
1

CSE2301

Shell Programming
Introduction

Warning: These notes are not complete, it
is a Skelton that will be modified/add-to in
the class. If you want to us them for
studying, either attend the class or get the
completed notes from someone who did

These slides are based on slides by Prof. Wolfgang Stuerzlinger
at York University

Introduction

• In this part, we introduce
– The AWK Programming Language

2

Shell built-in variables

• $# The number of arguments
• $* All arguments to shell
• $- Options supplied to shell
• $? return value of the last command

executed
• $$ process ID of the shell
• $! process ID of the last command

started with &

Shell pattern Matching Rules

• * Any string, including the null string
• ? Any single character
• [ccc] Any of the characters in ccc [a-d0-3]

is equivalent to [abcd0123]
• “...” Matches exactly, the quotes are to

protect special characters
• \c c literally; if * it matches the “*” char
• a|b In case expression only, matches a

or b

3

The cal program

tigger 165 % cal
February 2009

Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7
8 9 10 11 12 13 14

15 16 17 18 19 20 21
22 23 24 25 26 27 28

Cal 2 gives the calendar for
year 2, not month 2

#!/cs/local/bin/sh
case $# in
0) set `date`; m=$2; y=$6;;
1) m=$1; set `date`; y=$6;;
2) m=$1; y=$2;;
esac

case $m in
jan*|Jan*) m=1;;
feb*|Feb*) m=2;;
mar*|Mar*) m=3;;
apr*|Apr*) m=4;;
may*|May*) m=5;;
jun*|Jun*) m=6;;
jul*|Jul*) m=7;;
aug*|Aug*) m=8;;
sep*|Sep*) m=9;;
oct*|Oct*) m=10;;
nov*|Nov*) m=11;;
dec*|Dec*) m=12;;
[1-9]|10|11|12) ;;
*) y=$m;m="";;
esac
/usr/bin/cal $m $y

What if *) instead of 2)

4

The AWK Programming Language

• AWK can be used to manipulate text and
numerical values.

• Usually, simple short programs (cluld be
just one line).

• The program could be in a file, or could be
entered with the command

• Consider the following example

Example

• You have a file →
• Print the name and pay rate for every one

who worked more than 0 hours.
• awk '$3 >0 {print $1, $2*$3}' file

Person1 4.0 0
Person2 3.75 2
Person 3 2.17 0
Person4 2.25 4

Person2 7.5
Person4 9

awk '$3 == 0 {print $1}' file

5

AWK

• The structure of an AWK program
• Each AWK program is a sequence of one or

more pattern-action statement
• Searches the input file looking for any lines

that are matched by any of the patterns and
the action is applied

pattern {action}

pattern {action}

How to run: awk 'program' file1 file2

AWK

• The program could be in a file progfile
awk -f progfile file1 file2
• tigger 222 % awk '$3 >0 [print $1, $3*$2}' emp
• awk: cmd. line:1: $3 >0 [print $1, $3*$2}
• awk: cmd. line:1: ^ syntax error
• awk: cmd. line:1: $3 >0 [print $1, $3*$2}
• awk: cmd. line:1: ^ syntax error

6

AWK

• If there is no pattern, the action is
executed on every line

{print}

{print $0}

• Expressions separated by commas in
print, are separated by a single blank
when printed

{print NF, $1, $NF}

AWK

• What about
• {print NR, $0}

• {print “Total is”, $2*$3}

• Can use printf (as in C)
• Can pipeline the output
awk '{printf(“%6.2f
%s\n,$2*$3,$0)}' file |sort

7

Combination of Patterns

• Patterns could be combined using logical
AND, OR, or NOT

• /name/ # matches with name in the line
• $2 >= 4 || $3 >= 20

• !($2 <4 && $3 <20) same as above
NF != 3 {print $0, “Number of fields is not 3”}
$2 <8.75 {print %0, “rate below min. wage”}
$2 >20 {print $0, “rate more than $20 dollars”}
$3 <0 {print $0, “Negative pay rate”}

Begin and END

• The special pattern BEGIN matches
before the first line of the first input file is
read.

• The special pattern END matches after the
last line of the last input file has been
processed.

8

Introduction

BEGIN{print "NAME RATE HOURS"; print}
{print}
{total = total + $2 * $3}
END{print "The total is ", total}

Person1 4.0 0
Person2 3.75 2
Person3 2.17 0
Person4 2.25 4

NAME RATE HOURS

Person1 4.0 0
Person2 3.75 2
Person3 2.17 0
Person4 2.25 4
The total is 16.5

awk -f emp.awk emp

Counting and Average

$3 > 15 {emp = emp +1}
END {print emp, “Employees worked more than 15 hours”}

{pay = pay + $2 * $3}
END { print NR, “employees”

print “total pay is “, pay
print “average pay is”, pay/NR
}

$2 > maxrate {maxrate = $2; maxemp = $1}
END {print “highest hourly rate:”, maxrate, “for”, maxemp}

9

String manipulation
{ names = names $1 “ “}

END {print names}

{last = $0

END {print last}

{ nc = nc +length($0) +1

nw = nw + NF}

END {print NR, “lines “, nw,
“words”, nc, “characters” }

NR retains its value in END,
but not $0

\n char

Control Flow Statements

$2 > 6 {n=n+1; pay = pay + $2 * $3}
END { if(n (0 <

print n, “employees, total pay is”, pay,
“average pay is “, pay/n

else
print “No employees are making more than $6”

}

{ i=1
while (i <= $3) {

printf(“\t%.2f\n”, $1 *(1 + $2) ^i)
i=i+1

}
}

$ awk -f emp2.awk
1000 0.07 7

1070.00
1144.90
1225.04
1310.80
1402.55
1500.73
1605.78

10

Control Flow Statements

Another program to calculate the interest
{ for(i=1; i<=$3; i=i+1)

printf(“\t%.2f\n”, $1*(1+$2)^i)
}

Arrays

print the input in a reverse order
{line[NR] = $0}
END { i=NR

while(i > 0) {
print line[i]
i=i-1

}
}

11

Arrays

• The index of the arrays need not be
integer.

• No need for declaration
• Initialized to 0 or “”
• For example, you can say Ar1[$1] = $2

Arrays

• {ar[$1]=$2}

• END {

• for (x in ar) print x, ar[x]

• }

• The order of stepping in the array is
implementation dependent.

12

Examples

/Beth/ {nlines = nlines +1}

END {print NLINES}

NF > 4

{ for(i=NF; i> 0; i=i-1) printf(“%s “,$i)

Printf(“\n”);

}

Length($0) > 80

Patterns

• Again, the rule in AWK programs is
• Pattern Action
• Here are the rules for patterns
• BEGIN {statement} statement is executed before

any input is read
• END {statement} statement is executed after all

inputs are read.
• Expression {statement} the statement is

executed at any line where Expression is true

13

Patterns

• /regular expression/ {statement} The
statement is executed at each input line
that contains a string matched by the
regular expression.

• Compound pattern {statement} combing
expressions with &&, ||, ! And the
statement is executed at each line the
pattern is true

Patterns

• Pattern1 , patter2 {statement} A range
pattern matches each input line from a line
matched by pattern1 to the next line
matched by pattern2

14

String Matching Patterns

1. /regexpr/ matches when the current input
line contains a substring matched by
regexpr

2. Expression ~ /regexpr/ Matches if the
string value of the expression contains a
substring matched by regespr.

3. Expression !~ /regexpr/ matches if the
string value of expression does not
contain a substring matched by regexpr

String Matching Patterns

• /Asia/ # short hand for $0 ~ /Asia/
• $4 ~ /Asia/
• $3 !~ /Asia/

15

Regular Expressions Meta
Characters

• A non metacharacter
that matches itself A,
b, D, …

• Escape sequence that
matches a special
symbol \t, *

• ^ beginning of a
string

• $ End of a string

• . Any single
character

• [ABC] matches any
of A,B,C

• [A-Za-z] matches
any character

• [^0-9] any character
except a digit

Regular Expression

• These operators combine regular expressions.
• Alternation: A|B matches A or B
• Concatenation: AB matches A followed by B
• Closure: A* matches zero or more A
• Positive closure A+ matches 1 or more A
• Zero or one: A? matches the null string or A
• Parenthesis: (r) matches the same string as r

16

Regular Expressions

• ^C matches C at the beginning of a string
• C$ matches C at the end of a string
• ^C$ matches the string consists of the

single character C
• ^.$ any string with exactly one character
• … matches any three consecutive

characters
• \.$ matches a string that ends with period

Regular Expressions

• ^[ABC] A, B, or C at the beginning of a string
• ^[^ABC] any character at the beginning of a

string except A,B, or C
• [^ABC] any character other than A,B, or C
• ^[^a-z]$ any single character string except

a lower case character

17

Regular Expressions

• /^[0-9]+$/ any input line that consists
of digits only

• /^[0-9][0-9][0-9]$/ exactly three
digits

• /^(\+|-)?[0-9]+\.?[0-9]*$/ A
decimal number with optional sign and
optional fraction

• /^[+-]?[0-9]+[.]?[0-9]*$/ same
as above

Regular Expressions

• /^[+-]?([0-9]+[.]?[0-9]*|[.][0-9]+) ([eE][+-]?[0-9]+)?$/
a floating point number with optional sign
and optional exponent

• /^[A-Za-z][A-Za-z0-9_]$/ a letter
followed by any letter of digit variable name
in AWK

• /^[A-Za-z][0-9]$/ A letter or a letter followed
by a digit

18

Built-in Variables

• ARGC Number of command lines
arguments

• ARGV arra of command line arguments
• FILENAME Name of current input file
• FNR Record number in current file
• FS Input field separator
• NF Number of field in the current record
• NR Number of records red so far

Built-in Variables

• OFS Output field separator
• ORS Output record separatot
• RLENGTH Length of string matched by

matching function
• RS Input record separator

19

Reading from a File

• getline function can be used to read input
from a file, splits the record and sets NF,
NR, and FNR

• It returns 1 if there was a record, 0 for end
of file, and -1 for error

• Getline < “File”
• Getline x <“File” # gets the next line and

stores it in x(no splitting) NF, NR, and FNR
not modified

