
1

Week3 1

Digital Logic Design

Week 3
Gate-Level Minimization

Week3 2

Outline

• The Map Method
• 2,3,4 variable maps
• 5 and 6 variable maps (very briefly)
• Product of sums simplification
• Don’t Care conditions
• NAND and NOR implementation
• Other 2-level implementation
• Hardware Description language (HDL)

2

Week3 3

The Map Method
• After constructing the map. We mark the

squares whose minterms.
• Any two adjacent squares in the map differ by

only one variable, primes in one square and
unprimed in the other.

• The sum of the elements in these 2 squares, can
be simplified to an and gates that does not
contain that literal.

• The more adjacent squares we combine them
together, the simple the term will be.

Week3 4

2-variable map

m3m21

m1m00

10Y
X

3

Week3 5

3-variable map

xyz’
m6

xyz
m7

xy’z
m5

xy’z’
m4

x’yz’
m2

x’yz
m3

x’y’z
m1

x’y’z’
m0

x

yz
00 01 11 10

y

Z

Week3 6

3-variable map

11

111
x

yz
00 01 11 10

y

Z

F=X’Z+X’Y+XY’Z+YZ

F=Z+X’Y

X

4

Week3 7

4-variable map

wx’yz’
m10

wx’yz
m11

wx’y’z
m9

wx’y’z’
m8

wxyz’
m14

wxyz’
m15

wxy’z
m13

wxy’z’
m12

w’xyz’
m6

w’xyz
m7

w’xy’z
m5

w’xy’z’
m4

w’x’yz’
m2

w’x’yz
m3

w’x’y’z
m1

w’x’y’z’
m0

wx

yz
00 01 11 10

00

01

11

10

Y

W

X

Z

Week3 8

4-variable map

11

111

111

111
wx

yz
00 01 11 10

00

01

11

10

Y

W

X

Z

5

Week3 9

5-Variable Map

• Mention an example for 5 and 6 very
briefly,

• Too complicated

Week3 10

Prime Implicants

• prime Implicant: is a product term
obtained by combining together the
maximum possible number of adjacent
squares in the map.

• Essential prime implicant: if a minterm in
the map is covered by only one prime
implicant, this prime implicant is called an
essential prime implicant.

6

Week3 11

Prime Implicant
• The procedure of finding the simplified

expression from the map is as follows:
1. First, determine all the essential prime

implicants.
2. The simplified expression is obtained by

combining all the essential prime implicants
3. After that add other prime implicants that may

be needed to cover any remaining minterms
that was not covered by essential prime
implicants.

Week3 12

Example

1111

11

11

111
wx

yz
00 01 11 10

00

01

11

10

Y

W

X

Z

F=Σ(0,2,3,5,7,8,9,10,11,13,15)

7

Week3 13

Prime Implicant
• In the previous map, there are 2 essential prime

implicant (B’D’ the only way to cover m0, and BD the only
way to cover m9).

• Add other prime implicant to cover minterms m3, m9, and
m11.

• Minterm m3 can be covered by either CD or B’C.
minterm m9 can be covered by either AD or AB’. While
minterm m11 is covered by any one of the 4 prime
implicant.

• There are 4 possible way to describe this function, all of
them include both BD and B’D’ and we can add
(CD+AD), (CD+AB’), B’C+AD), or (B’C+AB’).

Week3 14

Product of Sum Simplification

• F=A+DB+C’A
• Using maxterm
• F=(A+D)(A+B)
• F=A+AB+DA+DB
• O.K.

8

Week3 15

1111

1111

1100

0000
AB

yz
00 01 11 10

00

01

11

10

A

D

C

B

Week3 16

Don’t Care Conditions

• Used as 1 or zero to simplify the design

9

Week3 17

NAD and NOR Implementation

• Universal gate
1

Week3 18

NAND Gate

2 graphic symbols for NAND gate

AND-invert Invert-OR

10

Week3 19

2-Level Implementation

• Start with sum of product F=AB+CD

Week3 20

NAND Implementation

• Express the function in sum of products
• Replace every AND by a NAND
• Replace the OR by Invert-OR
• If a single element is an input to the OR

invert it.
• Change invert-OR to AND-invert
• Example on 3 variables

11

Week3 21

Multilevel NAND Circuits

• Convert all AND gates to NAND gates with
AND-invert symbols

• Convert all OR gates to NAND gates with
invert-OR symbols

• Check all the bubbles in the diagram, for
every bubble that is not compensated by
another bubble on the same line, add an
inverter (or compliment the input literal)

Week3 22

NOR Implementation

12

Week3 23

Wired Logic

• Wired AND in open collector TTL
• Wired-OR in ECL gates

Wired-AND in TTL

Week3 24

AND-OR-INVERT AOI
• In CMOS, and in most other logic families, the

simplest gates are inverters, then NAND and
NOR gates.

• It is typically not possible to design a
noninverting gate with less transistors than an
inverting gate.

• CMOS circuits can perfrom two level of logic
with just a single level of transistors. (AOI gate).

• The speed an other electrical characteristics of a
CMOS AOI or OAI gate is quite comparable to
those of a single CMOS NAND or NOR.

13

Week3 25

AOI Gates

• If you implement the complement of the
function in sum of products it results in
AOI circuit

Week3 26

Other 2-level Implementation
• Consider the function

F=x’y’z’+zyz’
• Take the complement

F’=x’y+xy’+z
• You can implement it as

AOI using F’
• Change it to NAND-AND

by moving the bubble
from the output of the OR
to its inputs (and
changing it to AND)
NAND-AND
implementation

1000

0001

Z

Y

14

Week3 27

Other 2-level Implementation

• Using product of sums
• F=z’(x+y’)(x’+y), OR we can say
• F’=[(x’+y’+z)(x+y+z)]
• We can implement the above equation

using OR and NAND (OR-NAND
implementation).

• Then we can move the bubble of the
NAND to its inputs and changing it to OR
(NOR-OR implementation)

Week3 28

EX-OR

• x⊕y=x’y+y’x

x

y

15

Week3 29

• 3 and 4 inout EX-OR Parity

Week3 30

HDL

• Can be used to represent logic diagram,
Boolean expressions, and finite state
machine representation.

• Used to document digital systems
• Used in simulation and synthesis
• 2 main languages, Verilog, and VHDL

16

Week3 31

Verilog

• C-like syntax
• Case sensitive, // for comments
module smpl_circuit(A,B,C,x,y);

input A,B,C;
output x,y;
wire e;
and g1(e,A,B);
not g2(y,c);
or g3(x,e,y);

endmodule

Week3 32

Verilog

• We can introduce delay
module smpl_circuit(A,B,C,x,y);

input A,B,C;
output x,y;
wire e;
and #(30) g1(e,A,B);
not #(20) g2(y,c);
or #(10) g3(x,e,y);

endmodule

17

Week3 33

Verilog
// Behavioral Model of a Nand gate

// By Dan Hyde, August 9, 1995

module NAND(in1, in2, out);
input in1, in2;

output out;

// continuous assign statement
assign out = ~(in1 & in2);

endmodule

• The continuous assignment statement is used to
model combinational circuits where the
outputs change when one wiggles the input.

Week3 34

Verilog
module AND(in1, in2, out);
// Structural model of AND gate from two NANDS
input in1, in2;
output out;
wire w1;
// two instantiations of the module NAND
NAND NAND1(in1, in2, w1);
NAND NAND2(w1, w1, out);
endmodule

18

Week3 35

Testing
module test_AND;
// High level module to test the two other modules
reg a, b;
wire x,y;
Circuit_with_delay cwd(A,B,C,x,y);
initial

begin // Test data
A=1’b0; B=1’b0; C=1’b0;
#100 A=1’b1; B=1’b1; C=1’b1;
#100 $finish;
end

endmodule
Module circuit_with_delay(A,B,C,x,y);

input A,B,C;
output x,y;
wire e;
and #(30) g1(e,A,B);
not #(20) g2(y,c);
or #(10) g3(x,e,y);

endmodule

Week3 36

User Defined Primitives
//User defined primitive(UDP)
primitive crctp(x,A,B,C);

output x;
input A,B,C;

//Now the truth table
table

// A B C : x
0 0 0 : 1;
0 0 1 : 0;
0 1 0 : 1;
0 1 1 : 0;
1 0 0 : 1;
1 0 1 : 0;
1 1 0 : 1;
1 1 1 : 1;
endtable

Endprimitive
module abcdef;

reg x,y,z;
wire w;
crctp(w,x,y,z);

endmodule

