Warning: These notes are not complete, it
is a Skelton that will be modified/add-to in
the class. If you want to us them for
studying, either attend the class or get the
completed notes from someone who did

CSE2031

Basic Testing
PPU Ch I1.6

These slides are based on slies by Prof.
Wolfgang Stuerzlinger

Testing

e Testing is getting sure your code is correct
(no bugs).

* In reality, you can only detect the
existence of bugs, not their absence.

* Run your code many times using different
inputs.

Owner
Text Box
These slides are based on slies by Prof. Wolfgang Stuerzlinger

» Best way to write bug-free code, generate
it by correct (bug-free) program.

* Do not wait till you complete the program
to test it, test every piece that you write
(function, block, if, ...)

* If you wait until something breaks, you
probably have forgotten what the code
does.

» What do you need for testing?
— The code you want to test
— Some inputs
— What is the “correct” output of the above
inputs, SO you Can compare.
» Test Coverage: did you cover every
statement in the code?

Random Testing

 Random inputs to the program
 Easytodo

* Without a statistical framework, the results
are meaningless.

Black-Box Testing

» Assume no knowledge of the
implementation (code)

* Prepare the test based on the
specifications.

» Better to do it before the implementation.

 Better if prepared by some one else other
than the person who will write (wrote) the
code.

* May not test every path in the program.

Glass-Box Testing

» Assume full knowledge of the program.
» Chose test cases to test all different paths
in the program.
If(a> b) {
ifx(:c'_;:q) {

y=...;

else {

}
Regression Testing

When you fix a bug, you may introduce
another bug.

When you fix a bug, you may break
another fix

When you create a test, keep it

When you fix a bug, apply all previous
tests

Boundary Condition Testing

* Reads characters until it finds a new line
or fills a buffer.
inti;
char s[MAX];
for(i=0; s[i] = (getchar()) != "\’ && i<MAX-1; ++i)

S[--]=\0;

Boundary Condition Testing

 After fixing it

int i;
char s[MAX];
for(i=0; i<MAX-1; i++)
|f<€[|] getchar()) ‘\n’)‘\
break;
s[i]="\0’;

Boundary Condition Testing

» Fixing the EOF

int i;
char s[MAX];
for(i=0; i<MAX-1; i++)
if(é[i]=getchar()) =="\n"|| s[i] == EOF)§
break;
s[i]="\0’;

Boundary Condition Testing

* What about the case where the input is
very large number of characters without a
new line.

» Thinking about that might lead to a gap in
the specification, must be resolved as
early as possible.

Pre- and Post-Conditions

a
double avg(double[]mt n) {

inti;

double sum; What if n=0?
sum=0.0;
for(i=0; i<n; i++)
sum-+=a[il;
return sum/n; return n<=0? 0.0 : sum/n;

}
The use of assertions

* You can use assertion facilities in
<assert.h>

» Use it only when the failure is really
unexpected and there is no way to recover

» assert (n>0);

« If that is not true, the program terminates
with a message saying the assertion
failed.

» Useful for validating properties of interfac.

int factorial (int n)

*{

« fac =1;

* while(n--)

. fac*=n;
e return fac;

*}

 /* print the characters of a string one per

line */
e i=0;
e do{
e putchar(s[i++]);
e putchar(\n’);

} while (s[i] '= \0");

* Binary search, what e« Duplicate elements,

to test for try all different
« Array with 0 combinations of key
elements » Three elements, all
« One element, key is different
<,=,> the element combinations
« Two elements, try all * Four elements, ...
five combinations * If passed, probably

OK

