
1

CSE2301

Functions and Compiler Directives

Warning: These notes are not complete, it 
is a Skelton that will be modified/add-to in 
the class. If you want to us them for 
studying, either attend the class or get the 
completed notes from someone who did

Functions

• Function is a small program that may receives 
some data, perform some computations, and 
may return a value.

Return_type function_name(arguments declaration)
{
declaration
statements

}

• In C, call is by value (example).

Owner
Text Box
These slides are based on slies by Prof. Wolfgang Stuerzlinger



2

Declaration

• Before the use, functions must be 
declared.

int mysum(int a, int b);

Function may return a value using return
Retruning a value from a function that 

returns void is an error
Not returning a value from a function that 

returns a value is unpredictable.

Scope

• Variables do exist within their block.
• For functions, al variables are created at 

the time the function is called, and 
vanishes after the function returns 
(automatic variables).

• If a variable is declared before main, then 
it is visible to all functions in the file, but 
could be overridden by declaring a 
variable by the same name in a function.



3

Scope

• Usually, an external variable must be 
declared extern in any function that uses 
it

• If the function in the same file as the 
variable declaration, no need for extern

• If a variable is declared static outside of 
main, it is not visible to other files (only in 
this file).

Scope

• static could be used also with functions.
• If a variable in a function is declared 
static, the variables does not vanish 
after the function returns, it stays in the 
memory so the next call to the function will 
find the old value.

• static variables are initialized to 0.



4

Preprocessor

• Preprocessor processes the file before 
compilation.

• It handles #define and #include
#define ON 1

#define OFF 0

#define square(x) ((x)*(x))

Preprocessor

• Conditional inclusion
#if !defined(HDR)

#define HDR

//include the file here

#endf

#undef x undefines x

#ifdef HDR

#define HDR



5

Preprocessor

• Formal parameters are not replaced within 
quoted strings.

• ## means concatenate
• If the parameter name is proceeded by a # 

in the replacement text, the combination 
will be expanded into a quoted string with 
the parameter replaced by the actual 
argument

#define dprint(expr) printf(#expr “ = %g \n”, expr)

Preprocessor

• #ifdef can also be used for conditional 
compilation.



6

Compilation

• cc file.c produces a.out
• Compiling a C program

– Converting the .c file into assembly .s
– Compiling the assembly into a machine code 

(object code) .o
– Linking the .o file to the code library and is 

named a.out
• What happens when you have several 

files

Compilation

File.c

Common.h

Myfunc.c

File.oC

Myfunc.o

a.out

• We can produce the .o file using
• cc –c File.c



7

Compilation

• Usually, your program will be divided into 
several files.

• Be careful with global variables and 
functions name.

• Every file will be compiled into its .o
• Finally, all the .o files can be compiled to 

produce a.out
• Cc File.o Myfunc.o

Dependency Graph

Project

Comp.o Main.o io.o

io.h io.cMain.cCommon.hComp.c



8

Compilation

• If we changed one file, there is no need to 
recompile all the files.

• Make files are used to manage that
• The name of the file is makefile or 

Makefile

Project

Comp.o Main.o io.o

io.h io.cMain.cCommon.hComp.c

Project1: Comp.o main.o io.o
cc Comp.o main.o io.o –o Project

Comp.o : Comp.c Common.h
cc –c data.c

Main.o: Main.c Common.c io.h
cc –c Main.c

io.o: io.h io.c
cc –c io.c



9

Makefile

• Each dependency is handled as
Target: source files

Command (preceded by a tab)
• To compile just type make

Macros in Makefile

OBJECTS = Comp.o Main.o io.o
Project: $(OBJECTS)

gcc $(OBJECTS) –o Project
Comp.o: Comp.c Common.h

gcc –c Comp.c
Main.o: Main.c Common.h io.h

gcc –c Main.c
io.o: io.c io.h

gcc –c io.c



10

Standard C Library

• assert.h
• ctype.h
• errno.h
• math.h
• limits.h
• signal.h
• stdarg.h
• stddef.h
• stdio.h
• stdlib.h
• string.h
• time.h

• assertions
• character mappings
• error numbers
• math functions
• metrics for ints
• signal handling
• variable length arg lists
• standard definitions
• standard I/O
• standard library functions
• string functions
• date/type functions

Standard C Libraries

• • Utility functions stdlib.h
– atof, atoi, rand, qsort, getenv,
– calloc, malloc, free, abort, exit

• • String handling string.h
– strcmp, strncmp, strcpy, strncpy, strcat,
– strncat, strchr, strlen, memcpy, memcmp

• • Character classifications ctype.h
– isdigit, isalpha, isspace, isupper, islower

• • Mathematical functions math.h
– sin, cos, tan, ceil, floor, exp, log, sqrt




