
Solving Recurrences

Eric Ruppert

September 28, 2008

1 Introduction

An (infinite) sequence is a function from the set IN = {0, 1, 2, . . .} of natural
numbers to some set S. If a : IN → S is a sequence, we often denote a(n) by
an. The values a0, a1, a2, . . . are called the elements or terms of the sequence.

A recurrence relation is a way of defining a sequence. A few of the first
elements of the sequence are given explicitly. Then, the recurrence relation gives
relationships between elements of the sequence that are sufficient to uniquely
determine all the remaining elements’ values.

Example 1 The famous Fibonacci sequence can be defined by the recurrence

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2, for n ≥ 2.

The first few terms of the sequence are a0 = 0, a1 = 1, a2 = 1, a3 = 2, a4 = 3
and a5 = 4.

Example 2 We can define a sequence Tn using the recurrence

T (1) = 1

T (n) = T (⌈n/2⌉) + 4, for n ≥ 2.

(Recall that ⌈x⌉ is x rounded up to the nearest integer, i.e., the smallest integer
that is greater than or equal to x. Similarly, ⌊x⌋ is x rounded down to the
nearest integer, i.e., the largest integer that is smaller than or equal to x.)
The first few terms in the sequence are T (0) = 1, T (1) = 1, T (2) = 5, T (3) =
9, T (4) = 9, T (5) = 13, T (6) = 13. We shall come back to this recurrence later.

The explicit description of the first few terms of the sequence (F0 and F1

in Example 1, and T0 in Example 2) are called the initial conditions or base
cases of the recurrence. When defining a sequence using a recurrence, you must
be careful to include enough information in the initial conditions to properly

1

define the entire sequence. For example, the following recurrence does not define
a sequence properly:

T (0) = 1

T (n) = T (⌈n/2⌉), for n ≥ 1

When n = 1, the equation would be T (1) = T (⌈1/2⌉) + 1 = T (1) + 1, which is
impossible. This could be fixed by adding another base case:

T (0) = 1

T (1) = 2

T (n) = T (⌈n/2⌉) + 1, for n ≥ 2.

This works because
⌈

n
2

⌉

≤ n
2 + 1

2 < n whenever n ≥ 2.
When defining a sequence R(n) using a recurrence, one way to make sure

that it is well-defined is to define R(0), R(1), R(2), . . . , R(n0) as base cases
and then, for n > n0, use a recurrence relation that defines R(n) in terms
of R(0), R(1), . . . , R(n − 1). (It is then easy to prove by strong induction the
claim that R(n) is well-defined for all natural numbers n.)

The elements of the sequence might not be numbers. For example, you can
define a sequence of sets or a sequence of ordered pairs by a recurrence relation.
But in these notes, we focus on the case where S = IR, so each term in the
sequence is a number.

A recurrence is often the most natural way to define a sequence that we are
interested in. However, it can be difficult to work with a sequence defined by a
recurrence, or prove that such a sequence has certain properties. For example, if
we want to compute the 1000th term of the Fibonacci sequence, F1000, using the
recurrence, we must first compute the 1000 terms F0, F1, F2, . . . , F999. So, often,
we would like to construct an explicit formula for the nth term in the sequence.

For example, we shall prove, below, that Fn = 1√
5

(

1+
√

5
2

)n

− 1√
5

(

1−
√

5
2

)n

. The

procedure of coming up with an explicit formula for elements of the sequence is
called solving the recurrence.

The goal of these notes is to look at ways of solving recurrences using an
elementary approach. Elementary does not mean “easy”; it just means that
you do not need a lot of background knowledge to read them. In particular,
the notes will not use calculus. However, you should be comfortable with high-
school algebra (including solving linear equations), function notation and basic
proof techniques (like mathematical induction).

2 Modelling Using Recurrences

[[[This section will be filled in later. For now, just read Section 7.1 of Rosen’s
text.]]] ***

2

2.1 Derangements

Suppose there are n people, and each one owns one hat. All n hats are thrown
in a pile, and each person pulls one hat out of the pile to put it on. We would
like to count the number of ways that this could be done such that nobody puts
on his own hat. (This is called a derangement of the hats.) Let Dn denote the
number of derangements when there are n people.

First, let’s get some intuition: For n = 1, there is no way for one person to
not get his own hat, so D1 = 0. For n = 2, the only derangement is to have the
two people swap hats, so D2 = 1. For n = 3 there are two derangements: the
three people can stand in a triangle and everyone passes his hat to the person
on his right or everyone passes his hat to the person on his left, so D3 = 2. For
n = 4, there are 9 derangements described by the rows of the following table.

person 1 2 3 4

2 1 4 3
2 3 4 1
2 4 1 3
3 1 4 2

hats 3 4 1 2
3 4 2 1
4 1 2 3
4 3 1 2
4 3 2 1

We now derive a recurrence for Dn. Suppose person 1 gets the hat belonging
to person k (where 2 ≤ k ≤ n). To count the number of derangements for n
people we consider two cases.
Case 1: person k gets the hat belonging to person 1. In this case, persons 1 and
k have simply swapped hats. The remaining n − 2 people must mix up their
hats so that nobody has his own hat. This can be done in Dn−2 ways.
Case 2: person k does not get the hat belonging to person 1. Each possible
assignment of hats to people in this case can be obtained as follows. First,
persons 1 and k swap hats. Then, everybody except person 1 mix up their hats
so that nobody ends up with the hat they began with. (Notice that since person
k started with the hat that belongs to person 1, he will end up with some hat
other than person 1’s hat, which is one of the derangements we are trying to
count in Case 2.) There are Dn−1 ways to do this.

Thus, Dn = (n − 1)(Dn−2 + Dn−1) for n ≥ 3. (The (n − 1) factor comes
from the choice of k and the Dn−2 comes from Case 1, while the Dn−1 comes
from Case 2.

3 Guessing a Solution

In the past you may have learned techniques for solving certain kinds of equa-
tions (e.g., linear equations). Perhaps you were shown an algorithm (a sequence

3

of steps) that you could follow, and you would be guaranteed to get the answer
by following those steps. There is no algorithm that you can follow that will
allow you to solve all recurrences. In fact, there are some kinds of recurrences
that cannot be solved: there is no simple, explicit formula for the elements of the
sequence. However, there are algorithms for solving certain kinds of recurrence
relations, and we shall see some of those. But, in general, solving a recurrence
often takes some creativity. Experience helps: if you are solving a recurrence
and you can remember having seen a similar one before, then you might be
able to use the same technique. It also helps if you really understand the phe-
nomenon that is being modelled by the recurrence: you can use information
about it to dismiss implausible answers and focus on the more plausible ones.

The most basic technique for solving a recurrence is guessing the answer
and then checking that it is correct. If you were just making random guesses,
it would probably take you a very long time before finding the correct answer.
So you should make educated guesses. In this section, we shall look at a few
different ways of coming up with educated guesses.

3.1 Verifying a Guess

Since this is mathematics, just guessing the solution is not the end of the story
because your guess could be wrong. After you have guessed the solution to
the recurrence, you must prove that your guess is, in fact, the correct solution.
Fortunately, this is usually pretty easy if you guessed right: it is usually a
straightforward argument using mathematical induction. This is probably best
illustrated using some examples.

Example 3 Consider the recurrence

a0 = 5

an = 2an−1 + 1

After staring at it for a while, suppose you come up with an inspired guess:
an = 2n+2 + 2n+1 − 1. (The rest of this section will describe some ways for
coming up with such a guess but, for now, we just want to see how to verify the
guess once it is made.) Thus, the claim we want to prove is:

Claim: For all n ≥ 0, an = 2n+2 + 2n+1 − 1.
Proof (by mathematical induction on n):
Base case (n = 0): a0 = 5 = 4 + 2 − 1 = 22 + 21 − 1.
Induction step: Let n ≥ 1. Assume an−1 = 2n−1+2 + 2n−1+1 − 1. Our goal

is to prove an = 2n+2 + 2n+1 − 1. We have

an = 2an−1 + 1 by the definition of an, since n ≥ 1

= 2(2n−1+2 + 2n−1+1 − 1) + 1 by the induction hypothesis

= 2n+2 + 2n+1 − 2 + 1

= 2n+2 + 2n+1 − 1.

This completes the proof by induction.

4

We used regular induction in Example 3 because the recurrence defined an

in terms of an−1. If, instead each term of the recurrence is defined using several
smaller terms, strong induction would work better. We also have to adjust the
number of base cases, depending on what values of n the recurrence relation
applies to. (Thus, the base cases of the induction step usually mirror the base
cases of the recurrence relation.) These ideas are illustrated in the next example.

Example 4 Consider the sequence defined by

b(0) = 0

b(1) = 1

b(n) = b(
⌊n

2

⌋

) + b(
⌈n

2

⌉

), for n ≥ 2.

If you look at the first five or six terms of this sequence, it is not hard to come
up with a very simple guess: b(n) = n. We can prove it by strong induction.

Claim: For all n ≥ 0, b(n) = n.
Proof by strong induction on n:
Base cases (n = 0, 1): b(0) = 0 and b(1) = 1 by definition.
Induction step: Let n ≥ 2. Assume that b(k) = k for 0 ≤ k < n. Our goal is

to prove that b(n) = n. We have

b(n) = b(
⌊n

2

⌋

) + b(
⌈n

2

⌉

) since n ≥ 2

=
⌊n

2

⌋

+
⌈n

2

⌉

by induction hypothesis, since 0 ≤
⌊n

2

⌋

≤
⌈n

2

⌉

≤ n

2
+

1

2
< n

= n

(The last equality can be proved using two cases, depending on whether n
is even or odd. If n = 2m for some natural number m, then

⌊

n
2

⌋

+
⌈

n
2

⌉

=
⌊

2m
2

⌋

+
⌈

2m
2

⌉

= m+m = n. Otherwise, n = 2m+1 for some natural number m

and
⌊

n
2

⌋

+
⌈

n
2

⌉

=
⌊

2m+1
2

⌋

+
⌈

2m+1
2

⌉

=
⌊

m + 1
2

⌋

+
⌈

m + 1
2

⌉

= m + m + 1 = n.)
This completes the proof of the claim.

Notice that mathematical induction is a very natural proof technique to
use together with recurrences. The recurrence relates one sequence element to
previous ones. The induction hypothesis of the mathematical induction proof
allows you to assume that the previous terms are known. Then, the recurrence
relation allows you to determine the value of the next term in the sequence to
complete the induction step.

As long as you provide a formal proof that your guess is correct, it does
not matter how you come up with your guess: it could be a wild guess or you
could get it by asking Numeros, the mighty god of arithmetic, in a prayer. But
because you probably do not want to rely on Numeros, who is a temperamental
god at the best of times, we shall look at some techniques for coming up with a
guess in the rest of this section.

5

3.2 Looking for Patterns

Some patterns are easy to guess just by looking at the first few terms of the
sequence (as in Example 4). Others might be harder to see. One thing that is
useful in identifying patterns is knowing what to look for to recognize certain
kinds of patterns. Here we shall learn how to recognize some of the most common
sequences.

3.2.1 Identifying Arithmetic Sequences

One of the most basic types of sequences are arithmetic sequences, where the
terms are an = c1n + c0 for some constants c1 and c0. If the sequence has
this form, the difference between successive terms will always be c1, and this is
something that is easy to look for.

Example 5 Consider the recurrence

a0 = 12

a1 = 17

an = a⌊n/2⌋ + a⌈n/2⌉ − 12, for n ≥ 2.

The first few elements of the sequence are 12, 17, 22, 27, 32. We can take differ-
ences of successive elements of this sequence:

n an an − an−1

0 12 -
1 17 5
2 22 5
3 27 5
4 32 5

From this table, we could guess that the sequence is an arithmetic sequence
with c1 = 5. Then solving a0 = c1 · 0 + c0 for c0 yields c0 = 12. So our guess
for the solution would be an = 5n + 12. (Exercise: verify this guess satisfies the
recurrence using mathematical induction.)

This same technique will work whenever the sequence is an arithmetic se-
quence.

3.2.2 Identifying Polynomial Sequences

We saw how to identify arithmetic sequences, which grow linearly as a function
of n. What if the solution is a quadratic formula of the form an = c2n

2+c1n+c0,
where c0, c1 and c2 are constants? How can we identify this pattern by looking
at the first few terms?

Let’s look at the difference between successive terms again: For n ≥ 1, let
bn = an−an−1 = c2n

2+c1n+c0−(c2(n−1)2+c1(n−1)+c0) = 2c2n−c2+c1 =
c′1n + c′0, where c′1 = 2c2 and c′0 = c1 − c2. Thus, the sequence of differences,
themselves, form an arithmetic sequence, which we already know how to identify.

6

Example 6 Consider the recurrence

a0 = 7

a1 = 12

an = an−2 + 8n − 2, for n ≥ 2.

Let’s look at the differences of successive elements, and then check if those
differences form an arithmetic sequence by looking at their differences.

n an bn = an − an−1 bn − bn−1

0 7 - -
1 12 5 -
2 21 9 4
3 34 13 4
4 51 17 4
5 72 21 4
6 97 25 4

The entries in the third column of this table are sometimes called first-order
differences, and the entries in the fourth column are called second-order differ-
ences (because they are differences of differences of successive terms). Because
the second-order differences appear to be constant, a reasonable guess would be
that the sequence itself is of the form an = c2n

2 + c1n + c0. By plugging in the
values of a0, a1 and a2 and solving for c0, c1 and c2, we could arrive at the guess
an = 2n2 + 3n + 7. (Exercise: verify this guess is correct.)

More generally, if the solution to the recurrence is a polynomial equation

of degree d, i.e., an =
d
∑

i=0

cin
i = cdn

d + cd−1n
d−1 + cd−2n

d−2 + · · · + c1n + c0

(where the ci’s are all constants), then the dth-order differences will be constant.
This is because bn = an − an−1 will be a polynomial of degree d − 1, so the
(d − 1)th order differences of the bn’s will be constant. (Check this by writing
out an − an−1 and noticing that the leading degree-d terms of an and an−1

cancel out, leaving only terms of degree at most d − 1.)
Exercise: Make the preceding discussion formal by proving the following

claim by induction on d: if an = p(n) where p is any polynomial of degree d,
then the dth-order differences of an are constant.

Note: I am not being very formal in describing how to come up with guesses.
This is because you can be totally informal in the way you arrive at your guess
anyway: you are probably just going to be looking at the first few elements of
the sequence, so there is no way to know whether the pattern you see carries
on forever. Or you can even just depend on Numeros. But a reminder: if you
use the method of guessing a solution you must prove your guess is correct in a
formal way.

Let’s look at another example where the solution is a polynomial.

7

Example 7 Consider the recurrence

s0 = 0

sn = sn−1 + n2, for n ≥ 1.

In the following table, we look at the first few terms of the sequence, then take
the differences of successive terms. Since those are not constant, we shall try
taking 2nd-order differences. Those are still not constant, so we try taking
3rd-order differences. Aha! Those seem to be constant, at least for small n.

1st-order 2nd-order 3rd-order
n sn differences differences differences
0 0 - - -
1 1 1 - -
2 5 4 3 -
3 14 9 5 2
4 30 16 7 2
5 55 25 9 2
6 91 36 11 2
7 140 49 13 2

Based on the above information, we shall guess that the solution is a degree-
3 polynomial: an = c3n

3 + c2n
2 + c1n + c0. By plugging the first 4 values of

the sequence into this formula, we can solve for c0, c1, c2 and c3 to get an =
1
3n3 + 1

2n2 + 1
6n. (Exercise: prove this guess is correct.)

Remark: You may have noticed that the recurrence is identical to the one

that defines
n
∑

i=0

i2 =

(

n−1
∑

i=0

i2
)

+ n2, with sn playing the role of
n
∑

i=0

i2. We saw

some techniques earlier in the course for computing sums; recall that we showed

sn = n(n+1)(2n+1)
6 , which agrees with the guess we found here.

3.2.3 Identifying Geometric Sequences

A geometric sequence has the form gn = crn where c and r are constants. The
way to identify these sequences is to look at the ratio between successive terms
in the sequence. That ratio will always be r.

Example 8 Consider the recurrence

g0 = 2

g1 = 6

gn = gn−1 + 6gn−2, for n ≥ 2.

Let’s look at the ratios between successive terms.

8

n gn gn/gn−1

0 2 -
1 6 3
2 18 3
3 54 3
4 162 3

A reasonable guess at this point would be that gn = 2 · 3n.

3.2.4 Identifying Combinations of Sequences

Guessing becomes a little more complicated when the formula is a combination
of several of the preceding types.

Many sequences are not exactly geometric, but “nearly” geometric. In Ex-
ample 3, the first few terms of the sequence were 5,11,23,47,95,191. It is clear
from this pattern (and from the recurrence relation itself) that each term is
approximately double the preceding term, but not exactly. So we might guess
that the solution will involve powers of 2. At the beginning of the sequence,
the terms are close to 2n+2 but they get further and further away from 2n+2 as
we go further along the sequence. But we might want to take 2n+2 as a first
approximation of the answer. Then we can check how close this is to the correct
answer:

n an 2n+2 an − 2n+2

0 5 4 1
1 11 8 3
2 23 16 7
3 47 32 15
4 95 64 31
5 190 128 63

From the table, we see that the “error term” for our first approximation,
an − 2n+2, roughly doubles at each step, so it again looks like it should be close
to powers of 2. In fact, it is not hard to guess that this error term is 2n+1 − 1.
Thus, we arrive at the guess an = 2n+2 + 2n+1 − 1, which we already verified
was correct in Example 3.

Exercise 9 Guess a solution for the following recurrence and prove it correct

a0 = 1

an = 2(an−1 − n + 2), for n ≥ 1.

Hint: start with powers of 2 and look at the “error terms”.

Exercise 10 Guess a solution for the following recurrence and prove it correct.

b0 = 2

b1 = 8

bn = bn−1 + 6bn−2 − 4n + 11, for n ≥ 2.

9

3.3 Repeated Substitution

There is another method for coming up with a guess for the solution of a re-
currence relation. Instead of starting at the base case and working forward, we
can start with the term an and repeatedly apply the recurrence to express an in
terms of earlier and earlier terms in the sequence. If we imagine carrying this
procedure through until we have expressed an in terms of the base cases, then
we will be able to read off the formula for an. We shall call this method repeated
substitution. Let’s see some examples.

Example 11 Consider the recurrence

a0 = 0

an = 3an−1 + 2n for n ≥ 1.

By applying the recurrence relation repeatedly, we get

an = 3an−1 + 2n

= 3(3an−2 + 2(n − 1)) + 2n

= 32an−2 + 2[n + 3(n − 1)]

= 32(3an−3 + 2(n − 2)) + 2[n + 3(n − 1)]

= 33an−3 + 2[n + 3(n − 1) + 32(n − 2)]

= 33(3an−4 + 2(n − 3)) + 2[n + 3(n − 1) + 32(n − 2)]

= 34an−4 + 2[n + 3(n − 1) + 32(n − 2) + 33(n − 3)]

...

We see that there is a pattern emerging: every time we do a substitution, the
coefficient of ai increases by a factor of 3 and the sum in square brackets is
extended by one term. We conjecture that this pattern continues, so that after
k substitutions we would have

an = 3kan−k + 2

k−1
∑

i=0

3i(n − i).

So, after n substitutions, we would have

an = 3na0 + 2

n−1
∑

i=0

3i(n − i) = 2

n−1
∑

i=0

3i(n − i),

by using the fact that a0 = 0. Here is where we get to use our abilities with
figuring out sums from earlier in the course:

an = 2

n−1
∑

i=0

3i(n − i)

10

=

(

2n

n−1
∑

i=0

3i

)

−
(

2

n−1
∑

i=0

3ii

)

= 2n · 3n − 1

3 − 1
− 2 · 3n(2n − 3) + 3

4
(by formulas from our work on sums)

=
2n · 3n + 3n+1 − 4n − 3

4
.

Exercise: prove this guess is correct.

Example 12 Consider the recurrence

a0 = 12

a1 = 20

an = 2an−1 − an−2 (for n ≥ 2).

By applying the recurrence relation repeatedly, we have

an = 2an−1 − an−2 = 2(2an−2 − an−3) − an−2

= 3an−2 − 2an−3 = 3(2an−3 − an−4) − 2an−3

= 4an−3 − 3an−4 = 4(2an−4 − an−5) − 3an−4

= 5an−4 − 4an−5

...

By this point, we can identify a pattern and conjecture that, after k substitu-
tions, we shall have an = (k+1)an−k−kan−k−1. By taking k = n−1, we obtain
the guess an = (n−1+1)an−(n−1)− (n−1)an−(n−1)−1 = na1− (n−1)a0. Then
we can plug in the initial values, to obtain a guess an = 20n−12(n−1) = 8n+12
(which still has to be proved correct, as usual).

Example 13 Consider the recurrence

a0 = 2

an = 2
√

an−1, for n ≥ 1.

Let’s start doing repeated substitutions until we find a pattern.

an = 2
√

an−1 = 21a
1/2
n−1

= 2(2
√

an−2)
1/2 = 23/2a

1/4
n−2

= 23/2(2
√

an−3)
1/4 = 27/4a

1/8
n−3

= 27/4(2
√

an−4)
1/8 = 215/8a

1/16
n−4

= 215/8(2
√

an−5)
1/16 = 231/16a

1/32
n−4

...

Focus on the last expression in each line. The exponents on the ai term
form a nice geometric sequence 1/2, 1/4, 1/8, 1/16, . . . and the exponents on the

11

2 also form a nice sequence: 1/1, 3/2, 7/4, 15/8, 31/16, . . . (the denominators
are powers of 2 and the numerators are each one less than a power of 2). By
extending this pattern we can guess that after k substitutions, we would have

an = 2(2k−1)/2k−1

a
1/2k

n−k .

So, when k = n, we should get

an = 2(2n−1)/2n−1

a
1/2n

0 = 2(2n−1)/2n−1

21/2n

= 22−1/2n

.

(This guess still has to be proved correct, as usual.)

Often, the key to spotting a pattern when doing repeated substitution is
to simplify after each substitution is performed, but sometimes you should not
simplify too much because that can conceal the structure of the pattern. For
instance, in Example 11, we did not combine all the terms in the square brackets
while doing the substitutions; this way, the structure of each line (as a sum)
was revealed.

4 Linear Recurrences

Guessing solutions to a recurrence is a useful technique because it is very widely
applicable: you can use it to solve any recurrence, as long as you are able to
spot the patterns in the sequence. But using that technique requires real work
for each and every recurrence you solve. Each one could have a new pattern
that you have not seen before and you have to be able to identify it. Some kinds
of recurrences come up again and again (you could say that they recur) in all
kinds of different applications. Instead of re-doing the work of discovering the
pattern in each one, we can develop some specialized techniques to deal with
those common kinds of recurrences.

In this section we shall consider sequences where one term is a linear function
of earlier terms in the sequence.

4.1 Linear Homogenous Recurrences

Let k be a positive integer. A linear homogeneous recurrence relation of degree
k with constant coefficients has the form

an = c1an−1 + c2an−2 + c3an−3 + · · · + ckan−k, (1)

where the ci’s are constants. In order to completely define a sequence, this
type of recurrence must also come with k base cases that specify the values of
a0, a1, . . . , ak−1. In this section, we shall describe how to solve any recurrence
of this form. We have already seen some examples of this kind of recurrence
(see Examples 1, 8 and 12).

We are going to focus on just finding formulas that satisfy Equation (1),
without worrying (for now) about also satisfying the base cases. (Notice that

12

there can be many sequences that satisfy Equation (1); in fact there will be a
different sequence for each possible set of base cases.) The following proposition
is one of the key properties that make linear homogeneous recurrences fairly
easy to solve.

Proposition 14 If the sequence an satisfies Equation (1) and a′
n is another

sequence that satisfies Equation (1), then bn = an + a′
n and dn = αan are also

sequences that satisfy Equation (1) (where α is any constant).

Proof: Since an and a′
n satisfy Equation (1), we have

bn = an + a′
n

= [c1an−1 + c2an−2 + · · · ckan−k] + [c1a
′
n−1 + c2a

′
n−2 + · · · + cka′

n−k]

= c1(an−1 + a′
n−1) + c2(an−2 + a′

n−2) + · · · + ck(an−k + a′
n−k)

= c1bn−1 + c2bn−2 + · · · + ckbn−k.

Similarly, we have

dn = αan

= α[c1an−1 + c2an−2 + · · · + ckan−k]

= c1(αan−1) + c2(αan−2) + · · · + ck(αan−k)

= c1dn−1 + c2dn−2 + · · · + ckdn−k.

It follows from this proposition that if we find some basic solutions to Equa-
tion (1), then any linear combination of them will also be a solution to Equation
(1). This is useful because it is (relatively) easy to find some solutions to Equa-
tion (1), and then we can combine the solutions we find by adding them together
or multiplying them by constants in order to make them “fit” with the particu-
lar base cases that we are interested in. So now we focus on the task of finding
the basic solutions to Equation (1).

At some point, people observed that geometric sequences come up a lot when
solving linear homogeneous recurrences. So let’s try to see if any sequences of
the form an = rn satisfy Equation (1). In other, words, we would like to know
if there is any r that satisfies

rn = c1r
n−1 + c2r

n−2 + · · · + ckrn−k.

By moving all terms on to the same side, we get

rn − c1r
n−1 − c2r

n−2 − · · · − ckrn−k = 0. (2)

Dividing both sides by rn−k yields

rk − c1r
k−1 − c2r

k−1 − · · · − ckr0 = 0. (3)

Equation (3) is called the characteristic equation of the recurrence (1). For
example, the characteristic equation of the Fibonacci recurrence Fn = Fn−1 +
Fn−2 is r2 − r − 1 = 0. The next proposition follows immediately from the
preceding discussion.

13

Proposition 15 If r satisfies Equation (3), then an = rn satisfies Equation
(1).

Combining Propositions 15 and 14, we obtain the following Theorem.

Theorem 16 If r1, r2, . . . , rm all satisfy Equation (3), then for any constants
α1, α2, . . . , αm, the sequence an = α1r

n
1 + α2r

n
2 + · · ·+ αmrm satisfies Equation

(1).

Proof: By Proposition 15, we know that rn
i satisfies Equation (1) (for each

i). Thus, by Proposition 14, we know that αir
n
i satisfies Equation (1) (for each

i). Applying Proposition 14 again (in fact, with an induction argument), we see
that an = α1r

n
1 + α2r

n
2 + · · · + αmrm satisfies Equation (1).

Theorem 16 allows us to solve a lot of linear homogeneous recurrences very
easily. The procedure is to find the solutions of the corresponding characteris-
tic equation and then choose the constants αi to satisfy the base cases of the
recurrence.

Example 17 Let’s use this technique to solve the Fibonacci recurrence from
Example 1:

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2, for n ≥ 2.

The characteristic equation of this recurrence is r2 − r − 1 = 0. We can solve

this equation for r using the quadratic formula: r = 1±
√

5
2 . By Theorem 16,

Fn = α1

(

1+
√

5
2

)n

+ α2

(

1−
√

5
2

)n

satisfies Fn = Fn−1 + Fn−2, for any values

of α1 and α2. Now we just have to choose values for α1 and α2 so that the
equations F0 = 0 and F1 = 1 are also satisfied. Thus, we must have

α1 + α2 = 0
(

1 +
√

5

2

)

α1 +

(

1 −
√

5

2

)

α2 = 1

These are just two linear equations in two unknowns that we can solve for α1

and α2 to get α1 = 1√
5

and α2 = − 1√
5
. Thus, Fn = 1√

5

(

1+
√

5
2

)n

− 1√
5

(

1−
√

5
2

)n

.

Important remark: Now, this is not merely a guess at a correct solution. We
have Theorem 16, which tells us that this formula for Fn satisfies the recurrence
equation, and we just chose α1 and α2 to satisfy the base cases. So this formula
is guaranteed to be correct; we do not have to prove it correct by induction.

In the example above, it was pretty easy to find the solutions to the char-
acteristic equation. If k is bigger than 2, you may have to use your prowess at
factoring polynomials to find the solutions of the characteristic equation. We
now consider an example with k = 3.

14

Example 18 Consider the recurrence

a0 = 8

a1 = 6

a2 = 26

an = −an−1 + 4an−2 + 4an−3

The characteristic equation is r3 + r2 − 4r − 4 = 0. Factoring this gives us
(r+1)(r+2)(r−2) = 0, so the solutions are r1 = −1, r2 = −2 and r3 = 2. Thus,
for any constants α1, α2 and α3, the formula an = α1(−1)n + α2(−2)n + α32

n

will satisfy the recurrence relation. Now we just have to choose α1, α2 and α3

to satisfy the base cases, so we need

α1 + α2 + α3 = 8

−α1 − 2α2 + 2α3 = 6

α1 + 4α2 + 4α3 = 26

Solving these equations gives us α1 = 2, α2 = 1 and α3 = 5. So the solution to
our recurrence is an = 2(−1)n +(−2)n +5 ·2n. (Again, we do not need to prove
this because it is established by Theorem 16.)

4.1.1 Multiple Roots of Characteristic Equation

The characteristic equation (3) may have up to k different solutions. If it has
k different solutions, this technique will always work: it will be possible to find
a solution of the type described in Theorem 16 that satisfies the k base cases
of the recurrence as well as the recurrence equation. (We shall not prove this,
since it requires some linear algebra, and we do not really need to know this fact
in order to use the method, but it is nice to know that the method will work.)
However, if the characteristic equation has fewer than k distinct solutions, the
method presented above might not work, so we need to generalize it a little.

If the characteristic equation has k distinct solutions r1, r2, . . . , rk it can be
rewritten as

(r − r1)(r − r2) · · · (r − rk) = 0.

But what if, after factoring, the characteristic equation has m + 1 factors of
(r − r1), for example. (When this happens, r1 is called a solution of the char-
acteristic equation with multiplicity m + 1.) When this happens, not only is
rn
1 a solution to Equation (1), but so is nrn

1 , n2rn
1 , . . . , nmrn

1 , as we see in the
following proposition.

Proposition 19 If r0 is a solution of the characteristic equation with multi-
plicity at least m + 1, then nmrn

0 is a solution to Equation (1).

The proof of this proposition is a little involved so it is presented in Section
4.1.2.

15

Using this proposition, together with Lemma 14, we get a technique for solv-
ing linear homogeneous recurrences even when the characteristic equation does
not have distinct solutions. Again, we find the solutions of the characteristic
equation. For solutions that have multiplicity 1, we get a simple geometric se-
quence that satisfies Equation (1). For solutions that have multiplicity greater
than 1, we obtain sequences of the form described in Proposition 19 that satisfy
Equation (1). Then, by Proposition 14, we know that any combination of mul-
tiples of those basic sequences we have found are also solutions to Equation (1).
Then we can just find one of those combinations that satisfies the base cases.
The overall procedure is very similar to the procedure used in Examples 17 and
18, so we just give one more example to illustrate.

Example 20 Consider the recurrence

a0 = 1

a1 = 4

a2 = 28

a3 = 32

an = 8an−2 − 16an−4, for n ≥ 4.

The characteristic equation is r4 − 8r2 + 16 = 0. The left hand side can be
factored: r4 − 8r2 + 16 = (r2 − 4)2 = (r − 2)2(r + 2)2. Thus, there are two
solutions of the characteristic equation, r = 2 and r = −2, each with multiplicity
2. By Proposition 19, we know that 2n, n2n, (−2)n and n(−2)n each satisfy the
recurrence relation. Thus, by Proposition 14, an = α12

n + α2n2n + α3(−2)n +
α4n(−2)n also satisfies the recurrence equation. Now we just have to choose the
αi’s to satisfy the base cases as well. Plugging the formula into the base cases
yields 4 equations:

α1 + α3 = 1
2α1 + 2α2 − 2α3 − 2α4 = 4
4α1 + 8α2 + 4α3 + 8α4 = 28
8α1 + 24α2 − 8α3 − 24α4 = 32

Solving these yields α1 = 1, α2 = 2, α3 = 0 and α4 = 1. Thus, the explicit
formula for the sequence is an = 2n + 2n2n + n(−2)n.

Finally, we remark that the characteristic equation will sometimes have solu-
tions that are complex numbers. But all of the proofs in this section apply even
if the solutions are complex numbers, so all of the techniques are still applicable
in this case. (You just have to be careful to do your arithmetic with complex
numbers instead of real numbers.)

4.1.2 Proof of Proposition 19

We now go back and fill in the (rather technical) proof of Proposition 19. Given
the recurrence equation Equation (1), we can define p(r) to be the left hand

16

side of Equation (2):

p(r) = rn − c1r
n−1 − c2r

n−2 − · · · − ckrn−k.

Suppose r0 is a solution of the equation p(r) = 0 with multiplicity at least m+1.
Recall that this means p(r) = (r − r0)

m+1q(r) for some polynomial q(r). Our
goal is to show that an = nmrn

0 satisfies Equation (1). In other words, we must
show that

nmrn
0 = c1(n−1)mrn−1

0 +c2(n−2)mrn−2
0 +c3(n−3)mrn−3

0 +· · ·+ck(n−k)mrn−k
0 .

If we move all the terms to one side of this equation we see that our goal is to
show

nmrn
0−c1(n−1)mrn−1

0 −c2(n−2)mrn−2
0 −c3(n−3)mrn−3

0 −· · ·−ck(n−k)mrn−k
0 = 0.

(4)

Given any polynomial P (x) =
d
∑

i=0

bix
i, we can define1 another polynomial

P̂ (x) =
d
∑

i=0

ibix
i.

Now define a sequence of polynomials: p0(r) = p(r) and pj(r) = p̂j−1(r).
More explicitly,

pj(r) = njrn − c1(n − 1)jrn−1 − c2(n − 2)jrn−2 − · · · − ck(n − k)jrn−k.

Notice that our goal of showing Equation (4) holds is now simply to show that
pm(r0) = 0. To do this, we first prove a bunch of facts about how P̂ (x) can be
expressed if we know P (x).

Lemma 21 Suppose P1(x) and P2(x) are polynomials, and P (x) = P1(x)P2(x).
Then P̂ (x) = P1(x)P̂2(x) + P̂1(x)P2(x).

Proof: Let P1(x) =
d
∑

i=0

bix
i and P2(x) =

e
∑

j=0

djx
j . Then

P (x) =

d
∑

i=0

e
∑

j=0

bidjx
i+j and

P̂ (x) =

d
∑

i=0

e
∑

j=0

(i + j)bidjx
i+j .

1For those of you who have taken calculus, the definition of P̂ (x) is actually xP
′(x). Then

Lemma 21, below, is just the product rule for derivatives and Lemma 22, below is obtained
trivially by taking the derivative of (x − c)m.

17

We also have

P1(x)P̂2(x) + P̂1(x)P2(x) =

(

d
∑

i=0

bix
i

)

e
∑

j=0

jdjx
j

+

(

d
∑

i=0

ibix
i

)

e
∑

j=0

djx
j

=

d
∑

i=0

e
∑

j=0

(jbidjx
i+j + ibidjx

i+j)

=

d
∑

i=0

e
∑

j=0

(i + j)bidjx
i+j .

Lemma 22 For m ≥ 1, if P (x) = (x − c)m then P̂ (x) = xm(x − c)m−1.

Proof: We prove this claim by induction on m.
Base case (m = 1): P (x) = x − c, so P̂ (x) = x = x · 1 · (x − c)0.
Induction step: Let m ≥ 2. Assume the claim is true for m − 1. Let P (x) =
(x − c)m = (x − c)(x − c)m−1. Then,

P̂ (x) = (x − c)x(m − 1)(x − c)m−2 + x(x − c)m−1 by ind. hyp. and Lemma 21

= x(m − 1)(x − c)m−1 + x(x − c)m−1

= (xm − x + x)(x − c)m−1

= xm(x − c)m−1.

Lemma 23 Let Q(x) be a polynomial and let P0(x) = (x − c)m+1Q(x). Let
Pj(x) = P̂j−1(x) for j ≥ 1. Then, for 0 ≤ j ≤ m, there exists a polynomial
Qj(x) such that Pj(x) = (x − c)m+1−jQj(x).

Proof: We prove this claim by induction on j.
Base case (j = 0): We take Q0(x) = Q(x) so that P0(x) = (x − c)m+1−0Q0(x).
Induction step: Let j ≥ 1 and j ≤ m. Assume the claim holds for j − 1. Then,
Pj(x) = P̂j−1(x) by definition of Pj and Pj−1(x) = (x − c)m+1−j+1Qj−1(x) by
the induction hypothesis. Applying Lemmas 21 and 22, we get

Pj(x) = P̂j−1(x)

= (x − c)m+1−j+1Q̂j−1(x) + x(m + 1 − j + 1)(x − c)m+1−jQj−1(x)

= (x − c)m+1−j [(x − c)Q̂j−1(x) + x(m + 1 − j + 1)Qj−1(x)].

By taking Qj(x) = (x− c)Q̂j−1(x) + x(m + 1− j + 1)Qj−1(x), we complete the
induction step.

Now, going back to the polynomial pm that we defined based on Equation (1),
recall that we wanted to show that pm(r0) = 0 in order to establish Equation (4).
We assumed that p0(r) = (r − r0)

m+1q(r) for some polynomial q(r). Thus, by
Lemma 23 (taking j = m), we have pm(r) = (r − r0)

1q′(r) for some polynomial
q′. Thus, pm(r0) = 0, completing the proof of Proposition 19.

18

4.2 Linear Non-homogeneous Recurrences

A linear non-homogeneous recurrence relation of degree k with constant coeffi-
cients has the form

an = c1an−1 + c2an−2 + c3an−3 + · · · + ckan−k + f(n). (5)

Once again, the ci’s are constants. The difference between this recurrence equa-
tion and a linear homogeneous recurrence is the extra f(n) term, where f can
be any function. (Notice that linear homogeneous recurrences are a special case
where f(n) = 0.) In order to define a sequence properly, this recurrence has to
be combined with base cases that give the first k elements of the sequence. We
have already seen several examples of non-homogeneous linear recurrences: Ex-
ample 3 had f(n) = 1, Example 6 had f(n) = 8n−2, Example 7 had f(n) = n2

and Example 11 had f(n) = 2n.
We are going to use an approach similar to the one we used for homogeneous

recurrences: first we shall try to find a family of sequences that satisfy the
recurrence equation, ignoring the base cases, and then choose the one that does
satisfy the base cases. The nonhomogeneous recurrence (Equation (5)) has an
associated homogeneous recurrence equation which is obtained just by dropping
the f(n) term:

an = c1an−1 + c2an−2 + c3an−3 + · · · + ckan−k (6)

There is an important relationship between sequences that satisfy Equation
(5) and sequences that satisfy Equation (6): the difference between any two
sequences that satisfy Equation (5) must satisfy Equation (6).

Proposition 24 Let an be a sequence that satisfies Equation (5). Another
sequence bn satisfies Equation (5) if and only if hn = bn − an satisfies Equation
(6).

Proof: First we prove the “if” part of the proposition. Suppose an satisfies
Equation (5) and hn satisfies Equation (6). So we have

an = c1an−1 + c2an−2 + · · · + ckan−k + f(n), and

hn = c1hn−1 + c2hn−2 + · · · + ckhn−k.

Adding these two equations, we get

an + hn = c1(an−1 + hn−1) + c2(an−2 + hn−2) + · · · + ck(an−k + hn−k) + f(n), so

bn = c1bn−1 + c2bn−2 + · · · + ckbn−k + f(n),

since bn = an + hn.
Now we prove the “only if” part: Suppose an satisfies Equation (5) and bn

satisfies Equation (6). So we have

an = c1an−1 + c2an−2 + · · · + ckan−k + f(n), and

bn = c1bn−1 + c2bn−2 + · · · + ckbn−k + f(n).

19

Subracting the first equation from the second, we get

bn − an = c1(bn−1 − an−1) + c2(bn−2 − an−2) + · · · + ck(bn−k − an−k), so

hn = c1hn−1 + c2hn−2 + · · · + ckhn−k,

since hn = bn − an.

So, if we have a single sequence an that satisfies Equation (5), we can get
every sequence that satisfies Equation (5) just by adding a sequence hn that
satisfies Equation (6) to an. But we already know how to find sequences hn that
satisfy Equation (6): we developed a complete technique for finding solutions
to linear homogeneous recurrences in Section 4.1. This means that we just have
to figure out a way to find one sequence that satisfies Equation (5).

Finding that one particular sequence that satisfies Equation (5) can be dif-
ficult. Fortunately, it turns out that, for many common functions f(n) it is
possible to find a solution whose formula is similar to f(n) itself. For example,
if f(n) is a polynomial function, there will always be a a polynomial sequence
that satisfies Equation (5), which can be found by guessing that the sequence
is a polynomial and then figuring out what the coefficients in that polynomial
are. (The proof that such a polynomial always exists is quite lengthy. Since we
are going to be explicitly finding that polynomial when we solve Equation (5),
we do not need the general proof that it always exists, but it is comforting to
know that it does.) Let’s look at an example.

Example 25 Consider the recurrence

a0 = 2

a1 = 3

an = an−1 + an−2 + 3n + 1 for n ≥ 2.

As before, we are going to focus on first finding sequences that satisfy the
recurrence equation, and then figure out which one also satisfies the base cases.

Our first task is to find a particular solution a′
n to the non-homogeneous

recurrence equation. Here the function f(n) is a linear polynomial 3n + 1. So
let’s try guessing that there is a sequence a′

n that is also given by a linear
polynomial: a′

n = cn + b (where c and b are constants that we shall figure out).
Plugging this into the recurrence equation, we get

cn + b = c(n − 1) + b + c(n − 2) + b + 3n + 1
↔ cn + b = cn − c + b + cn − 2c + b + 3n + 1
↔ 0 = (3 + c)n + (b − 3c + 1)

In order to make this true for all n ≥ 2, we must have 3+c = 0 and b−3c+1 = 0.
This means we should choose c = −3 and b = −10. So, we see that a′

n = −3n−10
satisfies the recurrence equation. However, this sequence does not satisfy the
base cases, so we still need to search for another sequence an that satisfies both
the recurrence equation and the base cases.

20

Fortunately, we know, by Proposition 24, that the sequence we are looking
for must be of the form an = a′

n +bn, where bn is a solution to the homogeneous
equation associated with our recurrence:

bn = bn−1 + bn−2.

This is just the Fibonacci recurrence, so we already saw in Example 17 that

all sequences of the form bn = α1

(

1+
√

5
2

)n

+ α2

(

1−
√

5
2

)n

satisfy this equation

(where α1 and α2 are constants). So (by Proposition 24) we know that any
sequence of the form

an = −3n− 10 + α1

(

1 +
√

5

2

)n

+ α2

(

1 −
√

5

2

)n

satisfies our non-homogeneous recurrence equation. Let’s see if we can pick α1

and α2 so that the base cases are also satisfied. Plugging in n = 0 and n = 1
we get

−10 + α1 + α2 = 2

−13 +
1 +

√
5

2
α1 +

1 −
√

5

2
α2 = 3

If we solve these for α1 and α2, we get α1 = 6 + 2
√

5 and α2 = 6 − 2
√

5. So we
have successfully found a solution to the recurrence:

an = −3n− 10 + (6 + 2
√

5)

(

1 +
√

5

2

)n

+ (6 − 2
√

5)

(

1 −
√

5

2

)n

.

5 Bounding Recurrences

Sometimes, the nature of a recurrence makes it difficult to come up with an
explicit formula for the sequence it defines. In some cases, we might be satisfied
if we can, instead, give upper or lower bounds on the size of the elements. For
example, we might be interested in describing the asymptotic behaviour of the
sequence using big-O or big-Ω notation.

The most basic method for accomplishing this is again to guess a bound (after
looking at the first few values of the sequence, or using any other information
about the sequence we might have). Proving the bound is then usually fairly
straightforward, using an induction argument, as in the following examples.

Example 26 Consider the recurrence2 of Example 2:

T (1) = 1

T (n) = T (⌈n/2⌉) + 4, for n ≥ 2.

2For those who have done some recursive programming, this recurrence describes the run-
ning time of a particular implementation of binary search on an array of size n.

21

We want to come up with a guess about an upper bound for the sequence
defined by this recurrence. In order to avoid having to worry about the ceilings,
we can look at the values of T (n) when n is a power of 2: T (1) = 1, T (2) =
5, T (4) = 9, T (8) = 13, T (16) = 17. It’s pretty clear from the recurrence that
the sequence values depend linearly on the exponent on the 2: we would guess
that T (2i) = 4i− 3 (and it would be very easy to verify this by induction on i).
From this, we can guess that, for all n, T (n) is O(log2 n), since i = log2(2

i).
Notice that the statement “T (n) is O(log2 n)” is not a claim that we can

prove by induction on n because it does not say anything about n! In that state-
ment, n is just a dummy variable. Remember that the statement is shorthand
for “There exist c, k such that for all n ≥ k, T (n) ≤ c log2 n.” Since we want
to prove a bound on T (n) by induction on n, we have to formulate a claim
that can be proved by induction. Let’s try to show T (n) ≤ c log2 n. (As we go
through the proof, we shall pick a value for c that makes the proof work.) This
claim does not make sense for n = 0, since log2 0 is undefined, and there is not
much hope of proving it for n = 1, since log2 1 = 0, so we shall just prove it for
n ≥ 2. We shall use strong induction because the recurrence relates T (n) not
to T (n − 1) but to some earlier term in the sequence.

Claim: For all n ≥ 2, T (n) ≤ c log2 n.
Proof (by induction on n):
Base case (n = 2): T (2) = T (1) + 4 = 5 = 5 log2 2. Thus, the base case

holds as long as we choose c ≥ 5.
Induction step: Let n ≥ 3. Assume that, for 2 ≤ k < n, T (k) ≤ c log2 k.

Then,

T (n) = T (⌈n/2⌉) + 4 since n ≥ 2

≤ c log2(⌈n/2⌉) + 4 by ind. hyp., since 2 = ⌈3/2⌉ ≤ ⌈n/2⌉ ≤ n + 1

2
< n

≤ c log2

n + 1

2
+ 4 since log2 is increasing and ⌈n/2⌉ ≤ n + 1

2

≤ c log2

(

2n

3

)

+ 4 since log2 is increasing and
n + 1

2
≤ 2n

3
for n ≥ 3

= c log2 n + c log2

(

2

3

)

+ 4

To complete the induction step, we just have to make sure that c is chosen so
that c log2

(

2
3

)

+4 ≤ 0, which is true whenever c ≥ 4
− log

2
(2/3) = 6.838045 So

if we pick c = 7, that will work for both the base case and the induction step.
Now, if you were designing a nice, polished proof, you might want to go back

and replace c by 7 everywhere in the above argument. We just left the value of
c undefined initially so that you would see how the constant 7 was discovered.

Exercise 27 Prove that T (n) defined in the preceding example is Ω(log2 n).

Sometimes, proving a bound on a recursively-defined sequence is not quite
so straightforward.

22

Example 28 Consider the recurrence3

T (1) = 0

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + 1, for n ≥ 2.

This recurrence is very similar to the one in Example 4, except for the +1. So
we might guess that this function will also grow linearly with n. Let’s guess
that T (n) ≤ cn, where c is a constant that we shall figure out in the course of
the proof.

Claim: T (n) ≤ cn for all n ≥ 1.
Attempted Proof by strong induction on n:
Base case: T (1) = 0 ≤ c · 1 as long as we choose c ≥ 1.
Induction step: Let n ≥ 2. Assume that T (k) ≤ ck for 1 ≤ k < n. Then,

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + 1 since n ≥ 2

≤ c ⌊n/2⌋ + c ⌈n/2⌉ + 1 by ind. hyp., since 1 ≤ ⌊2/2⌋ ≤ ⌊n/2⌋ ≤ ⌈n/2⌉ ≤ n + 1

2
< n

= cn + 1

Now we are stuck: we wanted to prove T (n) ≤ cn, but we only managed to
prove that T (n) ≤ cn + 1. So we have to abandon this proof.

It is actually easier to prove a stronger claim: T (n) ≤ cn − d, where c
and d are constants that will be determined during the proof. (It may seem
paradoxical that a stronger claim is easier to prove, but this is because we can
use, in the induction step, a stronger induction hypothesis. This is sometimes
called inductive loading.)

Claim: T (n) ≤ cn − d for all n ≥ 1.
Proof by strong induction on n:
Since we had trouble last time with the induction step, let’s do that first

and come back to the base case later.
Induction step: Let n ≥ 2. Assume that T (k) ≤ ck− d for 1 ≤ k < n. Then,

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + 1 since n ≥ 2

≤ c ⌊n/2⌋ − d + c ⌈n/2⌉ − d + 1 by ind. hyp., since 1 ≤ ⌊2/2⌋ ≤ ⌊n/2⌋ ≤ ⌈n/2⌉ ≤ n + 1

2
< n

= cn − d + (1 − d)

The induction step will be complete as long as we choose d so that (1− d) ≤ 0.
Let’s choose d = 1.

Base case: T (1) = 0 ≤ c · 1 − 1 as long as we choose c ≥ 1.
Thus, the entire proof works if we have c = 1 and d = 1, so T (n) ≤ n− 1 for

all n ≥ 1.

3For those of you who have done some programming, this recurrence describes, for example,
the running time of a divide-and-conquer algorithm for finding the smallest element in an array
of n elements.

23

6 Divide-and-Conquer Recurrences

The name of these recurrences comes from the Roman maxim “Divide et im-
pera”. This type of recurrence arises frequently in computer science when a
problem is solved by first dividing the problem into smaller subproblems, then
solving those subproblems, and then combining the solutions for those smaller
subproblems to solve (or conquer) the original problem. The subproblems are of
the same form as the original problem (except smaller), so they can be solved us-
ing the same technique: subdivide them still further, solve the sub-subproblems
and combine results to solve the subproblem. (The sub-subproblems are again
divided up, and this continues until the subproblems are so small that they can
be solved trivially.)

If this approach is used (and the size of the subproblems is a constant fraction
of the original problem size) the time required (as a function of the problem size)
can be expressed using a divide-and-conquer recurrence, which has the form

T (n) = aT (n/b) + f(n), for n > 1

where a ≥ 1 and b > 1 are constants. In order to make the recurrence well
defined, the T (n/b) term will actually be either T (⌊n/b⌋) or T (⌈n/b⌉). We can
even have both in the same recurrence equation. To keep things simple, we shall
assume b is an integer (although the techniques used to prove this version do
generalize to the case where b is not an integer). The recurrence will also have
to have associated base cases. Here, we assume that the base case defines T (1).
If the recurrence includes floors (and b > 2) then it is also necessary to define
T (0) as a base case. Notice that no more base cases are required: If n > 1,
0 ≤ ⌊n/b⌋ ≤ ⌈n/b⌉ ≤ n

b + (1− 1
b) < n since 1− 1

b < n(1− 1
b). For simplicity, we

shall assume that T (0) = T (1) if T (0) needs to be defined. (The exact nature of
the base cases does not really affect the asymptotic behaviour of the recurrence,
which is what we shall be studying: that behaviour really only depends on a, b
and f(n), but our extra assumptions about the base cases will make the proofs
below simpler.)

We have already seen several examples of divide-and-conquer recurrences.
In Examples 2 and 26 we had a = 1, b = 2 and f(n) = 4. In Example 28, we
had a = 2, b = 2 and f(n) = 1. The function f(n) need not be constant. For
example, consider the recurrence4

T (1) = 0

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + n, for n ≥ 2.

Here, we have a = 2, b = 2 and f(n) = n.
We are going to come up with a theorem that gives the asymptotic behaviour

of any sequence defined by a divide-and-conquer recurrence when f(n) is a
monomial (i.e., f(n) = c ·nd for constants c > 0 and d ≥ 0). The results of this
section are summarized in the following theorem, which is sometimes called the

4For programmers: this recurrence gives the running time of mergesort.

24

Master Theorem. (Actually, the full Master Theorem is a little more general,
since it handles other types of functions f(n) too.)

Theorem 29 If a sequence is defined by a recurrence equation

T (n) = aT (n/b) + cnd (for n > 1)

where a ≥ 1, b ≥ 2, c > 0 and d ≥ 0 are constants and n/b is actually either
⌊n/b⌋ or ⌈n/b⌉, then one of the following holds (depending on the values of a, b
and d).
T (n) is Θ(nd) if a < bd

T (n) is Θ(nd log n) if a = bd

T (n) is Θ(nlogba) if a > bd.

We shall derive these formulas by starting with the special case where n is a
power of b: n = bk. This avoids any messy floors and ceilings. For this special
case, we shall actually be able to come up with an exact expression for T (n).
We can arrive at the formula by doing repeated substitutions.

T (bk) = aT (bk−1) + cbkd

= a1T (bk−1) + cbkd

= a1(aT (bk−2) + cb(k−1)d) + cbkd

= a2T (bk−2) + cbkd + acb(k−1)d

= a2(aT (bk−3) + cb(k−2)d) + cbkd + acb(k−1)d

= a3T (bk−3) + cbkd + acb(k−1)d + a2cb(k−2)d

= a3(T (bk−4) + cb(k−3)d) + cbkd + acb(k−1)d + a2cb(k−2)d

= a4T (bk−4) + cbkd + acb(k−1)d + a2cb(k−2)d + a3cb(k−3)d

...

If we imagine continuing this for k iterations, we conjecture that

T (bk) = akT (1) +

k−1
∑

i=0

caib(k−i)d = akT (1) + cbkd
k−1
∑

i=0

(a

bd

)i

. (7)

(Exercise: prove this conjecture by induction on k.)
Now, let’s try to compute the sum in the formula above. We notice that it

is just a geometric series. We have a formula for that sum (which works as long
as a

bd 6= 1.

Case 1 (a 6= bd): In this case, we can use the formula for geometric sums to
compute the sum in Equation (7). We have

T (bk) = akT (1) + cbkd 1 −
(

a
bd

)k

1 − a
bd

= akT (1) +
cbkd

1 − a
bd

− cbkd ak

bkd

1 − a
bd

25

=

(

T (1)− c

1 − a
bd

)

ak +
c

1 − a
bd

· bkd

= c′ak + c′′bkd (where c′ = T (1) − c
1− a

bd

and c′′ = c
1− a

bd

).

But ak = alog
b

n = alog
a

n log
b

a = nlog
b

a and bkd = nd. So, (when n is a power
of b),

T (n) = c′nlog
b

a + c′′nd.

If a < bd, then logb a < d, so T (n) is Θ(nd). If a > bd, then logb a > d, so
T (n) is Θ(nlog

b
a). Both of these conclusions hold only when n is a power of b.

We shall deal with n’s that are not powers of b below.
Case 2 (a = bd): In this case, every term in the sum in Equation (7) is 1,

so the sum is just equal to the number of terms in it. Thus, we have

T (bk) = akT (1) + cbkd · k
= bkdT (1) + cbkd · k since a = bd

= bkd(T (1) + ck)

= nd(T (1) + c logb n) since n = bk

Since T (1) and c are just constants, it is easy to see that T (n) is Θ(nd log n),
when n is a power of b.

Although the above arguments look a little messy and complicated, that is
just because the constants are complicated expressions; there was really nothing
more difficult in computing the formulas than a geometric sum and making sure
we did our arithmetic correctly.

Now, in each of the three cases, we have shown that T (n) satisfies the bounds
given in Theorem 29, but we have only done this for values of n that are powers
of b. Fortunately, this is enough to conclude that the bounds are accurate for
all values of n as we shall prove in the following lemmas. Because T (n) is a non-
decreasing function, and we have shown that it satisfies the asymptotic bounds
at infinitely many values of n, we shall be able to easily show that it satisfies
the asymptotic bounds everywhere.

Lemma 30 If T is defined by the recurrence equation T (n) = aT (n/b) + cnd

for n > 1 (along with base cases T (1) and, if necessary, T (0) = T (1)), then
T (n) is non-decreasing (for all n).

Proof: We use strong induction on n to prove that, for all n ≥ 1, T (n) ≥
T (n− 1).

Base cases T (1) ≥ T (0) by assumption. Using 2/b to represent either ⌈2/b⌉
or ⌊2/b⌋, depending on the recurrence, we have T (2) = aT (2/b)+c2d ≥ T (2/b) =
T (1) since a ≥ 1 and c > 0.

Induction step: Let n ≥ 3. Assume that T (k) ≥ T (k− 1) for 1 ≤ k < n. We
must show that T (n) ≥ T (n− 1). Again, using n/b to represent either ⌊n/b⌋ or

26

⌈n/b⌉, depending on the recurrence, we have

T (n) − T (n − 1) = aT (n/b) + cnd − aT ((n − 1)/b) + c(n − 1)d

≥ a(T (n/b)− T ((n − 1)/b)).

But T (n/b)−T ((n−1)/b) is either 0 (if n/b = (n−1)/b because of the rounding)
or positive, by the induction hypothesis. This completes the induction step.

Lemma 31 Let p be a constant. Suppose T (n) is a non-decreasing function
and c1n

p ≤ T (n) ≤ c2n
p whenever n is a (large) power of b. Then, T (n) is

Θ(np).

Proof: For large n, choose k such that bk ≤ T (n) < bk+1. Then,

T (n) ≤ T (bk+1) since T is non-decreasing and n ≤ bk+1

≤ c2b
(k+1)p

= bc2b
kp

≤ bc2n
p since bk ≤ n

and
T (n) ≥ T (bk) since T is nondecreasing and n ≥ bk

≥ c1b
kp

≥ c1

b b(k+1)p

> c1

b np since bk+1 > n.

So, for all large n, c1

b np < T (n) ≤ c2bn
p. Thus, T (n) is Θ(np).

It follows from the reasoning in Case 1 above, Lemma 30 and Lemma 31
that the first and third cases of Theorem 29 are true.

Exercise 32 Prove a lemma similar to Lemma 31 to complete the proof of the
second case of Theorem 29.

6.1 Applying the Master Theorem

Proving the Master Theorem was a little tricky, but applying it is simple.
In Examples 2 and 26 we had a = 1, b = 2, c = 4, and d = 0. Thus,

a = 1 = bd so the second case of the Master Theorem applies and T (n) is
Θ(n0 log n) = Θ(log n).

In Example 28, we had a = 2, b = 2 and c = 1 and d = 0. Thus, a =
2 > 1 = bd, so the third case of Theorem 29 applies, and we have T (n) is
Θ(nlog

2
2) = Θ(n).

For the recurrence

T (1) = 0

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + n, for n ≥ 2

27

we have a = 2, b = 2, c = 1 and d = 1. Here, a = 2 = bd so the second case of
the Master Theorem applies and T (n) is Θ(n log n).

For the recurrence

x0 = 1

xn = 7x⌊n/5⌋ + 9n2 for n ≥ 1

we have a = 7, b = 5, c = 9 and d = 2 so a = 7 < 25 = bd and the first case of
the Master Theorem applies. It follows that xn is Θ(n2).

28

