Warning: These notes are not complete, it
is a Skelton that will be modified/add-to in
the class. If you want to us them for
studying, either attend the class or get the
completed notes from someone who did

CSE2301

Functions and Compiler Directives

These slides are based on slies by Prof.
Wolfgang Stuerzlinger

Functions

* Function is a small program that may receives
some data, perform some computations, and
may return a value.

Return_type function_name(arguments declaration)

{

declaration
statements

}
* In C, call is by value (example).

Owner
Text Box
These slides are based on slies by Prof. Wolfgang Stuerzlinger

Declaration

» Before the use, functions must be
declared.

int mysum(int a, int b);
Function may return a value using return

Retruning a value from a function that
returns void is an error

Not returning a value from a function that
returns a value is unpredictable.

» Variables do exist within their block.

» For functions, al variables are created at
the time the function is called, and
vanishes after the function returns
(automatic variables).

» |f a variable is declared before main, then
it is visible to all functions in the file, but
could be overridden by declaring a
variable by the same name in a function.

» Usually, an external variable must be
declared extern in any function that uses

It

« If the function in the same file as the
variable declaration, no need for extern

e If a variable is declared static outside of

main, it is not visible to other files (only in
this file).

e static could be used also with functions.

 If a variable in a function is declared
static, the variables does not vanish
after the function returns, it stays in the
memory so the next call to the function will
find the old value.

 static variables are initialized to O.

Preprocessor

* Preprocessor processes the file before
compilation.
* It handles #define and #i1nclude

#define ON 1
#define OFF O
#define square(x) ((X)*(xX))

Preprocessor

e Conditional inclusion
#i1T 'defined(HDR)
#define HDR

//include the fTile here

#ifdef HDR
#define HDR

#endf
#undef X undefines x

Preprocessor

« Formal parameters are not replaced within
quoted strings.

e ## means concatenate

* If the parameter name is proceeded by a #
in the replacement text, the combination
will be expanded into a quoted string with
the parameter replaced by the actual
argument

#define dprint(expr) printf(#expr “ = %g \n”, expr)

Preprocessor

» #ifdef can also be used for conditional
compilation.

Compilation

« cc file.c produces a.out
» Compiling a C program
— Converting the .c file into assembly .s

— Compiling the assembly into a machine code
(object code) .o

— Linking the .o file to the code library and is
named a.out
* What happens when you have several
files

Compilation

a.out

» We can produce the .o file using
e cc—c File.c

Compilation

Usually, your program will be divided into
several files.

Be careful with global variables and
functions name.

Every file will be compiled into its .o

Finally, all the .o files can be compiled to
produce a.out

Cc File.o Myfunc.o

Dependency Graph

’Comp.o ‘ ’ Main'.o ‘

’Comp.c ‘ ’Common.h ‘ ’Main.c ‘ ’ io.h ‘

Compilation

* |If we changed one file, there is no need to
recompile all the files.

» Make files are used to manage that

* The name of the file is makefile or
Makefile

Projectl: Comp.o main.o io.o
cc Comp.o main.o i0.0 —o Project
Comp.o : Comp.c Common.h

cc —c data.c

Main.o: Main.c Common.c io.h
cc —c Main.c

i0.0: io.hio.c

cc—cio.c

Makefile

» Each dependency is handled as
Target: source files

Command (preceded by a tab)
* To compile just type make

Macros in Makefile

OBJECTS = Comp.o Main.o io.o0
Project: $(OBJECTS)
gcc $(OBJECTS) —o Project
Comp.o: Comp.c Common.h
gcc —c Comp.c
Main.o: Main.c Common.h io.h
gcc —c Main.c
j0.0: i0.cio.h
gcc —c io.c

Standard C Library

» assert.h » assertions

» ctype.h character mappings
* errno.h e error numbers

e math.h » math functions

e limits.h * metrics for ints

* signal.h * signal handling

e stdarg.h * variable length arg lists
 stddef.h * standard definitions
 stdio.h standard I/O

 stdlib.h * standard library functions
» string.h * string functions

time.h date/type functions

Standard C Libraries

« Utility functions stdlib.h

— atof, atoi, rand, gsort, getenv,

— calloc, malloc, free, abort, exit

« String handling string.h

— strcmp, strncmp, strcpy, strncpy, strcat,

— strncat, strchr, strlen, memcpy, memcmp
» Character classifications ctype.h

— isdigit, isalpha, isspace, isupper, islower
» Mathematical functions math.h

— sin, cos, tan, ceil, floor, exp, log, sqgrt

10

