 22

g

11

Binary Multiplier

 First, consider 2 bit multiplier

Ao
B, B,
A A
AOB1 AOBO A1
AB, AB,
c, C, C, G,
Week3 23

Ao T8 1B 1B | B
B T B 1B | B
1 1 i

Addend Augend

4-bit adder

Sum and output carry

By | B, | B, | By

P00 | |||

L Y
Addend Augend ‘

4-bit adder

Sum and output carry

N

[Cs C, Cy C, C, Cy

Fig. 4-16 4-Bit by 3-Bit Binary Multiplier 24

Magnitude Comparator

Assume that we want to design a magnitude
comparator for 2 4-bit numbers.

Direct implementation of this requires a truth
table with 28=256 entries.

It is easier to understand the algorithm by which
we compare two numbers, that leads to a much
less complicated design process.

Assume the 2 numbers are represented as
A;AA A, and B;B,B,B,
The algorithm works as follows

Week3 25

Magnitude Comparator

The two numbers are equal iff all the bits in the 2
numbers are equal. That leads to a design of
4EX-OR followed by inverter (actually ex-nor)
and an or gate.

For A to be greater than B, we must have A, > B,
and A=B; j>i.
So, we start at digit 3, compare A; and B;, either

one is greater or they are equal we move to A,
and B, and so on.

If we define x; to be the ex-nor of A, and B; i.e. x;
is 1 if A=B;

Week3 26

13

Magnitude Comparator

* In this case,

* (A=B)=x3XX1Xg

* (A>B)=A3B'3+Xx3AB’; + X3XoA1B 1 +X3xoX1AB
* (A>B) replace the prime from B to A.
 Circuit is shown in Figure 4-17

Week3 27

e O |
TO—n

=g

H)= =<

Ay
{ X
By .:_D
Ag ' D _
o _D (A= R)
ﬁ:}—u =B)

Fig. 4-17 4-Bit Magnitude Comparator
Week3

:

28

14

Decoders

« A decoder is a combinational circuit that
converts binary information from n inputs
to a maximum of 2" outputs.

* A decode is called n-to-m decoder, where
m <20
» Consider 3-8 decoder, truth table with 3

inputs x,y,z and 8 outputs D, .. D, the
circuit is shown in Figure 4-18

Week3 29
X Y|F, F Fp Fy
0 0/1 0 0 O o
01/0 1 0 0 4—D_ Fo=XY
1000 0 1 0
1110 0 0 1 !
[D)—F=xv
+ From truth table, circuit for 2x4 decoder .;_D— F,=XY'
is:
» Note: Each output is a 2-variable D_ F,=XY
minterm (X'Y', X'Y, XY"' or XY)
— Fo X Y
X— 2-to-4 |—~rn
v— Decoder [— P
— F3
Week3 30

15

Decoders

44—|D_Fo=x‘y'z
X v z|Fo Fi Fp Fa Fu Fs Fg Fy D_F1=X'y'2
000/1 00000 O0 O
0010 1 0 0 0 0 0 O "—D_fo'yz'
010/001000 00
0110 0 0 1 00 0 0 D_F3=X'YZ
100/0 0001000
1010 0 0 0 0 1 0 0 ._D—F4=xy'z'
11000000010
1110 00 00 0 0 1 D—F5=xy'z
o—D—F6=xyz'
—— FO
— Hg |) Fr=xyz
3to-8 [7
Y — —— F3
,__| Decoder | __
— 5
— F7
Week3 31
Decoders

+ Some decoders are implemented using NAND
gates, in this case it will be more economical to
produce the output in their complemented form.

e 2-4 decoder
* Circuit 4-19

* When Eis 1, non

Of the outputs |1 0

* Decoder may be
Activated With E=0 or 1

N

Week3

_\O_Loxw

-~ | O
o

= A a O

AAOAAU

_\O___\U

O = A

32

16

Decoders

D,

0
0
D, 0
0

3

D;

JUUY

LY

(a) Logic diagram

Week3

0
0

Fig. 4-19 2-to-4-Line Decoder with Enable Input

B | Dy Dy Dy D

X 1 1 1 1
0 0 1 1 !
1 I 0 1 1
0 1 1 0 1
1 1 1 1 0

(b) Truth table

33

Decoders

» A decoder with an Enable input can function as

a demultiplexer

» A demultiplexer is a circuits that receives data
from a single line, and direct it to a possible of 2"
lines (example sharing a communication line).

» The decoder in the previous slide can function
as a demultiplexer if we consider E to be the
data and A, and B to be the input selection.

+ Verify this by assuming selection 10 and
determine the output (always equal to E).

Week3

34

Decoders

* Decoders with enable

can be connected X D, to D

3 8 0 7

together to form a Y decoder |4
larger decoder L E
e |

—13x8 Dy to Dyg

L decoder 7/—
I E

Week3 35

Decoders

* Any n-variable logic function can be implemented
using a single n-to-2" decoder to generate the
minterms

— OR gate forms the sum.

— The output lines of the decoder corresponding to the
minterms of the function are used as inputs to the or
gate.

* Any combinational circuit with n inputs and m
outputs can be implemented with an n-to-2" decoder
with m OR gates.

 Suitable when a circuit has many outputs, and each
output function is expressed with few minterms.

Week3 36

18

Decoders

+ Verify this by stating what ~— —

» Decoders can be used to
implement logic functions. T S
« Consider the function X =
S(x,y,z)=2(0,1,3) and .
C(x,y,z)=2(4,2) y L
c

N o a0~ W N =~ O

will be the output if the z
input is any of the
different combination in
the truth table
Week3 37

Standard MSI Binary Decode[,,,,,,,, s Examplq
74138 (3-to-8 [0 [[[[[6 Bl

e suwn

]

& f (15) A 1%
- 1o
] c GlA GrE (1] Lol
| ¥ T T
13
P2 DEOROEORORGECND)
Pl | 7 € ©GIa GIF o ¥ GND
| (LEU Select Enable Out
s 2o ld> "
1 (Il
Ll i H Inputs Quiputs
C—DO'LCD 1 ‘(1 Enable Select
T_D—_” GIGI*|c B Alvo ¥i ¥2 ¥3 ¥4 ¥5 V6)
HL|L L L|L HHHHHHH
9 e HL|L L H/HLHHHHHH
™ HL|LHL|HHLHHHEHUHH
O H L|{L HH|H HHLMHHHH
= N HL|H L L|{H HHHLTHHH
H L|H L H/HHHHHTLHH
HL|HHL|[HHHHBHHLH
@) HL|HHH|/HHHHHMHHL
- - - * Hlx x x{H HHHHHHH
(a) Logic circuit. L x|x x x|H HH HHHHH
(b) Package pin configuration. G2*=GI1A+G2B
(c) Function table.)

Week3 38

Encoders

* Encoders perform the reverse operation of a

decoder.

* An encoder has up to 2" input lines, and n output

lines.

* The encoder generates the binary code

corresponding to the active input line.

« Truth table with 8 variables and three outputs,

only need 1 in every row
* x=D;+D3+Dgs+D7; y = D,+D;3+Dg+D5;
Z=D,+Ds+Ds+D,

Week3

39

E n COd e rS Inputs Outputs
lola Iz lg sl Iz Y,y Y
1 0 0 0 0 0O 0 O 00O
01 0 0 0 O 0 O 0 01
0 0 1 0 0O O O O 010
0 0 01 0 0 0 O 011
0O 0 0 01 0O O O 1 00
0 00O O 0 1 0 O 101
0 0 0 0 OO 1 O 110
0 0 00O O 0O 0 1 111

l, — -

1 Vo= lgtls+ 1+ 1,
\ -

Is D_Y1—|2+|3+|6+|7

ls
I, D_YO=|1+|3+|5+|7

Week3

40

20

Priority Encoders

Priority encoders are encoders with a certain
priority scheme.

If more than one input is active, the one with the
higher priority is encoded.

The following figure shows the truth table for a
priority encoder.

Note than there is a valid bit. The valid bit
indicates if the output is valid or not, if non of the
input is active, the V bit is 0, means nothing is
active

Week3 41

Priority Encoders

What if more than one input line has a value of 1?
Ignore “lower priority” inputs.
Idle indicates that no inputis a 1.

Note that polarity of Idle is opposite from Table 4-8 in Mano
Inputs Outputs

lo Iy 1131415 16 17 yzylyoldle

0 0 0 00 000 O X x.x 1
1 0 00O O 0 O 0000
X1 0 0 0 0 0 O 0010
X X 1 0 0 0 0 O 0100
X X X1 0 0 0 0 0110
X X X X 1 0 0 0 1000
X X X X X 1 0 0 1010
X X X X X X 1 0 1100
X X X X X X X 1 1110
Week3 42

21

Priority encoders

» Assign priorities to the inputs

* When more than one input are asserted, the output generates the

code of the input with the highest priority

* Priority Encoder :
H7=17
H6=16.17’
H5=I15.16".17'
H4=14.15.16".17
H3=13.14".15".16.17’

H2=12.13".14".15".16".17’
H1=11. 12".13".14’.15.16".17’

(Highest Prio

TR Priority

HO=10.11". 12’.13".14".15.16’.17" 11 —
IDLE=10".11". 12".13".14’.15.16'. |5’ —

« Encoder
YO=11+I3+I5+17
Y1=12+I3+16+17
Y2=14+I5+16+17

" Priority CircifC%€r Binary encoder

—1 10 HO 10
— 11 H1 11
— 12 H2 12 YO =
—1 13 H3 13 Yl
— 14 H4 14 Y2
— 15 H5 15
—1 16 H6 16
— 17 H7 17
IDL

Week3 43
Priority Encoders
Inputs Outputs D
2
D, D, D, Dy X y z
0000 X X 0 X | 1 1 1
10 0O 0o 0 1
1111 |o
X1 00 o 1 1
XX 10 1 0 1 1 1 1 -
DO
XX X1 1 0 1 1 1 1
X=D,*D,4 D,
Y=D,+D,D’,
V=D,+D,+D,+D,
Week3 44

22

Priority Encoders

* Encoder identifies the requester and encodes the value
» Controller accepts digital inputs.

Alarm Contoller 7

Signal Response
Machine 1 F———
Machine 2 Machine

; Code
Encode Controller
Machine n :7
Week3 45

» Decoder allows for generation of a single binary
output from an input binary code
— For an n-input binary decoder there are 2" outputs

* Decoders are widely used in storage devices
(e.g. memories)
— We will discuss these in a few weeks

* Encoders all for data compression

 Priority encoders rank inputs and encode the
highest priority input

Week3 46

23

Multiplexers

« A multiplexer is a combinational circuit that
accepts binary information from one of many
input lines and directs it to the output line.

* Which input to accept information from is
selected by the selection lines.

» Usually there are n selection lines and 2" input
lines.

* A multiplexer can be combined with a common
selection to select multiple bit selection, and
Enable to control the operation. Figure 4-26
shows a quadruple 2-1 line multiplexer.

Week3

47

Multiplexers

Figure 4-25

Week3

48

24

"ril

1

(b) Function table

A

S0

J U U tﬁ

(a) Logic diagram

Fig. 4-25 4-to-1-Line Multiplexer

Week3 49

Ay f N

—/ — Yy
4 —

DO >
As 1

—) D_r_.
=D

Function table
B, E S| Output ¥
'—:D— 1 X allos
0 0 select A
B D 0 1) sclect 8
By { D
5
(select)
;:';Do—
(enable)
Fig. 4-26 Quadruple 2-to-1-Line Multiplexer
Week3 50

25

Function Implementation

» We can consider the multiplexer to be a
decoder that include the OR gates within.

* The OR minterms are generated by the
function associated with the selection
inputs.

» The rule to implement a function is as
follows:

Week3

51

Function Implementation

 Assume that we have n variables

2n-1-to-1 multiplexer.
* The selection lines chooses one of 2™ inputs.

* These inputs corresponds to the the truth table
(2") entries taken 2 entries at a time.

« Assume the nt" variable is Z.
* These 2™ entries eachis Z, Z’, 0, or 1

* According to the entry number, the
corresponding input is one of these 4 values. 4-
27 and 4-28

Week3

Choose n-1 of them to be the selection lines of a

52

26

4 x 1 MUX
y —— 8,
v —1
X y z F
00 00
O T : ——o F
01 0|1 ——
0;1 1 jo T ¢ :
1 0 0 0 Beh 0—12
I T I -
too [:)
1111 B
(a) Truth table (b) Multiplexer implementation
Fig. 4-27 Implementing a Boolean Function with a Multiplexer
Week3 53
8 x 1 MUX
A B C D| F
0o 00 0|0 £ So
0 0 o 1|1 F=D B S
0 01 0[]0 B A S
0 0o 1 1|1 =l
0 1 0 0 1
=pD' D + 0
R i .
011 0[0 E—
0 1 1 1|0 F=0 {>° 2
1 0 0 0 0 _ 0 + 3
1.0 0 1,0 s I_4
1 0 1 0|0
- ER e g
I 1 0 0o 1 1 + 6
110 1)1 F=1 L,
1 1 1 0| oo
A | i
Fig. 4-28 Implementing a 4-Input Function with a Multiplexer
Week3 54

27

Three States gates

th tate buff i i
ree state buffer Y —Highz if C=0
Control Input C

Week3 55

» The figure shows a { Y = A if C=1
Y =

Multiplexers with three-state gates

o j#\(
H@T : —1]

Select E—

w N =~ O

Enable _

Week3 56

28

HDL for Combinational Circuits

* A module in Verilog can be described in
any one of the following modeling
techniques

— Gate-level modeling using instantiation of
primitive gates and user-defined modules.

— Dataflow modeling using continuous
assignment statements with assign

— Behavioral modeling using procedural
assignment statements with always

Week3 57

Verilog (gate-level)

* |In gate level we have the following
primitive gates (and, nand, or, nor xor,
xnor, not, buf)

» The system assigns four-valued logic to
every gate (0,1,z,x).

» The truth tables for the 4 most used gates
is shown in the next slide

Week3 58

29

Verilog

and 0 1 x z Or 01xz
0 0000 0 11 xx
1 01xx 1 1111
X 0 x x x X x 1 x X
z 0 x xx z X 1 Xxx

not Input output

xor 0 1xz 0 1
0 0100 1 0
1 10 xx X X
X X XXX z X

z X X X X
Week3

59

Verilog 2-4 line decoder

//gate-level description of a 2-4 line decoder
module decoder_gl1(A,B,E,D);
input A,B,E;
output [0:3]D;
wireAnot, Bnot, Enot;
not
nl1(Anot,A),
n2(Bnot,B),
n3(Enot,E);
nand
n4(D[0],Anot,Bnot,Enot),
n4(D[1].Anot,B,Enot),
n4(D[2].A,Bnot,Enot),
n4(D[3].A,B,Enot);
endmodule

Week3

60

30

Three-state Gates

- 5 i

o bufif bufif1(OUT,A,control); bufifd
notifO(Y,B,enable);
j% . [i notifo
not
ONeek3 61
Three State Gates
A

N

Select

out
module muxtri(A,B,select,OUT);

input A,B,select
output OUT;

ri OUT;
bufif1(OUT,A,select);
bufifO(OUT,B,select);

endmodule

Week3

62

31

Dataflow Modeling

//Dataflow modeling of a 2-4 line decoder
module decoder_df (A,B,E,D);

input A,B,E;
output [0:3] D;
assign D[O]=~(-A & ~B & -E),
D[1]=~(-A & B & ~E),
D[2]=~(A & ~B & ~E),
D[3]=~(A & B & ~E);
endmodule

Week3

63

Dataflow Modeling

//Dataflow modeling of a 4-bit adder

module binary_adder (A,B,C_in,SUM,C_OUT);
input [3:0]A,B;

input C_in;

output [3:0] SUM,;

output C_out;

assign {C_out,SUM} = A+B;

endmodule

Week3

64

32

Dataflow Modeling

//Dataflow Modeling of a 4-bit
comparator

module magcomp (A,B,ALSB,AGTB,AEQB);
input [3:0] A,B;
output ALTB, AGTB,AEQB;
assign ALTB = (A < B),
AGTB = (A>B),
AEQB = (A==B);
endmodule

Week3

65

Dataflow Modeling

//Dataflow model for a 2-to-1 mux
module mux2x1 df(A,B,select,0UT);

input A,B,select;

output OUT;

assign OUT= select? A : B;
endmodule

Week3

66

33

behavioral description

//Behavioral description of a 2-1 line MUX
module mux2_1 (A,B,select,OUT);

input A,B,select;

output OUT;

reg OUT;

always @ (select or A or B)
if (select ==1) OUT = A;
else OUT=b;

endmodule

Week3 67

Simulation (Test Bench)

A test bench is a program for applying
simulation to an HDL design.

« initial statements are executed at time 0
 always statements are executed always
 test module has no input or outputs

« The signals that are applied to the design
module are declared as reg.

« The output of the design modules are
declared as wire.

Week3 68

34

4-to-1 MUX

 Description of a 4-to-1 MUX using conditional

* operators:
module mux4to1 (w0, w1, w2, w3, S, f);

input wo, w1, w2, w3;

input [1:0] S;

output f;

assign f=S[1] ? (S[0] ? w3 : w2) : (S[0] ? w1 : wO);
endmodule

Week3 69
module mux4to1 (W, S, f);
input [0:3] W;
input [1:0] S;
output f;
reg f;
always @(*)
if (S==0)
f=W[0];
elseif (S==1)
f=W[1J;
elseif (S==2)
f=W[2];
elseif (S ==3)
f=W[3];
endmodule
Week3 70

35

[1 Description of a 4-to-1 MUX using a case statement:
module mux4to1 (W, S, f);

input [0:3] W,
input [1:0] S;
output f;
reg f;
always @(*)
case (S)
0: f = W[O];
1: f=W[1];
2: f=WI2];
3: f=W[3];
endcase
endmodule

Week3

71

0 Verilog description of a priority encoder:
module priority (W, Y, z);

input [3:0] W;
output [1:0]Y;
output z;
reg [1:0]Y;
reg z;
always @(*)
begin
z=1;
casex (W)
4'b1xxx: Y = 3;
4b01xx: Y = 2;
4’b001x: Y = 1;
4’b0001:Y = 0;
default: begin
z=0;
Y = 2’bxx;
end
endcase
end
endmodule Week3

72

36

[1 Verilog description of a 16-to-1 MUX constructed as a tree of
4-to-1 decoders:
module mux16to1 (W, S, f, M);
input [0:15] W;
input [3:0] S;
output f;
output [3:0] M;
wire [0:3] M;
mux4to1 Mux1 (W[0:3], S[1:0], M[0]);
mux4to1 Mux2 (W[4:7], S[1:0], M[1]);
mux4to1 Mux3 (W[8:11], S[1:0], M[2]);
mux4to1 Mux4 (W[12:15], S[1:0], M[3]);
mux4to1 Mux5 (M[0:3], S[3:2], f);
endmodule

Week3

73

37

