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Testing

e Testing is getting sure your code is correct
(no bugs).

* In reality, you can only detect the
existence of bugs, not their absence.

* Run your code many times using different
inputs.



Owner
Text Box
These slides are based on slies by Prof. Wolfgang Stuerzlinger


» Best way to write bug-free code, generate
it by correct (bug-free) program.

* Do not wait till you complete the program
to test it, test every piece that you write
(function, block, if, ...)

* If you wait until something breaks, you
probably have forgotten what the code
does.

» What do you need for testing?
— The code you want to test
— Some inputs
— What is the “correct” output of the above
inputs, SO you Can compare.
» Test Coverage: did you cover every
statement in the code?




Random Testing

 Random inputs to the program
 Easytodo

* Without a statistical framework, the results
are meaningless.

Black-Box Testing

» Assume no knowledge of the
implementation (code)

* Prepare the test based on the
specifications.

» Better to do it before the implementation.

 Better if prepared by some one else other
than the person who will write (wrote) the
code.

* May not test every path in the program.




Glass-Box Testing

» Assume full knowledge of the program.
» Chose test cases to test all different paths
in the program.
If( a> b) {
ifx(:c'_;:q) {

y=...;

else {

}
Regression Testing

When you fix a bug, you may introduce
another bug.

When you fix a bug, you may break
another fix

When you create a test, keep it

When you fix a bug, apply all previous
tests




Boundary Condition Testing

* Reads characters until it finds a new line
or fills a buffer.
inti;
char s[MAX];
for(i=0; s[i] = (getchar()) != "\’ && i<MAX-1; ++i)

S[--]=\0;

Boundary Condition Testing

 After fixing it

int i;
char s[MAX];
for(i=0; i<MAX-1; i++)
|f<€[|] getchar()) ‘\n’)‘\
break;
s[i]="\0’;




Boundary Condition Testing

» Fixing the EOF

int i;
char s[MAX];
for(i=0; i<MAX-1; i++)
if(é[i]=getchar()) =="\n"|| s[i] == EOF)§
break;
s[i]="\0’;

Boundary Condition Testing

* What about the case where the input is
very large number of characters without a
new line.

» Thinking about that might lead to a gap in
the specification, must be resolved as
early as possible.




Pre- and Post-Conditions

a
double avg(double[]mt n) {

inti;

double sum; What if n=0?
sum=0.0;
for(i=0; i<n; i++)
sum-+=a[il;
return sum/n; return n<=0? 0.0 : sum/n;

}
The use of assertions

* You can use assertion facilities in
<assert.h>

» Use it only when the failure is really
unexpected and there is no way to recover

» assert (n>0);

« If that is not true, the program terminates
with a message saying the assertion
failed.

» Useful for validating properties of interfac.




int factorial (int n)

*{

« fac =1;

* while(n--)

. fac*=n;
e return fac;

*}

 /* print the characters of a string one per

line */
e i=0;
e do{
e  putchar(s[i++]);
e  putchar(\n’);

} while (s[i] '= \0");




* Binary search, what e« Duplicate elements,

to test for try all different
« Array with 0 combinations of key
elements » Three elements, all
« One element, key is different
<,=,> the element combinations
« Two elements, try all * Four elements, ...
five combinations * If passed, probably

OK






