
1

CSE2031

Basic Testing
PPU Ch II.6

Warning: These notes are not complete, it
is a Skelton that will be modified/add-to in
the class. If you want to us them for
studying, either attend the class or get the
completed notes from someone who did

Testing

• Testing is getting sure your code is correct
(no bugs).

• In reality, you can only detect the
existence of bugs, not their absence.

• Run your code many times using different
inputs.

Owner
Text Box
These slides are based on slies by Prof. Wolfgang Stuerzlinger

2

Testing

• Best way to write bug-free code, generate
it by correct (bug-free) program.

• Do not wait till you complete the program
to test it, test every piece that you write
(function, block, if, …)

• If you wait until something breaks, you
probably have forgotten what the code
does.

Testing

• What do you need for testing?
– The code you want to test
– Some inputs
– What is the “correct” output of the above

inputs, so you can compare.
• Test Coverage: did you cover every

statement in the code?

3

Random Testing

• Random inputs to the program
• Easy to do
• Without a statistical framework, the results

are meaningless.

Black-Box Testing

• Assume no knowledge of the
implementation (code)

• Prepare the test based on the
specifications.

• Better to do it before the implementation.
• Better if prepared by some one else other

than the person who will write (wrote) the
code.

• May not test every path in the program.

4

Glass-Box Testing

• Assume full knowledge of the program.
• Chose test cases to test all different paths

in the program.
If(a> b) {

x=….;
if(c>=d) {

x=…;
y=…;

}
else {
….

}
else {
…..
}

Regression Testing

• When you fix a bug, you may introduce
another bug.

• When you fix a bug, you may break
another fix

• When you create a test, keep it
• When you fix a bug, apply all previous

tests

5

Boundary Condition Testing

• Reads characters until it finds a new line
or fills a buffer.
int i;

char s[MAX];

for(i=0; s[i] = (getchar()) != ‘\n’ && i<MAX-1; ++i)

;

s[--i]=‘\0’;

Boundary Condition Testing

• After fixing it

int i;

char s[MAX];

for(i=0; i<MAX-1; i++)

if(s[i]=getchar()) == ‘\n’);

break;

s[i]=‘\0’;

6

Boundary Condition Testing

• Fixing the EOF

int i;

char s[MAX];

for(i=0; i<MAX-1; i++)

if(s[i]=getchar()) == ‘\n’ || s[i] == EOF);

break;

s[i]=‘\0’;

Boundary Condition Testing

• What about the case where the input is
very large number of characters without a
new line.

• Thinking about that might lead to a gap in
the specification, must be resolved as
early as possible.

7

Pre- and Post-Conditions

double avg(double[], int n) {

int i;

double sum;

sum=0.0;

for(i=0; i<n; i++)

sum+=a[i];

return sum/n;

}

What if n=0?

return n<=0 ? 0.0 : sum/n;

The use of assertions

• You can use assertion facilities in
<assert.h>

• Use it only when the failure is really
unexpected and there is no way to recover

• assert (n>0);
• If that is not true, the program terminates

with a message saying the assertion
failed.

• Useful for validating properties of interfac.

8

Example

• int factorial (int n)
• {
• fac =1;
• while(n--)
• fac*=n;
• return fac;
• }

Example

• /* print the characters of a string one per
line */

• i=0;
• do {
• putchar(s[i++]);
• putchar(‘\n’);
• } while (s[i] != ‘\0’);

9

Example

• Binary search, what
to test for

• Array with 0
elements

• One element, key is
<,=,> the element

• Two elements, try all
five combinations

• Duplicate elements,
try all different
combinations of key

• Three elements, all
different
combinations

• Four elements, …
• If passed, probably

OK

